ISE-TR-83-42

CONSTRAINT SYNTHESIZING BY NETWORK REDUCTION
FOR THE CONSISTENT LABELING PROBLEM

by
Seiichi Nishihara

Katsuo Ikeda

November 30, 1983

Constraint Synthesizing by Network Reduction

for the Consistent Labeling Proolem

Seiichi NISHIHARA and Katsuo IKEDA

Institute of Information Sciences and Electronics
University of Tsukuba
Sakura-mura, Niihari-gun

Ibaraki 305, Japan

Abstract

There are two principal strategies for the consistent labeling problem (CLP): the
depth-fbirst approach and the breadth-first approach. The formef is typified by
backtracking, which often causes a costly thrashing phenomenon. This paper proposes a
novel algorithm that takes the breadth-first approach. First, it is shown that every CLP can
be equivalently expressed as a constraint network. Then, an efficient algorithm, which
repeats relaxing the network and joining two nodes in the network, is proposed. The
algorithm straightforwardly reduces the given network to a single node containing all of the

final consistent labelings.

1. Introduction

The purpose of solving the consistent labeling problem (CLP) is to provide an efficient
way of analyzing or understanding an object whose structural description is given by its
primitive parts and their interrelationships. Application fields for the CLP extend from image
understanding problem, such as scene Iabeling,' to puzzles, such as the N-queens problem.
There are two principal strategies for solving the CLP: the depth-first approach and the
~ breadth-first approach[1] One is a trial-and-error method, which inherently induces
backtracking. To reducé the costly thra#hing phenomenon caused by the simple brute-force
method of backtracking, many refinements of the depth-first approach have been proposed,
among which forward checking proved most efficient[2]. The other approach is called by
many terms, such as filtering, constraint-propagation, constraint-synthesizing or relaxation of
a constraint network[3,4].

First, we give the definition of the CLF, which is a generalized version of the one
given by Haralick and Shapiro[5] Let U= {_l, .o ,M} be a set of units and let L be a
set of labels. Units represent the primitive parts of an object to be analyzed or understood.
Labels are possible interpretations of units. Then a CLP is represented by a compatibility
model (UL,T,R), where T & 1s\{£MUi is the set of tuples of units which mutually constrain one
another and R= {Rt < Lm ‘ t e T} is the set of constraint relations. Here, [t|, called
the dimension, is the number of components in tuple t. Our problem is to find all consistént
labelings, or M-tuples of labels (Il, ...,IM) assigned to units (1, .. .M), satisfying the
constraints T and R simultaneously.

Freuder[3] has developed a constraint synthesizing algorithm that incrementally
updates the constraint network by adding new nodes corresponding to constraints of higher

order. At first, the constraint network is merely a set of isolated nodes with each of which

a unit and its unary constraint of labels are associated. One nade is inevitably added to the |

o

network for every combination of units, and this may cause algorithm inefficiency. As is
shown in Sec. 3, however, there is no need to introduce as many nodes as 2M-1 but only

the same number of nodes as the number of constraint relations.

2. Constraint Networks
2.1 Definitions

A constraint network is an undirected graph (V,E) with a weighting function w which
assignhs an integer to each arc. With each node in V, a tuple of units and a constraint
relation (a set of possible labelings for the tuple) are associated. For any two nodes i and j
there exists an arc (i,)) iff there is at least one common unit possessed by both tuples ti
and tj associated with the two nqdes. Let Ri and R j be the constraint relations which put
restraint upon tuples ti and tj, respectively. We now define the join operation, which is
repeatedly applied to the constraint network L_lntil it reduces to a single node. Qur definition
of join is essentially the same as that of the natural join of the relational data model[6].
Let d be the set of units common to both—t-i and _t}, which are the sets of units in tuples t
and tj, respectively. Then the join of Ri and Rj over d is a relation in which each tuple
consists of a tuple from Ri concatenated with a tuple from Rj that contains the same
d-labels. In a constraint network, the join operation also causes a merge of nodes i and j
into one node, deleting the arc (i,j). Every arc connecting i or j to another node k remains
as én arc connecting the joined node and node k. When neither R nor Rj contains a tuple
that does not participate in the join, the arc (i,j} is said to be arc-consistent. The weighting
function w assigns each arc (i,j) @ weight that is the size of the joined node that will be

obtained after joining R, and Rj' The weighting function w is used to determine heuristicélly

on which arc the next join operation should be performed.

Fig. 1 shows an example of a part of a constraint network. The common-unit set d is
&2, 3}. As shown in Fig.1, the size of the join of Ri and Rj on d is three, which, from
the definition, becomes the weight of arc (i,j). Tuple (b,e,d) in Ri does not participate in the
resulting join Ry, because its common part (e,d) does not appear in any of the tuples of Rj'
In Rj’ (ae,g) is such an odd tuple. A constraint network is said to be relaxed if all of the
arcs are arc-consistent.

We now define two operations used to relax a constraint network. The constraint
propagation from node i to node j, written as prop(i,j), is the operation that eliminates all
the odd tuples in Rj that will not participate in the joined relation R,. Note that the prop
operation is non-commutative. In fact, in Fig. 1, prop(i,j) deletes tuple (a,e,g) from Rj’ while
prop(j,i) deletes tuple (b,e,d) from Ri' The mutual constraint-propagation between two nodes
i and j, written as mutual-prop(i,j), gives the same result that both prop(i,j) and prop(j,i)
attain. Apparently, mutual-prop operation is commutative. It is easy to see that any
compatibility model (UL, T,R) defined in Sec.1 can be expressed by an equivalent constraint
network. Fig. 2 is an example of CLP represented as a constraint network. A filtering

method that synthesizes the given constraints to get all of the consistent labelings for the

units { 1, .. ,M} is described as follows:

procedure Constraint-Synthesize;
repeat
relaxation-phase: relax the constraint network;
join-phase: select an arc and join

until (number of arcs=0) or (join= 55).

It should be noticed that this procedure works correctly even when the relaxation-phase is
removed, that is, the relaxation-phase is introduced only for efficiency’s sake. Before going

into the details of the algorithm, we clarify some properties of constraint networks. When

W,. ..=3
D)

(a) ti=(123) tj=(234)
abc bcd

R.={bed R.=Jbct

* (cgb) i7\gbd

aeg

@ = (1234)
(b) abcd

Rk={abcf}
cgbd

Fig.l Example of (a) a part of a constraint network, and (b)
the obtained join of Riand Rj‘

t.= 36 t,= 156

3 4
ac aad
bd acb
_Jbe _Jace
Rs™\ et R4 aeb
db becf
fd bda

Fig. 2 A simple constraint network.

245

cde
cea
cec
ceb
dbc,

node k is adjacent both with nodes i and j, node k is said to be bi-connected to i and j.

Proposition 1: .
Let i and j be adjacent nodes in a relaxed constraint network. Then, the only arcs whose
arc-consistency is no longer guaranteed after joining nodes i and j are those that connect

the joined node to nodes which were bi-connected to nodes i and j.

Proposition 2: ;
Let i, j and k be adjacent nodes in a constraint network G. Let G” be the same network
as G except that the arc (j,k) is not included. If?}_nTkC_._tFi, then CG=CG/, where CG and

CG’ are the sets of all consistent labelings.

Corollary 1:

If tj Qti or tkgti, then CG=CG/ .

Corollary 2:

LetTj ﬂTkgTi and arcs (i,k) and (j,k) be arc-consistent. Then the arc-consistency of arc (j,k)

is maintained if Ri is not changed (i.e. not reduced) by the prop(j,i) operation.

3. The Algorithm

The detailed algorithm of the Constraint-Synthesize procedure given in Sec. 2 is
described here. Fig. 3 shows the main program, where lines 6-15 and lines 16-17
correspond to the relaxation-phase and join-phase in the procedure, respectively. While
the main program runs correctly even when lines 2-4 and 6-15 are omitted, this portion of

the program reduces the combinatorial explosion effect by removing inconsistent tuples of

labels which will not contribute to a final consistent labeling. Q and P are used to hold
pairs (i.e. arcs) and ordered pairs of nodes for which it is worth applying the
MUTUAL-PROP procedure (Fig.4(a)) and PROP procedure (Fig.4(b)), respectively. We
implemented the algorithm in Fortran 77, in which the operations mutual-prop, prop and
join are effectively performed by using hashing techniques similar to the rough selection
mechanism of the LEECH machine[7].

A concrete example showing how a given constraint network is processed by the
algorithm is illustrated in Fig. 5, where the constraint network of Fig. 2 is processed. The

only final consistent labeling found is (a,d,bb,c.e).

W 0 3 O Do N

ol el i e O I R S R
O 0 N O U SN H O

begin
Q +{(1,3) | (1,3)€E, i<id;
w(i’j)+m for each arc (eE);
P «¢; ‘
repeat
while Q#¢ do
begin
select and delete an arc (i,j) from Q;
MUTUAL-PROP(1,j)
end;
while P#¢ do
begin
select and delete a pair <i,j> from P;
PROP(1,j)
end;
select the arc (i,j) with minimum weight;
JOIN(1,j)
until #arcs=0

end.

Fig. 3 The main program.

20
2
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37

procedure MUTUAL-PROP(i,]);
begin
if ?is?:’j or 't'j ,c,?i then JOIN(i,j);
mutual -prop(i,j);
calculate and update the arc-weight of (i,j);
if the arc-weight=0 then terminate(not found);
if Ri is changed(reduced) then
P« PU{<i,k>|(i,k)eE-Q, k#j};
if R. is changed(reduced) then
Pe PU{<j,k>| (§,K)eE-Q, kil
end.

Fig. 4(a) MUTUAL-PROP procedure.

procedure PROP(i,jj;
begin
prop(i,]);
calculate and update the arc-weight of (i,j);
if Rj is changed(reduced) then
P« PU{<j,k>| (3 ,k)eE, k#i}
end.

Fig. 4(b) PROP procedure.

10

38
39
40
41
42
43
44

procedure JOIN(i,j);
begin
Ri+- join(Ri,Rj);
Q « QUIGE,K | (1,k),(G,k)€E, kAi,jl;
P « PU{<i,k>|[(i,k) E,k#j] or [(§,k) E,k#i]};
E« [EV{(i,K)|(G,KeEN-{(G,K |G,k eE}
end. '

Fig. 4(c) JOIN procedure.

11

Fig. 5(a) The relaxed network of Fig.Z.

t=13 t = 1245

i)

13= 36 _
ba t4= 156

be (aad-

= cf _Jacb

5 1ab RA— ace
£d- bef

Fig. 5(b) The network after performing join(Z,5) of (a),
where tuples marked with are removed by
the following relaxation-phase.

12

Fig. 5(c) The network after performing join(2,4) of (b),
which is already relaxed.

tl= 136 t2= 12456
w=1

abe 1 2 adbch

R1= act R2= adbce

bdb beect

Fig. S(d) The network after performing join(1,3) of (c),
where tuples marked with are removed by
the following relaxation.

<::> tl= 123456
R1={adbbce}
Fig. 5(e) The result derived after join(1,2).

Fig. 5 Transition of the sample network during the progress
of the algorithm.

13

4, Conclusion

A new filtering algorithm for the consistent labeling problem has been proposed that
makes full use of the relational join operations. In the algorithm, a heuristic is used to
determine the arc with which the next join operation should be performed. This achieves
rapid join operations and keeps the working space small. The given constraint network
defined in this paper is straightforwardly reduced by the algorithm until it becomes only a
single node. The constraint network does not contain any node that has no corresponding
constraint relation, so it is kept very small as compared with that of Freuder’s[3]

Further, since the termination criteria of the algorithm is that there is no arc in the
network, it works correctly even when the given constraint network is not connected. And
the dimensions of tuples in T need not be the same. Our filtering algorithm is especially
suited to the case that the number of candidate labels for each unit is comparatively large,

and is also suitable for parallel processing.

Acknowledgments
The authors would like to thank Professors R. M. Haralick and L. G. Shapiro of

Virginia Tech for introducing the first author to the consistent labeling problem. The authors

also thank Professor J. W. Higgins of University of Tsukuba for his valuable suggestions.

14

References

1. Nudel,B.: Consistent-labeling problems and their algorithms: Expected-complexities and
theory-based heuristics, Artif. Intell., 21(1983),135-178.

2. Haralick,RM, Elliott,GL.: Increasing tree search efficiency for constraint satisfaction
problems, Artif. Intell, 14(1980),263-313.

8. Freuder,E.C.: Synthesizing constraint expressions, C.ACM, 21,11(1978),958-966.

4, McGregor,J J.: Relational consistency algorlthms and their apphcatlon in finding subgraph
and graph isomorphisms, Inf. Sci.,, 19(1878),229-250.

5. HaralickRM, Shapiro,l.G: The consistent Ilabeling problem, Part I, IEEE Tr. PAM],
1,2(1979),173-184.

6. Date,C.J.: An Introduction to Database Systems, 2nd ed,, Addison-Wesley(1977).

7. McGregor,DR, ThomsonRG., DawsonW.N.: High performance hardware for database

systems, Proc. 2nd Internatl. Conf. VLDB, North-Holland(1976),103-1186.

15

INSTITUTE OF INFORMATION SCIENCES AND ELECTRONICS
UNIVERSITY OF TSUKUBA
SAKURA-MURA, NIIHARI-GUN, IBARAKI 305 JAPAN

REPORT NUMBER
REPORT DOCUMENTATION PAGE | SE-TR-83-42

TITLE

ConsTrainf Synthesizing by Network Reduction for the Consistent
Labeling Problem

AUTHOR(S)

Seiichi Nishihara
Katsuo |keda

Inst. of Information Sciences and Electronics

University of Tsukuba

REPORT DATE NUMBER OF PAGES

November 30, 1983 ’ 15
MAIN CATEGORY CR CATEGORIES

Problem Solving and Search F.2.2,1.2.8,1.2.10,1.4.8,1.,5.0
KEY WORDS

backtracking, combinatorial algorithm, consistent labeling, filtering,
constraint network, constraint propagation, constraint synthesizing,
network consistency, join, relaxation, scene labeling, search

ABSTRACT

There are two principal strategies for the consistent labeling problem (CLP): the
depth-first approach and the breadth-first approach. The former is typified by
backtracking, which often causes a costly thrashing phenomenon. This paper proposes a
novel algorithm that takes the breadth-first approach. First, it is shown that‘ every CLP can
be equivalently expressed as a constraint network. Then, an efficient algorithm, which
repeats relaxing the network and joining two nodes in the network, is proposed. The
algorithm straightforwardly reduces the given network to a single node containing all of *the

final consistent labelings.

SUPPLEMENTARY NOTES

