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ABSTRACT

Spectral mapping theorems and their applications, despite of
practical importance, seldom find their way into introductory
textbooks of linear algebra and matrix theory. The reason
appears to be traceable to the way the function of a single
matrix variable is defined, as is in Gantmacher [11.

In this note we derive spectral mapping theorems from
another point of view by observing a simple yet beautiful
correspondence between a holomorphic function f(z) and the
special upper-triangular matrix f*(z) whose (i, j)-entry equals

e DV -1, § .



1. INTRODUCTION

Let f(z) be a holomorphic function of a complex variable =z
defined on a region G of the complex plane and let A be a complex
square matrix of order n. If a contour C in G encloses the
spectrum of A (i.e., the set of all eigenvalues of A), then f(A)

is defined by

FCA) = L [ P (t1 - AT dt (1)
21wi JC
where the right—hand side is independent of a particular contour
C so long as C encloses the.spectrum of A. See Dunford &
Schwartz [2, Chapter 71, It is well-known that if f(z) 1is a
polynomial or a rational function whose denominator does not
vanish on the spectrum of A»or a power series in z converging for
any finite é, theh the definition of f(A) by (1) and the matrix
obtained by substituting A into z in f(2) agree. For example,
taking f(z) = z, we have:
1

-1
A = [ t (tI - A) dt ; (2)
2rki C :

where C encloses the spectrum of A.

The purpose of this paper is to give the aforementioned fact
an a]ternafive approach that is more direct and trahsparent,
using  only the Jordan canonical form theorem and an algebraic
homomorphism (see Theorem 1 in the next section) from which vyet

another hidden feature of the Jordan block emerges (see Example 1

2



in the next section). The arguments given in the following
sections solely depends on the spectral analysis, or a class of
theorems which analyses the transformation of spectral structure
under the transformation A -> f(A) where f(z) denotes a
polynomial or a rational function or a power series in =z
converging for any finite z, and where f(A) denotes the matrix
obtained by substituting A into z in f(z) in an obvious way.

The topics covered in this note seldom find their way into
introductory textbooks of matrix theory, in a form accessible to
readers with moderate mathematical background in spite of their
significance in applications of eigenvalue problems. We will
show in this note that this can be done. The key ié given by
the systematic use of the simple mapping f(z) to f*2z), an
upper—triangular matrix whose (i, j)-entry is defined ‘by
£ O (zy/¢j - 1>, j > i. It happens that the mapping
represents a homomorphism from the algebra of functions defined
on a complex region to the commutative algebra of upper-
triangular matrices of the type just mentioned. The matrix f*(z)
is a wé]]—knoun matrix appearing in various contexts in matrix
theory, see, e.g., Gantmacher [1, Chapter 51. Moreover our
approach enables us to dispense with the interpolatjon theory as
seen, e.g., in Gantmacher [1, Chapter 51, and leads us in a
natural way to the integral representation of matrix function
f(A) as given in Dunford & Schwartz [2, Chapter 7J: See Section

4 below.



2.

Let f(2)

be holomorphic in a region in the complex

Let n denocte a positive integer.

MATRIX REPRESENTATION OF LAWS FOR DIFFERENTIATION

F*, we mean the n by n matrix defined by:

N

plane.

By the symbol £%(2), or simply

(($¢z) £ (z) £ (/20 —mm—— £ 0Ly sn-1)0
f(z2) £ (2) :
* N DR )
f (2) = ‘\~\\\ Tl ! (3)
O el T @
i f(2)
When the order n of the square matrix F*(z) must be indicated

explicitly, we use the symbol Ef*(z)]n for the case.

We have the following theorem.

THEOREM 1.
o * * *
1 (f +g)=¢f + g
o * *
2 (c f) =c¢ f , where ¢ is a constant
* * * * *
3 (fg)=¢f g =g f
° * * Kk o -
& s =t eH T = @, g0
50 (1/9) = (gL, g 40
Proof. 1° and 2° are obvious. 3° is proven by Leibniz’s lauw:
k! r=40 r! (k=r)!



o

4., By 3° we have

* 'F * 'F * * * 'F *
f = (—g)=(—) g =g (—)
g g 9

where g*is nonsingular since g # 0, which proves 4°.

° *
5°. Let £ =1 in 4° and use the fact f =1 (identity matrix).[]

The mapping f - F* is an algebraic homomorphism; sum and
product of functions, scalar multiple of a function correspond to
sum and product of matrices, scalar multiple of a matrix,
respectively.

The following example illustrate a few immediate

applications of Theorem 1.

Example 1. Compute the p-th power of an n by n Jordan block

0 t oz
* * o
Let f(z) = 2z. Then f (z) = 2 = J, and by 3 we have:!
- . W
P (p\_pl p p-n+l
B ()
* * ~ o NN )
P= HP=hH - STl |
BRI (p) ' p-l
0 B
< zp
N 7/
where




*
Example 2. Find the inverse of a Jordan block J (= z ). By 5°
* -] *
(z ) =(1/2) , z %0
yielding
'z_1 —z—2 2_3 ------ (-l)n_lz_n
_l - .
Z \\\ '
-1 ISR :
J - \\ \\ ]
- ~ -
~. -2
T -1
2
\ J
Example 3. Find the inverse of the following n by n matrix A:
80 a]_---—--- an_l
80 hN :
A = ‘\\ \\,‘ ; ’ 80 + 0
\ a0 J
n-1 .
Let f(z) = ag * a;z +--- + a z « Then A is represented as:
1 n-1
— (n-1) ~
£F(O) f£2(0) ----- f (O /(n=-1)!
£CO) . S !
\\\ \‘\ ! *
A = S~ S .. \ f (2)
NN 2=0
S £ (0)
f(0)
. /
By 5°
- * -1 -1 *
A 1 = [f (2) ] = [f (251
_ - | z=0 z=




and thus the (i, j)-entry of A_l is given by:

1 it

._.( ) , i J

™ (2 =
z2=0

(j - i)t dz

3. SPECTRAL MAPPING THEOREMS

Unless otherwise stated, we interpret hencefaorth in this

note that A is an n by n matrix and its Jordan form is given by:

f Jl ()

J=V AV = J (4)

A typical Jordan block Ji is assumed to be of order ki and has

the form
(1 ]
i
J, = N \\O , 1= 1,000, m (5)
1 N ‘\\
\\\ \1
O
X ')

where K] po ey Km are not necessarily distinct.

THECREM 2 (Spectral mapping theorem). Let h(z) be a rational

function; viz. h(z) = f(z)/9(z), where

f(z) = aoz + a

N
+
U
[
1
+
w
N
+
il
1]
[en]
—+#
(o
-
AV
(o

g(z)

i
o
N

+
o
N

+

J
i
|

-+
o
N

-+

o

o

o
.*

o

0

A4

O



1°  If g(A) $0, i =1,..0, m, then g(A)

-

Eh*(xl)Jkl
*
Ch ()1
2 k2

is nonsingular and

V T h(A) V = .~ (6)
0 S
Ch (A3
\ m
where
-1 -1
h(a) = f(A) [a(A)] = [g(A)] fA)
¢ (k.-1 3
h(Ap) h* (Ap) ----- h 1L 2%1)/(ki~1)!
hCAD TS el :
* S \‘\‘ '
) = RN RRN | 7
Ch (xi ]ki e - i
(j ‘\\\\ h* (A ;)
\ ' h(x )
*
2° If h’(Ki) + 0, then a Jordan form of Ch (i) dy has a
i
single Jordan block. If W () = 0, then a Jordan form of
Eh*‘x.>3k has two or more Jordan blocks.
1 - K.
* Ky K,
3° detCh(A) - ALJ = [h(}y) - A3 --- Chiy? — A1
Proof. 1°. We haves
1 FCIP) | O ]
vV f(A) V= f(I) = N
O £
e g(Jq) 0 )
vV gAY vV = g(J) = T~
0 g(J )




If gCA) #0, i =1,000, m, then g(J) is nonsingular and so is

a¢A). Then:

-1 - - -
ViR v=v Tl viov?t gy vit
1
f(J1)0g(Jy)] 0 hadp) ()
- \\\ - \\
0 FUCa T | 0O o
mlLaldy ( m)

*
For 1° one must show that h(Ji) = [h (Ai)Jk.‘ By Theorem 1
i

*

h (2)

* * _l
f (z) [g (2>13

* P —— * * q - —— *
tao(z )T+ + apl® by (27 + + Qll ]

Jordan block Ji is represented as:

kilz=2X4

Thus we have:

* -1
Ch (Ai)]]%.= f(Ji) CeI PI -~ = h(Jy
2° v If K (Ai)> ¥ 0, then Ch (Al)Jk has a single linearly
independent eigenvector and thus a Jordan Form’of [h (A )Jk has
a single Jordan block. If h* (X)) = 0, then [h (A )Jk has at
least two linearly independent eigenvectors and thus a Jordan
form of Ch™( g)lk. has two or more Jordan blocks.

(4] l § N
3°+ The proof is obvious and is omitted. []



-1
Example 4. Let A be diagonalizable; V AV = diag[xl R
m
where A ,...,Am are not necessarily distinct. For rational
h(z) = f(z2)/g9(z) with g(xi) £F 0, i = 1l,ee¢ey n, gAY s

nonsingular and we have:

-1
V h(A) V = diaglh()x ),eevey, h(y D]
1l m

THEOREM 3 (Spectral mapping theorem). Let h{(z) be an infinite

power series:

h(z) =a_+ a .z + a 22 + -—- = y a zk
0 1 2 keo K

whose radius of convergence is strictly greater than the spectral
radius of A. Then
Ch* (A1
. A, 0
Vo h@a) V = S~ (8)
O Ch*(y )1
m km

(the same form as (&) for rational h(z)).

Proof. Let
hr(z)=ao+alz+a222+--— +arzr, r =1, 2,....
By Theorem 2 we have:!
Ch*()x )1 O
-1 r 1 kl ‘
V h (A V= S .. ()
O Ch* (X )1
r m k
m
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Since each ki is in the circle of convergence of h(z), taking the

limit as r => 00 in (9) yields (8). []

Example 5. Let h(z) = etz, where t is an arbitrary complex

number. Then we have:

where v S
(1t oo tki'l/(ki— 1)

b
/

/
/
/
/
—-

4. APPLICATIONS OF SPECTRAL MAPPING THEOREMS

As immediate applications of spectral mapping theorems, we
prove two theorems, one giving a necessary and sufficient
condition for equality of two matrix functions and the other a

Cauchy type integral representation of a matrix function.

THEOREM 4 (Identity theorem). Let each of ¢(z) and yY(z) be a

rational functioni wviz.
$(2) = Fl(z)/gl(z), p(z) = Fz(z)/gz(z)

where fl(z), gl(z), Fz(z) and 92(2) are polynomials. UWe assume

that gl(ki) ¥ 0 and gz(xi) £ 0, 1 =1, voey, m, where s ey A

11



are eigenvalues of A which are not necessarily distinct. Let
M1, +.o, W denote distinct eigenvalues of A.
1. For ¢(A) = V(A), it is necessary and sufficient that
(1) (1)
¢ (l—l.)-‘- 1}) (U.)’ j.:O’ 1,000, m'—l;.j'—'l,ooo,r‘ (10)
J J J

where m denotes the order of the largest Jordan block

corresponding to “j'

2°, For ¢CA) = U (A), it is sufficient that

i i ,
¢()(U.)= ‘P(l%u.), i =0, 1,000y P =13 J =150y r (11)
J J J
where p denotes the algebraic multiplicity ofpj.
J
Proof. 1°. ¢(A) = ¥(A), if and only if
-1 -1
vV oA V=V YAV (12)

By Theorem 2, (12) is expressed equivalently as followss

* *
E(b(}\.)] =[q)(>\.)] . i=1, eeey M
' ik, i k.,
1 1
ar
* *
E¢(U,)] =[‘J)(U_)J . .j=1, eeey I
J mj J mj

which vields (10).
2°. Since my < Py » the proof follows immediately from f .[]

Example 6 (Special case of Hermite-Birkhoff interpolation
problem). Suppose a rational function ¢(z) is given. Then a
polynomial ¥ (z) can be constructed so that ¢(A) = ¢ (A), where

P(z) must satisfy (10). If one restrict the degree aof V(z) be at

12



most m + m2 +---+m -1, then Y(z) is uniquely determined.
r
The Lagrange—-Sylvester interpolation polynomial gives a
representation of such yY(z). A practically more useful
expression, however, is given as the Fbllowing Newton-type form:
r =1 m nﬁ k
V(z) = I { T (z=-u) "Mz a (z-yp)?3l
j=1 k=1 k k=0 ik 3

Example 7. Let
A= , b ¥0

Compute AEi where p is any integer (if p < O we assume that A is

nonsingular). Let

day = AF = c L+ e A S wA) (13)

where o and c, are unknown constants to be determined. For

(13) it is necessary and sufficient that

P
A= ¢+ i=1, 2 (14)
i S T e ’
where &L= a + b and XZ = a- b, Solving (14) for c0 and cl
yields:
P P P p
o1ty -
2],p P p P
Al + A2 Al + AZ

Example 8. Find a general term expression for the following

difference equation:

- - =0 n =1, 2, +.. (15
Yn +1 2 Yn Y n-1 ’ ’ ’
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where y_ and yl are assumed to be given. Since

0
( h
y ) 2 1 y
n+l = n
y 1 0] y
n : 7 n-1
or
( ) ( !
2 1
ntl| = yl
y 1 0 ) y
\ n / \ 0

The method in the previous example applies and y 1is given as:
n

n-1 n-1

THEOREM 5 (Integral representation of h(A)). Let h(z2) be either
a rational function or an infinite power series. Let C be a
simple closed curve in the complex plane. Assume that h(z) is
holomorphic on C and in the interior of C. Assume further that
every eigenvalue of a given square matrix A of order n locates in

the interior of C. Then

1 _
h(A) =————J h(t) (tI - AT dt (16)
21 Jc

Proof. Theorem 2 or 3 gives:

14



*
Ch ”1”kl' O
v Thaa v = Ts
O th*G )1
Am k
m/
Since
k! h(t)
h(k) ()\i) = [ y R dt ’ k = 0, 1, v
ori C (t -2y
by Cauchy’s integral formula, we have:
. N\
1 1 1
— -— 2 —

) | . t=3; EEW 1 *i)E
Ch (M), = J h(t) Tl S : dt
7R omi Je NN !

N — 2
O \ (t )\i)
S
t- .
\ Al J
3 3y -1
1 T D
=—I ht) DN dt  (by Example 2)
2ni JC N -1 ;
O -
\ lj
1 -1
= — h(t) (tI - J ) dt
2ri ) C i

Thus we have:?

135



(t1 - J.)
-1 1 1 o O
Vv  hA) V =——J h(t) RN dt
2Ti JC -
O (tI - J )
| mo
1

=——-J hCH) (41 - 1 dt,
2mi JC
which proves (16). [1

Based on the result in Theorem 5, we define h(A) for a
general h(z): Let C be a simple closed curve in the complex
pilane. h(z) is assumed to be holomorphic on C and in the
interior of C. Further assumed is that every eigenvalue of a
given square matrix A of order n is in the interior of C. Then
we define h(A) as follows:

1 J -1
h(A) = — h(t) (tI - A) dt (17
2ri )C .

We know that the right—hand side of (17) is determined merely by
h(z) and A, irrespective of a particular C. This fact is

verified by observing the relation

. h ()\l )\ O 4

—[ hi(t) (tI - M L4t =V - v
oTi JcC
0 e

It is also clear that the right—-hand side of (17) does not depend
on a particular nonsingular matrix V which yields a Jordan form

of A,

16



By the generalization (17) of a matrix function, the
necessary and sufficient condition for 9(A) =V (A) is given the
same as (10) eQen for a case where ¢ (2) and Y(z) are holomorphic
functions on a region that contains every eigenvalue of A in its
interior. We further know that the polynomial p(z) of degree at

most n is uniquely determined so that ¢(A) = y(A).

3. CONCLUSION

We have provided a method for deriving a class of spectralc
mapping theorems by observing the correspondence between a V
holomorphic function f(z) and an upper—triangular matrix f * (2)
whose (i, J)-entry 1is defined by £ O (zy/¢j - 1, | > Ji.
Based on the spectral mapping theorems and our introduced
correspondence between f(z) and F*(z), we have also shown a way
for reaching a Dunford’s integral representation of f(A) for a

given square matrix A.
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