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Abstract - This paper develops a method for computing the expected number

of failures and the expected number of repairs of a component in a prescribed
time interval. Our method computes directly the above mentioned quantities
without passing through a conventional step of calculating the unconditional
failure and repair intensities over the corresponding time interval. Our
method is constructed via integral equation formulation with its operator
equation rep?esentation. It is shown that the expected number of failures
and the expected number of repairs can be computed with the same precision
of accuracy as that of the unconditional failure and repair intensities,

which cannot be possible by a conventional approach.



1. INTRODUCTION

Probabilistic evaluation of reliability and safety provides essential
information for designing and upgrading systems, maintenance policy
optimization, and so on. Rigorous methods for reliability quantification
have been developed by Vesely [1] for coherent systems and by Inagaki &
Henley [2] for non-coherent systems. System reliability characteristics
are bepresented completely in terms of the unconditional failure intensity
w(t), the unconditional repair intensity v(t) and the point-unavailability
q(t) of relevant components whether the system is coherent or non-coherent.

In addition to reliability parameters w(t), v(t) and q(t) we have two
more important parameters for a component: the expected number of failures
W(0,t) and the expected number of repairs V(0,t) in a prescribed time
interval [0, t]. The usefulness of W(0,t) and V(0,t) lies in that they
give intuitively understandable measure of reliability and maintainability,
and in that q(t) is represented in terms of W(0,t) and V(0,t). It might
be believed that w(u) and v(u) for 0 < u < t must be known for computing
W(0,t) and V(0,t) since W(0,t) and V(0,t) are given as integrals of w(u)
and v(u), respectively, over the time interval [0, t].

This paper shows that W(0,t) and V(0,t) can be computed directly,
without passing through a step of calculating w(u) and v(u) for 0 < u < t.
The direct computation of W(0,t) and V(0,t) is made possible by formulating
a system of integral equations that characterizes W(0,t) and V(0,t) as
solutions to the integral equations. The integral equations are reformulated
as a linear operator equation. A numerical method of solution is given

to the linear operator equation. By examining the relation between our



integral equations for W(0,t) and V(0,t) and the well-known integré]
equations for w(t) and v(t), we show that our method can compute W(0,t)

and V(O,t) so that they have the same precision of accuracy as that of w(t)
and v(t); the precision of W(0,t) and V(0,t) is generally poorer than
that of w(t) and v(t) if we follow a conventional approach that calculates
W(0,t) and V(0,t) by numerical integration of w(t) and v(t). An example

is given to illustrate our method.

2.  PROBLEM STATEMENT

Let w(t) and v(t) denote the unconditional failure intensity and the

unconditional repair intensity of a component at time t, respectively:

w(t)dt = Pr[component fails in [t, t+dt) lEo]

18

v(t)dt = Pr[component repair completes in [t, t+dt) |EO]
where E0 denotes the event that thé component was as good as new at time
zero. Let q(t) denote the point-unavailability of a component at time t:

q(t) = Pr[component is not working at time t]

The set of parameters {w(t), v(t), q(t)} of components is necessary
for probabilistic evaluation of minimal cut sets (prime implicants) and
top-events of systems. In quantifying reliability and safety of systems,
we usually compute 1) the existence probability (unavailability) and
2) the unconditional occurrence (failure) intensity for minimal cut sets
(prime implicants) and top-events. The reliability parameters 1) and 2)
are represented completely in terms of {w(t), v(t), q(t)} of relevant

components whether the system is coherent or non-coherent; see [1] or

[3, Chapter 7] for coherent cases and [2] for non-coherent cases.



Let W(0,t) denote the expected number of failures of a component in
a prescribed time interval [0, t] and let V(0,t) denote the expected
number of repairs of the component in [0, t]. Then W(0,t) and V(0,t) are
given by:

W(0,t) = f§ w(u) du, V(0,t) = [E v(u) du (1)

The parameters W(0,t) and V(0,t) are essential for reliability quantification
since 1) they provide intuitively understandable measure of reliability and
maintainability and 2) the point-unavailability q(t) can be computed by
the formula: |

q(t) = W(0,t) - v(0,t) (2)
see, e.g., [3, p. 193]. Thus we may say that the fundamental parameters
for probabilistic evaluation of reliability and safety of systems is the
set of {w(t), v(t), W(0,t), V(0,t)} of components, rather than the set of
{w(t), v(t), q(t)} of components.

Because of the relation (1) it might be believed that W(0,t) and
V(0,t) are 'secondary' parameters in the sense that w(u) and v(u) for
0 <u <t must be known for computing W(0,t) and V(0,t). Figure 1 depicts
the conventional approach for computing W(0,t) and V(0,t), where w(t) and

v(t) are obtained by solving the following system of integral equations

(1], [3, p. 193]:

(t) - & f(t-u) v(u) du = £(t)
W fo u) v(u) du (3)

0

]

v(t) - f§ g(t-u) w(u) du

where f(t) and g(t) are given probability density functions (pdf) for the

time to first failure and the repair time, respectively.



This paper makes the following assertions:

1. W(0,t) and'V(O,t) can be computed directly without requiring the
knowledge of w(u) and v(u) for 0 < u < t. The direct computation of W(0,t)
and V(0,t) becomes possible by formulating a system of integral equations
that characterizes W(0,t) and V(0,t) as solutions to the integiral equations.
Figure 2 illustrates the proposed approach for computing W(0,t) and V(0,t).

2. W(0,t) and V(0,t) can be computed so that they have the same
precision of accuracy as that of w(t) and v(t). The precision of accuracy
of W(0,t) and V(0,t) is generally poorer than that of w(t) and v(t) if we
follow the conventional approach in‘Figure 1: the original precision of
w(u) and v(u) for 0 < u <t is lost in the process of numerical integration
for producing W(0,t) and V(0,t).

The above mentioned assertions are verified in the subsequent sections.
Remark. In theory, the set of {w(t), v(t)} of components provide sufficient
information for probabilistic evaluation of systems reliability and safety

because of (1) and the relation
q(t) = fg D(u) - v(u)] du (2')

Assertion 2 suggests, however, that the set of {w(t), v(t), W(0,t), V(0,t)}
of components must be thought as basic information, rather than {w(t), v(t)}
nor {w(t), v(t), q(t)} of components for performing probabilistic evaluation

of reliability and safety with high preCision of accuracy.

3. INTEGRAL EQUATIONS
The expected number of failures W(0,t) and the expected number of

repairs V(0,t) of a component in the time interval [0, t] can be described



as solutions to a system of integral equations:

W(0,t) - f§ Ft-u) V(0,u) du = F(t)

(4)

V(0,t) - f§ g(t-u) W(O,u) du=0, 0<t<T

where T denotes an arbitrary time point and F(t) denotes a cumulative

distribution function (cdf) for the time to first failure:
F(t) = f§ £(u) du (5)

The integral equations (4) are derived by integrating (3) through use of

Dirichlet formula:

20 [ h(xoy) dy T dx = i I? h(x,y) dx ] dy
where h(x,y) is continuous on a triangular region a <y < x < b.

Eq. (4) states that W(0,t) and V(0,t) can be computed directly
without passing through a step of calculating w(u) and v(u) for 0 < u < t,
which verifies Assertion 1 given in the previous section.

4. OPERATOR .EQUATIONS

The system of integral equations (4) is reformulated as a Tinear
operator equation:

Lx = b (6)

I -H W(0,t) F(t)
L = f X =l b =
-Hg P v(o,t) ]|’ 0
I denotes the identity operator, Hf and Hg are Volterra integral operators
defined by:
HeLV(0,8)] = [§ F(t-u) V(0,u) du
HIH(0, )] = fg alt-u) W(0,u) du

-6 -



The integral equations (4) or operator equation (6) is usually difficult
to solve analytically if f(t) and/or g(t) is a non-exponential pdf; some
numerical method is needed for the cases.

Let Pn denote a bounded linear projection (Pn2 = Pn) from a Banach
space C[0, T] of real-valued functions on the interval [0, T] onto an

n-dimentional subspace Sn of C[0, T]. We have the approximate operator

equation:

L.x, = b, (7)
where

ol T P W], PF(t)

n - > Xp T T R - 0

P i ,

and P (n=1, 2,...) are assumed to satisfy the conditions:

(a) ||Pnz -z||= sup | Pnz(t) -z(t)] -0 asn-+>e

<t<

for every z ¢ C[0, T], and
(b) || P, |l = sup'{lanzll :lzlj=1} =1, n=1,2,... (8)

Eq. (7) is uniquely solvable for X since the inverse Ln'] exists for

any n. Actually, Ln'] is given by:

-1
)-1 P Hf(I - P HP Hf)

-1 (I - PHePy g n ngn

" Pog(1 = PP H) (1 - PanPan)“
Moreover, a sequence'{xn} of solutions to (7) converges to the solution x
to the original operator equation (6) as n - = . The unique solvability
and convergence are proven under assumptions (a) and (b) for Pn and the
following fact [4]:

[ Hell = F(T) < 1, [[Hgll = &(T) <1 (9)

¢l



where F(t) is given in (5) and G(t) is the pdf for repair time:
6(t) = fp o(u) du

It is important to note that the integral equations (3) for w(t) and
v(t) are expressed as follows [4]:

Lx' = b’ (10)
where b' = col(f(t), 0) and the solution x' gives col(w(t), v(t)). The
approximate operator equation that associates with (10) is given by:

LX,' = by’ (11)
where bn' = co](Pnf(t), 0). It is proven [5] that a sequence {xn’} of
solutions to (11) converges to the true solution x' to (10). The
difference between (6) and (10), or between (7) and (11) lies solely
in the right sides of the equations. Thus we have the following observations:

1. The numerical method [5] developed for solving (11) directly
applies to our operator equation (7) for W(0,t) and V(O,t).

2. W(0,t) and V(0,t) can be'computed with the same precision of
accuracy as that of w(t) and v(t). This is the Assertion 2 that we stated
in Section 2. We verify the assert%on by the discussions given below.

Operator equations (7) and (11) have the same condition number [6, p.20],
cond(L,), which is defined by:

cond(L ) = [, I llL, ™"

_The condition number is determined independently of a numerical method of
solution and provides information for estimating the precision of numerical
solutions. The upper bound for cond(Ln) is obtained, in a similar manner
to [4], as follows:

(1 + 1| Pl (1 + 11 Pfgl)®

1= P HETIPAGIE T = 1P I IP Al

cond(L ) < max {

-8 -



or, by applying (8) and (9),
(1 + F(T))2 (1 + 6(T))2
1 - KM6&(T) 1 - F(T)&(T)

cond(Ln) < max {

Let %n and %n' denote approximate solutions to (7) and (11), respectively,
that are obtained in any manner whatsoever. According to the 'backward
error analysis' [6, 7], %n and ?n' are considered the exact solutions to

slightly perturbed equations

LY = b, + db, L X

- ) .
nn nn bn +Abn

. n,
respectively, where x_ = x

n,
+
n n Axn and X

1] = 1 ] >
n Xo FAX . The magnitude of

relative errors are evaluated as:

I ax, | L% - bl
‘ < cond(L LI 12
Tx, I < condlbe) =5 T (12)
and
I ax, | L X - bl |
. < d(L nn ' n 1
[ES R U T s

Suppose we work on a base B, floating-point computing system. Let
cond(L, ) < gP. If || ab, Il /11 b Il and |t ab "l 71l b," || are assumed to
be of the same order, say 8 3, then (12) and (13) imply that approximately

at least the first g-p dfgits of yn and %n are correct.

5. METHOD OF SOLUTION

The numerical method of solution given in [5] is summarized for the
case of solving (7). Let {ei(t) :i=1,..., n} be a basis for an
n-dimensional subspace S, of Cc[0, T]. Since (7) implies W, e Sn and

Vn € Sn, wn and Vn are expressed uniquely as:

n n
wn = 151 P ei(t), vV = E d, e.(t)



where c; and di are real numbers; in other words, ¢ = co](c],..., cn)
and d = co](d],..., dn) determines wn and Vn' Projection Pn that maps
C[0, T] into S, can be written as follows [8]:
= * *
Ph=ep ™t ... +e e

where ei* are linear functionals defined by:
e]*(z) et ... ¢t en*(z) e, = Pz
for any z € C[0, T]. Thus the problem of solving (7) is reduced to that

of solving a linear system of equations

I -An o h
= (14)
-Bn I d 0
where I denotes the identity matrix of order n, An is an n by n matrix

with ei*erj(t) as its (i,j)-element, B, is an n by n matrix with e,*H

¢¢;(t)
as its (i,j)-element, and h is a column vector of order n defined by
co](e]*F(t),..., en*F(t)). The Tlinear system of equations (14) can be
solved by direct methods such as Gaussian elimination, or by iterative

methods such as Gauss-Seidel method.

6. EXAMPLE

Let f(t) and g(t) be exponential pdf's:
f(t) = A exp(-at), g(t) = u exp(-ut)
where A and p are constant failure rate and repair rate, respectively.

For the exponential cases we know the analytical expressions for W(o,t)

and V(0,t):
W(0,t) = AR ———zfi—7? {1 - exp[-(x + u)t] }
A+ (A + 1)
(15)
AU Al
v(0,t) = t+ > - exp[-(X + u)t] }
At (A +u)

- 10 -



see, e.g., Henley & Kumamoto [3, p. 203]. We illustrate the effectiveness
of our method for computing W(0,t) and V(0,t) by comparing the result
obtained via our method with true values calculated by (15).

Let Pn be a piecewise Tinear interpolatory projection:

Pz-=

) 2(t;) e;(t), z e C[O, T]

nm~Mms

i=1

where ti are knot points for which 0 = ti < t2 <...< tn = T. We assume

knot points are equally spaced: ti - ti g = T/(n-=1) = s for any i. Then
ei(t) are given by:

t - t. s, t. <t <t
e

i+l > = 7 = it
The i-th element of vector h and the (i,j)-element of matrix A, in (12)
are given as:
ei*F(t) =1 - exp[-(i-1)xs], i=1,...,n

(0, i=0o0ric<j-1
ei*erj(t) ={1 - [1-exp(-As)]/(xs), i=3#1 (16)
“{[exp(rs)-11/(rs) - 1}exp[-(i-1)as], j=2,9i=2,...,n

[exp(-2xs) - 2 exp(-As) + 11/{xs exp[-(i-j-1)As]}

L i<ji+1,3=2,..., (n1)
The (i,j)-element ei*ngj(t) of matrix Bn is obtained by replacing X in

(16) by u.

Let A = 0.001 hr- 1

1 and p = 0.1 hr ',

Eq. (14) is solved by Gauss-
Seidel method under thevfollowing convergence criterioni

|c(k+]) - c(k)l < € and Id(k+]) - d(k)l <e |
where c(k).and d(k) denote the k-th iterate of ¢ and d, respectively, and

we set c(o) = d(o) = ¢c01(0,..., 0) and € = 1.0 x 10710,

- 11 -



Suppose we want to evaluate W(0,t) and V(O,t) at, say, t = 10 hr.
We set T = 10. Figure 3 1ists approximate solutions wn(o,1o) and Vn(0,10)
for various values of n that are obtained by solving (14). Figure 3 also
indicates the true values of W(0,10) and V(0,10) that are computed by (15).
The relative errors of solutions for a case of n = 128, for instance, are
evaluated as:

1.0 x 1077

[W(0,10) = Wy5g(0,10) | / [W(0,10) |

[V(0,10) = Vy,4(0,10)| / [V(0,10)] ’

1.0 x 10~

7.  CONCLUSION

This paper has given a system of integral equations that describe
W(0,t) and V(0,t) as solutions to the integral equations. It is shown
that the integral equation approach enables us to compute w(d,t) and
V(0,t) directly, without assuming a knowledge of w(u) and v(u) for
0 <u<t. It is also shown that W(0,t) and V(0,t) can be computed
so that they have the same precision of accuracy as that of w(t) and
v(t), in spite of the relation that W(0,t) and V(0,t) are defined as

integrals of w(u) and v(u) over the time interval [0, t].
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given pdf's

f(t), g(t)
solve (3)

w(t), v(t)
| integrate

W(0,t), V(0,t)

Figure 1  Conventional approach for computing
W(0,t) and V(0,t)
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given pdf's

f(t), g(t)

solve (3) solve (4)

w(t), v(t) W(0,t), ¥(0,1)

Figure 2 Newly developed approach for computing
W(0,t) and V(O,t)
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#of knot W (0,10)x 10 v (0,10) x 10° # of iterations
points for convergence
16 0.99633386 0.36684500 4
32 0.99633209 0.36684530 4
64 0.99633168 0.36684537 4
128 0.99633158 0.36684538 4

true values: W(0,10)
v(0,10)

H

0.99633148 x 1072
0.36684542 x 1072

Figure 3  Numerical results for a case of t = 10
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