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Abstract

A method of realizing time-optimal short-circuit evaluation
of boolean expressions is described. A boolean expression is
assumed to be made up of boolean operators "and", "or" and "not".

Formulae are derived to estimate the expected execution time
of short-circuit evaluation, given a boolean expression and
an evaluation time and probability for each boolean primitive.

Using these formulae, we present a theorem to minimize the
expected execution time of short-circuit evaluation by reordering
the evaluation sequence of boolean subexpressions, based on laws
of commutativity and associativity of "and" and "or" operations.
The theorem utilizes the concept of dynamic programming.

- Methods and conditions are given in an application of the
theorem to code generation for programming languages.

A comparison based on an experimental implementation and
some statistics from real programs are also given.
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1. Introduction

Boolean expressions are an important constituent of program-
ming languages and query languages for data base systems.

'Evaluation of boolean expressions by short-circuiting is a
familiar method which skips over thé evaluation of boolean
primitives no longer relevant to the value of the expression as a
whole. It often results in an attractive optimization of execu-
tion time, both in programming languages [Nakata] [Aho]
[Logothetis] and in data base query languages [Gudes]
[Breitbart]. However, ¢ommutativity and associativity of "and"
and "or" operations, which can allow further optimization, is not
taken into account in previous works.

In this paper, we focus on short-circuit evaluation of
boolean expressions and present a method of realizing time-
optimal short-circuit evaluation by reordering the evaluation
sequence. _

The boolean expressions we deal with are the following.

Definition D A boolean expression (in this paper) is
composed of boolean primitives (relational expressions, boolean
constants, variables or functions etc.) and of boolean operators

"and", "or" and "not" (and their derivative, e.g., "imply").

In general, the execution time of short-circuit evaluation
varies between the cases when it yields "true"” and "false". We
first derive formulae to estimate the expected execution time of
short-circuit evaluation in each case, giVen a boolean expression
and an evaluation time and probability for each boolean primitive
of the expression.

Using these formulae, we present a theorem to minimize the
expected execution time of short-circuit evaluation by reordering
the evaluation sequence of boolean.subexpresSions, based on laws
of commutativity and associativity of "and" and "or" operations.
The theorem utilizes the concept of dynamic programming.

Next, we present a practical application of the theorem to
code generation of programming languages. To apply the theorem,
a kind of invariance under reordering must be satisfied for



subexpressions. We show that this invariance is satisfied in
usual forms of intermediate code and in representative actual
machine architectures.

A comparison based on an experimental implementation and
some statistics from real programs are also given.

Although the main purpose of this paper is a practical
application to programming languages etc., we want to clarify
conditions and assumptions for the proposed method so that the
method can be utilized in other fields of computer applications;
From this standpoint, we clarify the assumption for the formulae
of the expected evaluation time and the theorem to be presented.

Assumption I For a given boolean expression, it is
assumed that the evaluation time of a boolean subexpression and
the probability that a boolean subexpression yields a "true"/
"false" value are independent of previously evaluated boolean

subexpressions.

This assumption is related to the treatment of common sub-
expressions. Optimization on common subexpféssions may sometimes
violate the above mentioned independency. Dealing with optimiza-
tion in such a case is reserved for future studies. _

In this paper, we discuss only the short-circuit evaluation
method. However, by simply estimating the expected evaluation
time, we can easily choose the best evaluation method between the
traditional method (by "logical and" and "logical or" operations)
and the short-circuit method with or without reordering the
evaluation sequence.

2. Formulae for the expected time of short—circuit evaluation

Assume that a given boolean expression is analeed and a
syntax tree is constructed. If the same binary operators come in
succession in the boolean expression, it should be represented as
a single n-ary operator node with multiple sons owing to the law
of associativity. The leaf nodes are boolean primitives. An



example is shown in Fig. 1.

When a syntax tree of a boolean expression is given, the
short-circuit evaluation sequence (from left to right) is deter-
mined uniquely. We show that the expected execution time of a
short-circuit evaluation can be computed in a bottom-up manner by
applying the formulae to be presented shortly to each node of the
syntax tree. (As for execution time, we can either use the strict
instruction time or approximate it by the number of code steps.)

In the following, for notational convenience, we sometimes
identify a node or a (sub)tree of the syntax tree with its
corresponding (sub)expression.

For a node bj of a syntax tree, let

P be the probability that the evaluation of (the sub-

expression corresponding to) node b. yields "true", and

]
T; and Tg be the expected evaluation time of node b.

in cases it yields "true" and "false", respectively.

We also use Ej = 1-pj for notational convenience.

Thus, Tj' the expected evaluation time of node bj
(regardless of its "true"/"false" value), becomes

Tj = p3T5 + ByTy
Formulae for "and" nodes (Fig. 2(a))

For an "and" node b with n sons b, 's (i=l,...,n), assume
that pi, TE, Tf and T; (i=1l,...,n) are glven as the probability
and expected evaluatlon times of b;,. Then the formulae for p,
Tt, ™ 2nd T of the "and" node b become as follows. (The

derivation of the formulae is given in Appendix Al.)

P = P1Pg..:Pp =‘Higlpi ' (1)
8 = rhepbelart = 2 D0t | | (2)
f = {50 nm e B (i Th T 178 (3)
or Tf = 51T§+PlpzT§+PlpzpsT§ By BB
+qﬁ—p)Tt+(p1p24p)T§+n.+(p1u.pn_l—p)T§_l 1/p
= [ 142 l(nJ lpj)pl wt 4 Ziﬂl(njilpj-p)Tg 1/p (3%
‘ (n-th term is 0)
( = (T -pTH/B)
v = prt + prt



or T = Tl+plT2+p1p2T3+...+p1p2...pn_lTn = zigl(ng;ﬁpj)Ti (4)
£ can be computed more easily by rf = (T - th)/ﬁ using p,
7t and T given in (1), (2) and (4), respectively.
Note that T for an "and" node depends only on the pi's and
T;'s of its sons, and not explicitly on Tg's and TE'S.

Recall also Assumption I which states that probability Pj
f
_ i
previously evaluated subexpressions. The reqularity of the

and expected evaluation times TE, Ty and T; are independent of

formulae is due to this assumption.

Formulae for "or" nodes (Fig. 2(b)) ,
Since an "or" node has duality with an "and" node,‘the
formulae can be easily derived by interchanging the "true" and

S S T ¢ £
ufalsen cases, 1.€r P;<=>Pys p<—>p, and T <->Tj.

B = DByP,--Bpr i.es P = 1-BB,ee.B, = 1-1,0 5,
TE = [ (By-B)TE (515 ,-B) Thtee et (ByBoeesByog =B Ty
+P1T§+§1'92T12:+5152P3T§+"f+51§2'"ﬁn-lpnTE 1/p
= l’Ziil(Hji Ej‘ﬁ)TE + 2121(H§;i5j)PiT§']/P
- (n-th term is 0)
( = (1 - pr¥)/p)
tf = rEipfy erf - ry0

_ _ _ - - - _ n i-1=
T = Ty+P To+P1PpT3+eee P PpeeePy 1 Ty = 231 (T321P5) Ty

Formulae for "not" nodes (Fig. 2(c))

Considering that no evaluation corresponding to a "not"
operator is necessary in the short-circuit method and that a
"not" operator complements "true" and "false", formulae for a
"not" node are as follows.

Pp = pl
t _ f
T = Tl
f _ ot
T = Tl

t , sof o 5 of £ _

T

Example 1 As an example for a boolean expression, we take



(eoln or ch=tab or ch='") and flag
Its syntax tree with the values of p's and T's attached is
shown in Fig. 3(a) with the following values assumed for boolean
primitives or leaf nodes.

node no. i bool. prim. p; TE TE T4
1 eoln 0.05 5 5 5
2 ch=tab 0.1 3 3 3
3 ch=' "' 0.3 3 3 3
4 flag 0.5 3 3 3

(Notes Estimation of probabilities for boolean primitives will
be discussed in section 6. The evaluation time is approximated

here by the number of steps of code. The‘number of steps is for

the IBM/370 series machine. TE and TE of a boolean primitive

often become equal for a reason to be shown in section 4.)
Calculation of p's and T's is made bottom-up. First,
calculation for the "or" node (node no. 5) is as follows.

Pg=1-p; PyP3=1-0.95x0.9x0.7=0.4015
= [ (5, =Be) TE+ (B, B,-Pe) T+p, TE+5, p, TS+5, B, p, T51/
5 17Pg) 11T IP PoTPg) Py 1 TR P2 2 R PoP3 731/ Py
=[(0.95-0.5985) x5+(0.95%x0.9-0.5985) x3
+0.05%x5+0.95%x0.1x3+0.95%0.9x0.3%x3]1/0.4015=9.543
( can be calculated more easily by (T5—§5T§)/P5 )
f_mf mf mf_ -
TS—T1+T2+T3—5 +343=11
T5=T1+51T2+§152T3=5+0.95x3+o.95x0.9x3=10.415'
t,= mf
Mext, calculation for the "and" node (node no. 6) is as
follows.
Pg=P5p,=0.20075

tombt mt_ =
T6—T5+T4—9.543+3-12.543

£ = £, = of £ =
Te=1P5T5+P5P4 T4+ (P5-Pg) T51/Pg
=[0.5985x11+0.4015%0.5x3+(0.4015-0.20075) x9.543]
/(1-0.20075)=11.388  ( = (T-psT¢)/Bg )
t — .
Te=T5+P5T4=10.415+0.4015x3=11.620 ( = pgTg+PgTg )



3. Minimizing expected execution time by evaluation reordering

Utilizing the commutativity and associativity of "and" and
"or" operations, we can minimize the expected execution time of
short-circuit evaluation by reordering the evaluation sequence.
The reordering is made in a bottom-—up manner using the syntax
tree. For example, we can minimize the expected evaluation time
of the boolean expression of Fig. 3 (a) by reordering the sub-
expressions as in Fig. 3 (c¢). (The details will be given in
Example 2 later). '

In order to assure that this reordering is possible, the
boolean expression must satisfy the following.

Assumption A The program semantics of the boolean
expression is not altered by reordering the short-circuit
evaluation sequence.

This assumption is related to side-effects. Since the
validity of this assumption depends on the specific program and
also on the programming language used, we leave its discussion to
a later section. ,

Under this assumption, a theorem can be proved if the
following condition holds. '

Condition C For each son i of an "and" or "or" node in

the syntax tree of the'given boolean expression, p; and T; are
invariant under reordering. '

This condition states that the probability and the expected
evaluation time of a son do not depend on its position among sons
of an'"and"/“or“ node. For example, in the syntax tree of
Fig. 3(b) which is made by reordering one in Fig. 3(a), Condition
C is satisfied if p;=0.05, Tt=5, TEi=5, etc. still hold in
Fig. 3(b). ’

If Assumption A and Condition C are satisfied, the following
theorem holds.



Minimization Theorem If Assumption A and Condition C are
satisfied, then the following statements hold in the syntax tree
of a boolean expression as defined in Definition D.

(i) For an "and" node with n sons, the expected evaluation time T
of (the subexpression corresponding to) that node by the short-
circuit method is minimized by reordering its sons in the order

i1'i2,noo’in

such that
T, T, T.
4 ‘ i, < “1-2_ -
1 p -— 1 p LYY ] _ 1_p » ‘
1 i

(ii) Similarly for an "or" node,the expected evaluation time T
is minimized by reordering its sons in the order

il'i2""'in

such that

Tl Ty T

1 < 2 < T

p- p. LI ] p

h 12 n .
(iii) For a "not" node, which has only one son, reordering is
meaningless.
(Proof) The proof is given in Appendix A2. It can be

considered as an application of dynamic programming.

Informally speaking, the strategybof the above reordering is
the following. For an "and" node, first evaluate sons with a
high probability of yielding a "false" value and with a low
evaluation time so that the rest of the sons may be quickly
skipped over. v ;

By applying the reordering in a bottom-up manner in a syntax
tree, we can minimize the expected time for the short-circuit
evaluation of the whole syntax tree. Note that only P;'s and
T3 's (not Tt's and Tf's) are necessary for applying reorderlng.

Example 2 Consider the boolean expression of Example 1
(Fig. 3(a)). For the subexpression corresponding to the "or" node
(node 5) which has 3 sons, six different evaluation orders can be
considered. The T5 s corresponding to these orders constitute a
lattice as shown in Fig. 4 for each evaluation order. T (1,2, 3)
corresponds to Fig. 3(a), and Tg (3,2,1) corresponds to Flg. 3(b)
and (c). The best evaluation order of sons of the "or" node is



(node 3, node 2, node 1) (Fig. 3(b)) since
T, 3 T 3 T 5
2 - R <2 -
Next, the best evaluation order of sons of the "and" node

(node 6) is (node 4, node 5) (Fig. 3(c)) since
Ty 3 Ty 8.25
= <
1-p, 0.5 1-pg 0 5985
As a whole, the expected evaluation time of the expression

is improved from Te=11.620 (Fig. 3(a)). to T6-7 .125 (Flg. 3(c)).

Canonical forms of a syntax tree

In the above reordering, use of an n-ary "and"/"or"
operator node is essential. For example, if only ‘binary operator
nodes are used, the syntax tree of Fig. 5(a) Wthh corresponds to

by, and ( b; and by )
can not be reordered into the syntax tree of Fig. 5(b), i.e.,
» bl and b, and b,

Moreover, a sequence of apparently different operators may
be transformed 1nto a single n-ary operator. For example, the
syntax tree of Fig. 5(c), i. €. |

by or not ( b, and by )
can be transformed into that of Fig. 5(d4), i.e.,

_ bl or not b2 or not b3
Therefore, in order that the bottom- -up appllcation of the
reordering can truly realize minimum evaluation time of the whole
syntax tree, the syntax tree must be represented in some kind of
canonical form,

An example of a canonical form is to represent the syntax
tree using only "and" and "not" as boolean operators. This is
achieved by utilizing de Morgan's law. We could use only "or"
and "not" as boolean operators as well. . o

Another canonical form is to use a syntax tree such that in
the path from the root node to any leaf node (i.e., boolean
primitive) the "and" and "or" nodes,strictly alternate, except
for the node priorvto the 1eaf node which may be a "not" node.

Example 3  For the following boolean expression,
(eoln or not (ch<>tab and ch<>' ')) and flag



the first canonical form is Fig. 6(a) which corresponds to
not (not eoln and ch<>tab and ch<>' ')'and flag
and the second canonical form is Fig. 6(b) which corresponds to
(eoln or not ch<>tab or not ch<>' ') and flag
This may be reduced to another second canonical form of Fig. 3(a)
which corresponds to
(eoln or ch=tab or ch=' ') and flag

The minimization theorem can be applied to both canonical
forms, and yields the same result.

4. Application of the Minimization Theorem to code géneration for
programming languages

In the previous section, we have shown that the Minimization
Theorem holds under Condition C. Here, we concentrate on
compilation of programming languages and present a practical
method of optimal code generation. We will show that under some
natural premises, our method can satisfy Condition C. o

4.1 Intermediate code v
First, we define the class of intermediate code to be dealt
with as satisfying the following.

Premise Pl We generate short-circuit code corresponding to
an intermediate code (input to the code generator) of the form
if b then goto 1 y OF
if not b then goto 1
where b is a boolean expression. (b is not restricted to a
boolean primitive.)

This means that in the object code of a boolean expression
one of the "true"/"false" exits falls to the position immediately
following the relevant code (this position is often called the
"fall-thru" position [Logothetisl]).

A large class of intermediate code falls into this category.
For example, the intermediate code for conditional and loop

10



statements will be
if b then S, else S, v
-> 1if not b then goto ll i 81 i goto 12 : 11: Sy i 1yt
while b do s :
- ll: if not b then goto 12 : s ; goto ll ; 12:
and that of assignment statements to a boolean variable will be
v :=Db
-> 1if not b then goto,l1 ; vi=true ; goto 12';
,11‘ vi=false ; 12:
- or, => v:=false ; if not b then goto 1 ; v:=true ; 1:

4.2 Short-circuit code for n-ary boolean operators

Under Premise Pl, we can generalize the usual generation
method of short-circuit object code for binary boolean operators
[Nakata] and get a method for n-ary boolean operators as follows.

Let O(b,c,1) be the short-circuit object code for

if b = ¢ then goto 1
where b is a boolean expression (not restricted to a boolean
primitive), ¢ is either "true" or "false", and 1 is a label. (We
sometimes identify a boolean expression b with the corresponding
subtree in the syntax tree.) O(b,c,1) can be defined
recursively, i.e., top-down in a syntax tree, as in Table 1, and
finally as in Table 2 for boolean primitives.

If no reordering is allowed, this method produces optimal
short-circuit code in the sense that no redundant evaluations of
boolean primitives and no redundant branches are made within the
code of b [Nakata].

(Notes Optimization on common subexpressions is outside the
scope of this paper. Non-redundancy of evaluation holds for the
code in the level above boolean primitives. Register level
optimizations can be further applied. Somewhat inefficient code
may be generated for the code gutside b. For example, redundant
branches may arise if code is always generated according to

if b then s -> O0(b,£f,1); s; 1:

even when s is a simple transfer of control (goto, return, etc.)
[Logothetis].)

Example 4 When b is the syntax tree of Fig. 3 (c¢), its
object code O(b,t,ll) is derived as in Table 3(a). Fig. 7 shows

11



the code together with its expected evaluation time. The same
object code will be produced from
O(flag and (not (ch<>' ') or ch=tab or eoln), t,ll), or
O(flag and not (ch<>' ' and ch<>tab and not eoln), t,1,)
etc. Similarly, the code O(b,f,1;) for the same b of Fig.3(c)
becomes as shown in Table 3(b).

4.3 Target machine architecture

In order that the Minimization Theorem can be utilized for
generating optimal code, we also assume the following for the
architecture of the target machine.

Premise P2 Let bp be a boolean primitive. Codes for both
'O(bp,t,l) and o(bp,f,l') are supported, -and their execution times
are the same, i.e.,

Tt of O(by,t,1)

f of O(byrtsl)

1|

Tf of O(bprfll')-

This premise is usually satisfied if O(bp,t,l) and.O(bp,f,l)
are realized as in Table 2 by the target machine architecture.
Forexample,ifbpjﬁ;abooleanvariable,theobjectcodesare
O(bp,t,l) = load reg,bp ; br_true 1 -and

O(bp,f,l') = load reg,bp ; br_false 1" :
and their tt's and Tf's are the same (2 steps). We can see that
‘codes essentially equal to Table 2 will be used in many
representative actual machine architectures such -as the VAX 11
and the IBM 370 (see Appendix B for a concrete form), and thus

Premise P2 is usually satisfied.

4.4 The Method and rationale

Now, we show a lemma stating that if Premise Pl and P2 are
satisfied and if code is generated according to Tables 1 and 2,
Condition C holds. From this lemma, we can utilize the Minimiza-
tion Theorem and generate a time-optimal short-circuit code for
a boolean expression by reordering the evaluation sequence. Note
that the optimality is in the sense given in section 4.2.

Lemma If Premise Pl and P2 are satisfied and if code is
generated according to Tables 1 and 2, then Condition Cholds for

12



a boolean expression as defined in Definition D and satisfying
Assumption 1I.
(Proof) The proof is given in Appendix A3.

A practical method for time-optimal short-circuit code
generation is as follows.

Step 1. Make a syntax tree in a canonical form.

Step 2. Trace the tree in a bottom-up manner, estimating the
probability and evaluation time of each subtree and
performing reordering at each node.

Step 3. Trace the tree in a top-down manner and generate code
according to Tables 1 and 2.

In some analyzers, steps 1 and 2 may be further merged into
a single pass. oo ,

Estimation of probabilities for boolean primitives is
discussed in section 6.

5. < Some results

5.1  Experimental implementation and comparison
_ We have made an experimental code generator based on the
method shown in section 4 [Yamaguchil.
A comparlson of several code generation methods is made.

For an "if" statement containing the boolean expression of
Example 1,

if (eoln or ch = tab or ch ="' "') and flag

then ... else ...
object codes and their expected execution times are given in Fig.
8. The target machine is Hitachi's M-170, an IBM/370 compatible
machine. _ , _ ,

Fig. 8 (a) is the code produced by Pascal 8000 (AAEC version)
[Cox] using the traditional (non short-circuit) method. Fig. 8
(b) and (c) are the codes produced by our implementation using
the short-circuit method without .and with reordering,
respectively. The expected number of execution steps is improvéd
from 17 in (a) to 11.620 in: (b) and further to 7.125 in (c).

13



Note that optimization in the register and condition code level
is out of the scope of this paper.

5.2 Statistics of boolean expressions in some real programs

To get statistics for real programs, we investigated the
source program of Ammann et al.'s Pascal P4 Compiler [Pemberton]
and that of a Petri Net analyzer [Kuse]l. We used Lex [Lesk], a
lexical analyzer generator in Unix*, to collect this statistical
data.

(* Unix is a Trademark of Bell Laboratories)

Some results are shown in Table 4. In this table, we
assumed (rather restrictively) that boolean expressions satis-
fying (e) are those for which the short-circuit method is
applicable. 1In estimating the execution time of short—-circuit
codes, we assumed that probability p of each boolean primitive is
1/2 and that the expected execution time T of each boolean
primitive satisfies the following:

time of boolean var. access < time of relational operation
< time of set membership op. < time of system function call
time of single var. access < time of pointer var. access
Since we do not take all time differences, such as in accessing
parameters, global variables, etc., into account, these
assumptions should be considered as merely a first approximation.

It was shown that some 12% to 20% of boolean expressions to
which the short-circuit method is applicable, can be further
improved by reordering the evaluation sequence.

6. Discussions

6.1 About Assumption A

Assumption A requires invariance of program semantics under
reordering of boolean subexpressions. To satisfy this, the non-
existence of side effects is a sufficient condition. Usually in
programming languages, we can regard an expression without
function calls, division, pointer operations, access to an array
element etc. as having no side effects. If there is a possi-
bility for side effects, we may abandon reordering, for example

14



as in boolean expressions like
' random(i) < 0.5 and i <> 0

x =0 or y/x < 0.01

p <> nil and p".f = 0

i > 0 and i <= 10 and a[i] = 0
(While such expressions might have violated the strict definition
of and, or operations in the programming language used, we don't
go too far into it.)

Also, we may omit reordering for boolean expressions invol-
ving short-circuit boolean operators defined in the programming
language used, such as "&&" and "||" in C, or "and then" and "or
else" in Ada. - _

A more elaborate approach would be to apply our optimization
technique'even in the case where side effects and short-circuit
boolean operators occur. It can be done by entrusting the.
compiler with determination of semantic equivalence of a boolean
expression under evaluation reordering. However, this determina-
tion may require extensive analysis, for example in the case
where exceptions are to be detected strictly as in Ada.

An interesting discussion can be found in Appendix C of
[Logothetis].

6.2 Other boolean operators

Short-circuit evaluation of boolean expressions including
boolean operators other than "and", "or" and "not" is straight-
forward if they can be represented with "and", "or" and "not" and
if the operands are evaluated no more than once:

b, imply b, = (notvbl) or b,

b; <= by = (not bl) or b,
b; >= by = by or (not b,)
by < by = (not bl) and b,
b; > b, = by and (not b,)

Here, b; and b2 are boolean expressions. The last four are from
Pascal.

Operators like equiv (=, =), xor (£, <>) are not suited to
short-circuit evaluation, since they always require evaluation of
both operands, or alternatively, both operands appear twice if
the operations are represented with "and", "or" and "not".
Still, there remains the possibility of evaluating their operands

15



by the short-circuit method.

6.3 Estimation of probabilities for boolean primitives
Our method requires the estimation of probabilities of
boolean primitives or leaf nodes in a syntax tree.

Without any knowledge on the behavior of the program or data
‘base, we can only assume that the probabilities for a boolean
primitive to yield "true" and "false" values are the same, i.e.,
p = 1/2. This is a usual assumption in papers dealing with
- optimizing problems of decision trees [Breitbart]. However, for
system functions, such as "eof(f)" and "eoln(f)" of Pascal, we
may assume plausible predefined probabilities as in Example 1.

A more elaborate approach would be to analyze the dynamic
behavior of the program or query and to estimate probabilities
‘based on it. This approach would be useful in system programs.

6.4 Related works and effectiveness of the optimization method

One of the motivations of this work has been to £ind the
formulae for the expected time of short-circuit evaluation and
their theoretical 1lower bound after reordering. This was
achieved and these values will serve as a criterion for assessing
the quality of code optimization of boolean expressions.

In application to short-circuit code generators of program-
ming languages, none of the previous works [Nakata] [Logothetis]
utilized commutativity and associativity of "and"/"or" opera-
tions, on which our optimization using evaluation reordering is
based. However, due to some degree of reordering costs, our code
optimization method could be restricted to middle or higher level
optimization.

We can also conceive of a range of optimization levels,
including the traditional method which uses "logical and" and
"logical or" instructions and the short-circuit methods with or
without reordering. Selecting a suitable method would be done by
comparing their expected execution times. However, we are always
faced with the general trade-off between compilation time and
execution time.

In data base queries, our approach seems to be more
promising since the gain in evaluation time in accessing the
- secondary storage overcomes the overhead of CPU work for making

16



an evaluation strategy. Theoretically, our work aims at a
similar purpose to that of Breitbart and Reiter [Breitbart] who
‘studied a nearly optimal evaluation ordering for data base
‘queries. . However, our result is stricter than Breitbart et al.'s
- since their result was an approximation to the optimal evaluation
"order. Our. method takes both evaluation time and probabilities
~Oof boolean primitives into account and deals with "not" opera-
~tors, while theirs does not. v _

-+ Gudes et al.'s work [Gudes] had a different vector. They
presented a practical run-time algorithm to determine whether the
-evaluation of a boolean primitive can be skipped when its evalua-
tion does not affect the value of the result. The evaluation
' sequence is.a given one, and no reordering of evaluation is made.
Evaluation time and probabilities of boolean primitives are not
considered.

A weakness in our method is that we do not take common sub-
expressions into account, while Breitbart et al.'s and Gudes et
al.'s consider a restricted case of common subexpressions,
namely, the case where the same boolean primitive appears more
than once. However, it is probable that no strict methods exist
in the presence of common subexpressions as in the case of
arithmetic expressions [Bruno].

7. Conclusion

We have described a method of realizing time-optimal short-
circuit evaluation of boolean expressions. A boolean expression
is assumed to be made of boolean operators "and", "or" and "not".

Formulae are derived to estimate the expected execution time
of short-circuit evaluation, given a boolean expression and
the evaluation time and probability for each boolean primitive.

Using these formulae, we have presented a theorem to
minimize the expected execution time of short-circuit evaluation
by reordering the evaluation sequence of boolean subexpressions.
It is based on the laws of commutativity and associativity of
"and" and "or" operations.

Assumptions and conditions for the formulae and the theorem
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"have been clarified so that the method can be utilized in other
fields of computer applications. '

We have also presented a practical application of the
theorem to time-optimal short-circuit code generation for
programming languages. It was shown that the condition of the
theorem is satisfied when applied to the usual form of
intermediate code and in representative actual machine
architectures. The statistics from sample real programs show
that some 12% to 20% of the short-circuit code can be further
-improved by reordering the evaluation sequence. Hence, the
method can be applied as an optimization technique for compilers
of programming languages. |

Application to data base query seems to be promising and
further studies will be welcomed. '

Acknowledgements The author wishes to .thank Ikuo Nakata,
Yoshitsugu Yamamoto and Hisashi Takayama for helpful discussions,
and Yoshikazu Yamaguchi for developing an experimental
implementation.
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Appendix Al

Derivation of the formulae for "and" nodes

Formula (1) This formula is straightforward, since (the whole
subexpression corresponding to) the given "and" node yields true
only if all sons yield true.
Formula (2) This formula comes also from the fact that for (the
whole subexpression corresponding to) the "and" node to yield
true all sons must be evaluated and must yield true.
Formula (3) This formula is somewhat complicated. The given
"and" node yields false in one of the following cases:
(i) the 1st son yields false, or
(ii) the 1st son yields true, but the 2nd yields false, or
(iii) the 1st and 2nd sons yield true, but the 3rd son
yields false, or
(n-1) the 1st and ... (n-1)-th son yield true, but the n-th
son yields false. ‘ _
The formula is given by summing'up the evaluation times of
éll cases weighted by probability. Each case has the following
execution time and probability. '

exp. exec. time probability - whole probability

. f - ~N
(1) ) Tl : pl

. t of -

- t.mt.mf - -
(iii) T{+T5+T3 P1P,P3 > P

t t f e o g
(n-1) T§+T2+. . .+Tn_l+Tn P1Po Pn_lpn /
Therefore,
t, mt.mf

| ce+P1Py" P -1 By (Tt+T§+...+Tt L*TE) 175 (a)
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i-1 t

[ 2,2 l[(HJ 1P ) Py i 15Ty

= (3)

)+T 11 1/p

Furthermore,
) - [ — f - f by f X - f
(a By Ty +P1PoT5+P 1 PoP3T3+e e «+P1 Py " " "Py 1P Ty
-y by [ I B ) — t
+(p1Po+P1PoP3+.+ «+P1P2" " "Pn1Py) Ty
+‘Pll?’21-53+""’91P2'"Pn-lf’n)'r‘tz:" |
. s ee by t =
+(P1P2 |4 _1Pn)T -1 1/p
[ 252 l(H] lpj)plTl + Z1 1{23 1+1(HE lpk)pj}T 1/p (b

To show (3'), we use the following equality relation.

n

Ly= 1+1(HE lpk)pj _

Py 'PiPiyy *+ P1” Pl+191+2 + Py "Pi4oPi43

+ e o o + pl...pn 1p H

pl. ’ .pi(l-ml)
+P1 " " "PiPj 41 (N Rig2)

Py " "PiPj41Pj+2F°Pj 43)

+P1 " "PiPi41 " "Ppoy 7Py
= pl:..pi - plocopn

N | _ : _

Hj=1Pj p by (1). | | (c)

Noting also that if i = n,
(Hjilpj -p) =p;""'P, -p=0 (for i=mn) (d)
holds, formula (3') is derived by (b), (c) and (d).

Formula (4) This formula is derived as follows..

T=pTt+prt
t i-1 £
=pz.nlw.+[z.“l(n%_lpj)plT +34 1‘“ 1pJ p)T 1 by (2) and (3')
ty £
1(H3 lpJ)T l(HJ lpj)p Ty

Li= l(nj lpj)(p1T1+plTl)
=230 (n30iey) Ty
Alternatively, this formula (4) can be derived directly from

the fact that T is the sum of the evaluation'times of the
following cases weighted by probability.
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(i) the 1st son is always evaluated.
(ii) the 2nd son is evaluated when the lst son yields true.
(iii) the 3rd son is evaluated when the 1st and 2nd sons
yield true. ' '
(n) the n-th son is evaluated when the lst and coe
(n-1)-th son yield true.
Each case has the following evaluation time and probability.

exp. exec. time probability
(i) o Tl o ) -1
(iii) ) Ty o . PPy
(n) T, ' P1Py" " "Ppog

'Therefore, ’
_ e o0 -— n i-l
T =Ty + Ty + P1PRT3 + eve + P1PY" Py Ty = Zio (I507P) Ty

Appendix A2

Proof of the Minimization Theorem

_ We only show the proof for an "and" node since an "or" node
is dual (pi <=> l-pi) to an "and" node.
Notice that the formula for Tt (2) is invariant under
reordering. So, the minimization of the expected time applies
only to the formula for rf (3'), or, since p is invariant and
T=th+§Tf, to the formula for T (4). Here we are applying
-minimization to the formula for T (4).
n)

p' T‘ +o'.ov+p' ;oop' ’ T'
17213 1 *n-1 'n
T. '

) lk (

Let T(ij,i,,...,i

- =T, +p. T, +p.
=y-n (k=1 p.

: ,Zk=1(nj=1 15

-where (iy,i,,...si,) is a permutation of (1,2,...,n).

21



First, we show that if _ ,

T, /(1l-p; ) £ T, /(1-p; ) : o (a
'k Tk Tkl Pign | )
is satisfied, then |

T(ilycoo'ik_llik,ik_l_l'ik_l_z,ooo’in)
S T(il’ooa'ik_l’ik+1'ik'ik+2'o'o'in) (b)
holds. This is because

left hand side - right hand side

+P; eeepP; P. T.

k 11 1k-1"1k ‘k+1

— (Pj e+eP; Ti +P; .e.P; P; Ti )
(Fiy oy S RS R A R 5N

= p- oo.p- (T- +p. T- "T. "'p. T. )
1 g1 1k "1k Ik+1  Tk+1l tk+l Yk

0, from (a) and 0 < pih <1 (for all ip).

IN

Now assume, without loss of generality, that

T. T '
._].-...5_7_2__3.“5_'1.‘!“__ (@
11a 11& 11% : ,

| If in T(jl'""jk'jk+1'jk+2""'jn)' there is a reverse
ordering pair (jk'jk+1) such that j, > Jp4qr it follows from
~(a), (b) and (c) that
T(3yreeerdgqrrIkrIkezree-rdn) € TOyreeerIgedgerrIkear e rn)
Repeating this step as long as there are reverse ordering
pairs, it is shown that T(... )'s constitute a lattice and
T(1,2,e.e,n) is the minimum element. = (Q.E.D.)

Appendix A3

Proof of the Lemma (section 4.4)

Owing to Premise Pl, we can dgenerate short-circuit code
according to Tables 1 and 2. We want to show that TE and Tf of a
boolean subexpression b, are invariant before and after
reordering. For example, in the case when bi is a son
(subexpression) of an "and" node b and code for O(b,t,1) is to be
produced (see Table 1), the code for bi‘beforefand after
reordering may remain unchanged or may vary between O(bi, £,
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newlabel) and O(bi,t,l). Other cases are similar. If the code
remains unchanged, Condition C trivially holds. If not, we see
in general that the code for bi may vaty between either of
o(bl,t‘l) and o(bl,f 1') before and after reordering. By applying
Table 1 (recursively) and Table 2 for this b, jr we observe that
the codes O(bj,t,1) and O(b;,f,1') are very s1m11ar.

In fact, when we rename labels, they differ only in the
position of labels and in the code of the last boolean primitive.
(For example, see (a) and (b) of Table 3, renaming labels 13 to
12 and 14 to 11. They differ only in the codes-O(eoln,t,ll) and
O(eoln,f,l3) for the last boolean primitive "eoln".) Note that
the difference in label positions does not affect the execution
time. As to the code of the last boolean primitive (let us call
it bp), its code is either O(bp,t,lp) or O(bp,frlpw of Table 2,
‘and its execution time is equal by Premise P2. By these investi-
gations, we conclude that Tt of O(bj; 1) = Tt of O(bjy (£,1') and
7% of o(b;,t,1) = 7F of O(b;,£,1"), hence T of O(b,t,1) = T of
0(bj s 1E,17 ) o ,

The invariance of P, under reordering is trivial from
Assumption I. 5 ' ‘ (Q.E.D.)

-~ Appendix B

-A concrete form of Table 2 for VAX 11 and IBM 370 series

computers
VAX 11 : : IBM 370
(1):  tstl b L reg,b ; LTR reg,reg
(2): beql 1 -BNZ 1 ‘ :
(3): bneq 1 BZ 1
(4): cmpl -bl,b2 T reg,b; ; C reg,b,
’ (when by is not in a register)
(5): beql 1 BE 1
(6): bneq 1 BNE 1
(7): calls ... BALR regd;,reg,
(8): mov1l r0,rl0 L reg,result ; LTR reg,reg
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Fig. 1

probability
expect. time
(true)

expect., time
(false)

expect., time
(average)

b,

(by, by, by and b, are boolean primitives)

Syntax tree of the boolean expression

"(_b1 or b, or by ) and b,"

Py

pf

(a)

Fig. 2

"and" node

by by ««. b,
same as

"and" node

(b) "or" node

(c) "not" node

Probabilities and expected evaluation times

for "and", "or"™ and "not" nodes



p.=0.20075

6 T§=12.543
"and"  Tg=11.388
Te=11.620
Pe=0.4015 p€=0.5
5 T§=9.543 4 Té=
“Qr“ T5=11 flag T4=3
T5=10o415 T4=3
7
/P1=0.05 p%=0.3
1 T%=5 2 2 3 T§=3
901n T1=5 Ch=tab T2=3 Ch=' ! T3=3
Ty =5 T2=3 T3=3

(a) original syntax tree and its expected evaluation time
pg=0.20075
6
"and" T6=9’4545

p

=0.,4015 ' p,=0.5
P £
5 T§=4.151 4. T%=3
"or" T5=11 flag T4=3
///// T5=T5(3’2,l)=8025 T4=3
P =0£3 p%=0£05
3 T3=T3=3 ’2 T2=3 l T1=T1=5
ch="' ! T3=3 ch=tab T2=3 . eoln 'Tl=5

(b) syntax tree and expected evaluation time
after reordering the subtree of node 5 in (a)

Fig. 3 An example reordering of the syntax tree for

"(eoln or ch=tab or ch='") and flag"
(continued on next page)
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Pe=0.20075

6 Tg=7.151

"and" Te=7.118

Te=7.125
p==0.4015

5 Tc=4.151

2

flag ,‘T4=3 "or" .T5=11

T5=8.25

p,=0.1 =0.05

Pl
2 T2=T§=3 1 T1=Tf=5
ch=""! T3=3 ch=tab T2=3 eoln Tl=5

The syntax tree corresponds to
"flag and (ch=' ' or ch=tab or eoln)"

The subtree below node 5 is the same as (b)

(c) optimal syntax tree after reordering
-and its expected evaluation time

Leaves in the syntax trees are boolean primitives

Fig. 3 An example reordering of the syntax tree for
"(eoln or ch=tab or ch='"') and flag"
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maximum
T5(l,2,3) 5+0.95x34+0.95%x0.9x3

10.415

T5(2,1,3) = 3+0.9%x5+0.9%x0.95%x3 T5(1,3,2) = 5+0.95x%3+0.95x0.7x3
= 10.065 = 9,845
T5(2,3,1) = 34+40.9x3+0.9x0.7x5 T5(3,1,2) = 34+0.7x5+0.7x0.95%x3
= 8.85 = 8.495
minimum
T5(3,2,1)‘= 3+40.7x34+0.7x0.9x%5

8.25

T5(il,iz,i3) corresponds to the evaluation
order (node i;, node i,, node 13).

Fig. 4 Expected evaluation times for each reordering
of sons of node 5 in Fig. 3(a)
(They form a lattice)
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llandll

7

b2 "andll

BN

(a) b, and (by and b3)

"and"

by by by

llorll

bf//// "not"
Mand"

6/// \\\b

(c) b, or not (b, and b3)

“or:\\\\
bl llnotll llnTtll

(d) bl or not bz or not b3

Fig. 5 Syntax trees related to canonical forms
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llandll

PN

"not" flag
llandll
"not" ch<>tab ch<>t !

|

eoln

(a) first canonical form

///////:and"
"or" flag
eoln "not" "not"

ch<>tab ch<>!t !

(b) second canonical form

Fig. 6 Syntax trees in two canonical forms for
"eoln or not ( ch<>tab and ch<>' ' )) and flag"
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O(b,t,ll) exec. proba- expected
time (*1) bility eval., time
of exec.
load reg,flag } 3 1 3
br_false 12 . (T4) ‘ (T4)
compare ch,' ' } 3 0.5 1.5
b,r_equal 11 ) (T3) (P4) (p4T3)
compare ch,tab } 3 0.35 1.05
br_equal 1, (T,) (p4P3) (P4P3T5)
call eoln v
load reg,result } 5 (*2) 0.315 1.575
br_true 11 J (Tl) (P4§3§2) (p4f>31->2T1)
2% (falgse) emeeee————
total 7.125
( Tg=T4+py(T3+P3Ty+P3pPyTy) )
*1: for IBM/370 series machines
*2: for Pascal 8000 AAEC version compiler (cf. Fig. 8(c))
CFig. 7 Object code and expected execution time for Fig. 3(c)
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L 10, SEOLN L 10, SEOLN L 10,FLAG
SRL ~ 10,1 }3 SRL 10,1 LTR 10,10
N 10,=X'1' N 10,=X'1' B2 LF
L 11,cH - LTR 10,10 ‘ L 10,CH
C 11, TAB BN2Z Ll C 10,=X'40"
LA 11,1 T 4.5 L 10,CH ~ BE LT _
BE Ll C 10,TAB L 10,CH
XR 11,11 . BE Ll : ‘ C 10, TAB

L1 OR 11,10 Y1 L 10,CH " BE LT
L 10,CH C 10,=X'40" L - 10,$EOLN
C 10,=X'40" BNE LF SRL 10,1
LA 10,1 4.5 Ll L 10,FLAG N 10,=x'1"
BE L2 LTR 10,10 LTR 10,10
XR 10,10 BZ LF BZ LF

L2 OR 10,11 11 (then part) - LT (then part)
N 10,FLAG
LTR 10,10 }-3 LF (else part) LF (else part)
BZ LF : '
(then part)

LF (else part)
exp. exec. step = 17 exp. exec. step = 11.620 exp. exec. step = 7.125

(cf. Example 1) (cf. Example 2)
(a) Pascal 8000 (AAEC) (b) Our implementation. (c) Our implementation.

Traditional code : Short-circuit code Short-circuit code
(non short-circuit) without reordering with reordering

The target machine is Hitachi's M-170, an IBM/370 compatible machine

Fig. 8 Comparison of codes and their expected execution times for
"if (eoln or ch = tab or ch ="'") and flag
then (then part) else (else part)"
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Table 1. O(b,c,1): Short-circuit object code of

"if

*] means:

b=c then goto 1"

O(bl,f,newlabel) followed by O(b,,f,newlabel) ...

e e S — S e e T e S0 S B

—— = - G - o foas S e S s e o]

—— - S - S — — — — o 2o Soae S

b is a boolean

... followed by newlabel:

t (true) f‘(false)
O(bl,f,newlabel) O(blrfrl)
O(bz,f,newlabel) O(bz,f,l)
O(bn_l,f,newlabel) » :

O(bn,t,l) O(bnrfll)
newlabel: - *1

O(bl,t,l) O(bl,t,newlabel)

O(byrt,1) ' O(b,,st,newlabel)

O(bn_l,t,newlabel)
O(bn,t,l) O(bn,f,l)
newlabel:

e G et S e e e S B B S . S S S s G e S e s e Sy S G G S - e S - S S e S S S —— - - -

primitive

(see on Table 2)

Table 2. Object code O(b,c,1l) for boolean primitive b

N.B. Although thi
primitives, other

s table only includes limited types of boolean
primitives could be conveniently incorporated,

such as relational operations with character strings or set
membership operations.

——— . G S B~ o s W e S G B S

‘b is a relational
expression

e - S G o W S S0 S

b is a function
call

t (true) f (false)

load reg,b (1) load reg,b

br_true 1 (2) br_false 1 (3)

compare bl'bz (4) compare bl'bz

br_equal 1 (5) br_not_equal 1 (6)
etc. etc.

call function (7) call function

load reg,result (8) | load reg,result

br_true 1 br_false 1
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Table 3. Object codes of

"flag and (ch=' ' or ch=tab or eoln)"
(a) Object code of O(flag and (ch=' ' or ch=tab or:
nglag and (ch=' ' or ch=tab or eoln), t, 11)
= O(flag,f,lz) oo load
br_false
O(ch=' ' or ch=tab or eoln, t, 11)
=(C(ch=' ',t,ll) o compare
br_equal
O(ch=tab,t,11) oo compare
br_equal
O(eoln,t,14) cen call
load
br_true
12: ' coe 12:

(b) Object code of O(flag and (ch='"' or ch=tab or

O(flag and (ch=' ' or ch=tab or eoln), £, 13)
=’0(f1ag,f,13) ... 1load
o br_false
O(ch=' ' or ch=tab or eoln, f, 13)
=(0(ch=" "',t,1,) ... compare
br_equal
O(ch=tab,t,l4) cee compare
br_equal
O(eoln,f,l3) : oo call
C load
br_false
. \14: ces 14:

34

e01n), t, 11)

reg,flag

reg,result

L

eoln), £, 1

reg,flag
1,

ch,' !
1,

~ch,tab

1,
eoln

reg,result

1,

3)



Table 4. Statistics of boolean expressions

(a)
(b)

(c)

(4)

(e)

in two real programs

Pascal P4
‘no. of source lines : 4000
no. of boolean expressions 791
(except the RHS of boolean
assignment statements)
classification by the place
of appearance
in an if statement 702
while statement 41
repeat statement 48
791
classification by the number
of boolean primitives
with 1 boolean primitive 732
2 57 v
3 1 }59
4 1
5
6
7
8
791
no. of boolean expressions 49

for which the short-circuit
method is applicable

i.e., boolean expressions with

2 or more boolean primitives

and without user functions.
(side~effect free system functions
are allowed.)

(f) no. of boolean expressions in (e) 6

(9)

for which the short-circuit code (6/49=12%)
with reordering is better (takes

less time) than the short-circuit

code without reordering

boolean expressions of (f)
for Pascal P4 Compiler

eol ) or (ch = """")
1lp <> nil ) and not redef

pflev + 1 <> level ) or ( fprocp <> fcp )
llp <> nil ) and not found

PN TN SN o o~ o~

35

Petri Net
Analyzer

2528
318

76

14
(14/71=20%)

typtr” . form = scalar ) and ( typtr <> realptr )

lsp™ . form <> scalar ) or ( lsp = realptr )
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