ISE-TR-83-40

ADDRESS CALCULATION ALGORITHMS
FOR ORDERED SETS OF COMBINATIONS

by

Seiichi Nishihara

Katsuo |keda

July 15, 1983

INSTITUTE - -
- INFORMATION SCIENCES AND ELECTRONICS

 UNIVERSITY OF TSUKUBA |

Address Calculation Algorithms for Ordered Sets of Combinations

Seiichi NISHIHARA and Katsuo IKEDA

Institute of Information Sciences and Electronics
University of Tsukuba |
Sakura-mura, Niihari-gun

Ibaraki 305, Japan

. Keywords: Combination, address calculation, ordered set

1. Introduction

Our problem is to find algorithms for calculating addresses of given combinations
arranged in lexicographic order. Consider the set of all combinations of M integers,
{1, C ,M}, taken N at a time. The size of the set is (m) Let (ul, - ,uN) and
(v TERE ,vN) be two different N-combinations wheose components are arranged in ascending
order, i.e. U< g, V€V for 1<i<N. Then there is some k such that uk%vk, and u=v, for
i=1,...,k-1. Let us call such a k the first different position of components. In other
words, k is the minimum subscript that suffices uk%vk. An ordering relation is defined as
(”l’ c ,uN) < (vl, - ,VN) when U.<Vi, Where k is the first different position of
components, and vice versa. This relation, called lexicographic ordering, is a total ordering.
Now arrange all the N-combinations in lexicographic order, and assign sequential numbers,
or addresseé, from O to (,':;1) -1

Table 1 shows an example of an ordered table of combinations, where M=8, N=4. The
address ranges from O to 69 (= (3) -1). Generally, the first combination located at the
address 0 is (1,2,...,N. The last one located at the address (m) -1 is

(M-N+1, ... M-1, M).
2. The algorithms

In this section algorithms for calculating the address of a given combination are
presented. Firstly we consider the ordered sets of combinations of M integers taken N at a

time. Next the algbrithm is extended to the case that permits repetitions.

2.1 Addressing of combinations without repetitions

Table 1. Ordered table of combinations without

repetitions, where M=8, N=4.

addr

N OSSN0 \OMN00OM~0000 WM 00N 000N 000000 \DOMS 00D 0000 cOCco 0 000 00
TN NINOONNNN OO O OSSN O ONSNO0OOSSO 0SS
MMM M MMM T EFTNNINO Tttt <N LN N DO LN NN \D O

NNNNNNNNNNANNNANNNNNNNMMIIMNI MMM N < <t < W

NOMNSNOANAOANMFNONONOAHNMTNNON0ONOHNM T NOMSN0N
MMMttt TN NN NN LN LN LN N O O O OO O O OO0

<t N \OMNOLN OO 00DS 0000 LN YOS 00\OM 000000 \OMS 00D 0000 M 000
MMM TN NN OOttt NN N O O NN N0 OO0
NANNANANNANANNANNNNNMMI MMM S T < N W IN o

A A A A A A A A A A A A A A A AA A A A A A A A A A A A A

NOMSN0 O N M < N0~ O N <t
HrrA A A A NN NN NN DM N

Assume an N-combination U=(u1, C ,uN) is given, where ui<ui+v1 for 1<i<N. Let

Si(ul’ c ’“i) denote the set of all combinations whose first i components are equal to
Ups - oo ol All the combinations in Si(ul, c. . ’Ui) are placed consecutively in an 6rdered
table. Further, notice that the size of Si(ul’ C.. ’Ui) is equal to the number of
(N-i)-combinations taken out of M—ui elements, {Ui"'l’ ui+2, - ,M} , i.e.

) (1)

|siuy, -] = (N=i

where le denotes the size of set X Note that the first one, ie. the one having the
lowest address, of those combinations is (ul, ey ui+1, . ,ui+N-i). Let Ai denote the

address of combination (ul, SN S ui+1, .. ,ui+N—i) for i=0,1, . . . ,N-1. Then, the address

Ai+1 of combination ‘(Ul’ SR UIT ”i+1+1’ ,ui+1+N-i-1), which is the first

‘combination of Si+l(ul’ C ’Ui+l) in lexicographic order, is given as follows:
A=A+ lSHl(ul,, x iy ui+1)l + |Si+1(“1’ Ce ui+2)l + oL

ST PRFTRTIPES I}

Wi —~Ui—t

At 3 [Sialp b)]
j=1

Thus, by using (1),

Wi =1 .

A L M —_ Lui‘t‘(})
¢ |

for i=0, ... ,N-1, where AO=O and u0=0. In particular, if Ui+1=ui+1’ then Ai+l=Ai' The

address of a given combination U=(u TERE ,uN), denoted by addrM N(U), is equal to AN, thus

N dy .
addr ()= Y (M;\l‘ﬁi—i”} > , | (2)

i=l =t

Where di=ui"ui_ 1' 1
Example 1.

Let M=8, N=4, for which the ordered table is shown as Table 1. The address of the

given combination U=(3,5,6,8) is calculated by using formula (2) as follows.

2 . o . 0 -
addrg 4(3568)=) (8;"> T Z\ ¢ 82’“@ T2 (8-51‘ J)
=1 = =1

- (D (4

2.2 Addressing of combinations with repetitions

Next the algorithm given in Section 2.1 isvextended to the case of combinations with
repetitions permitted. Table 2 shows an example of an ordered table where M=6, N=3. In
general, the first combination located at the address 0 is (1, . . .,1), while the last one is
(M, . .. ,M). The size of the ordered table is equal to the number of N-combinations of M
elements with repetitions permitted, i.e. (M+S-1) J1] Let U=(u1, C ,uN) is a given

“combination, where LU g for 1<i<N. Let Si' (ul, .. "Ui) denote the set of all combinations

4

with repetitions permitted whose first i components are equal to Upy - o ol Then the size

of Si,(ul, - ,ui) is given as the number of (N-i}-combinations with repetitions permitted
taken out of M»—ui+l elements, {ul, u+1, ; M}, ie.
“N=-w:—1
Sty] = (MR) | (t')
N—1
Let Ai’ denote the address of combination (”1’ cegty Uy ,u-), which is the first
combination of Si, (u R ,u) in lexicographic order. Then the address A +1 of combination
(Ul’ S T TRTREE ’Ui+l)’ which is the first combination of Si+l (ul, - ,ui+1) is

given in a similar manner to the case without repetition as follows:

\.+l_u'
l = A + Z lSH_l Ugy - oo ol ui+j—1)!

U‘-y--—-l,{' '] , - .
o'/ MFN= (Ut =1) = (ir1)
' N=(i+1)

4=

for i=0, . . . ,N-1, where A6=O, u0=l. In particular, if Uy 1= then A|+l A’i . Therefore,

the address of a given combination with repetitions permitted, U=(u TREE ,uN), is given as
7
N A
M+N-Wi—j—1 +1
addryy (U= 2 1 § < N =17) : (2')
1= -1

. ’ :
where di =U=U; 5.
Example 2.

Let M=6 and N=3, for which the ordered table with repetition permitted is shown as
Table 2. The address of a given combination U=(3,5,5) is calculated by formula (2") as

6, N=3.

Table 2. Ordered table of combinations with repetitions
permitted, where M

addr'

MO OWNMOOMNSTNOFN O OOSLIOLWWOOLWO OO
MMt TN OMNMMNMMNMNS <t N0 <t <t <k NN OWNWINOO
NNNNNNNNNMM MMM NN <t < LN W i O

N O N MFN OO NMN<TNOSN0O O N M N
NNMMMIMOMMNMNM NS St NN Wi

HONMGTNONM<GFINOMNMNFNO<tNOWNOONMNS N0 Mt
N A A NN NN NNt T NNO NN NN N NN

Hrd A e A S A A A A A AT A A A A A AN AN NN NN

Or-iNM=FWMNON0ONOrHANMN<GTNOSN0O O N M <t N0
— HerAr - NN NN NN

follows.

} 2 /b+3-1— bt3— 3 2+ 1
addrg 5 ((3,5,5))= Z(T 1 " 1+1> Z< (} >

d=1
D — .
6+3-=5—4=-3+1 = 4.3
+

2.3 Algorithms expressed in Pascal programs

The algorithms given above for calculating addresses of given combinations are

summarized more explicitly in the form of Pascal programs;

function addr:integer;

var i,j,a:integer;

begin
u[0}:=0;
a=0;
for i:=1 to N do
for j:=1 to u[i]-u[i-1]-1 do
a:=a+Comb(M-u[i-1]-j,N-i};
addr:=a
end;

for formula (2), and

function addr’:integer;

var i,j,a:integer;

begin
u[0}=1;
a:=0;
for i:=1 to N do
for j:=1 to u[i]-uli-1] do
a:=a+Comb(M+N-u[i-1]-j-i+1,N-i);
addr’ :=a

end;

for formula (2), where M, N and U=(u[1], u[2], . .. u[N]) are assumed to be declared and
given values outside each procedure. The procedure Comb(m,n) computes the binomial

coefficient, or (:') , whose implementation technique is briefly discussed in the Appendix.

3. Conclusion

Algorithms that calculate the addresses of given N-combinations of M integers
arranged in lexicographic order are discussed. Two concrete procedures for combinations
with and without repetitions are presented. Our techniques may be applicable for searching

data composed of more than one attribute-value pair.

Acknowledgment

The authors thank Professor J. W. Higgins of the Insti’tute of Information Sciences and

Electronics of the University of Tsukuba for his valuable suggestions.

References

[1] D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 2nd ed.
(Addison-Wesley, Reading, MA, 1873).

[2] T. Iriyama’s program (introduced by S. Ohkoma in Japanese), bit, 15, 4 (1983),
409-413.

Appendix

The computations of formula (2) and (2') can be performed by recursive procedures.

Let us define
b a—1
sapo- 2 (“T7)
i=1
for a,b,c>0. Then,

s(a,b,c)=s(a- 1,b,c)+s(a-1,b,c-1).

Especially,

s{a,b,c)=0 for b=0 or agc,
and

s(a,b,c)=b | for a=zb and c=0.

Formula (2), for example, is rewritten in terms of function s as

N
addrM’N(U)': Z S(M_Ul_l,di,N"l).

Therefore, formula (2) can be expressed in recursive form. However, the cost to execute
these recursive procedures becomes very high when M and N increase.

Here we should refer to a direct execution algorithm for the binomial coefficient (:)

IO

(=Comb(m,n) in our procedures) which was given by T. Iriyama[2]. We can formulate (nm)

(m>n>0) as (a;b) ,» Where b=n, a=m-n20, without loss of generality. By definition,

atb\ _ (et -(a+2)- ... -(a+b)
(_b>— - 2 ...« b

Let us assume there are two arrays as

A[i]:a'f'i,
Blil=i, for 1<i<b.

Notice that a multiple of B[i] is always found in Af[i-mod(a,}], for 1<i<N, where mod(a,i)
means the remainder of a divided by i. Further, the values of B[i+i-k] and A[i-mod(a,i}+i- k]
for k=0,1, ..., |(b-)fi] are all multiples of B[i]. (x| means the floor of x, [1]) Now,
for i=2 to b, repeat the execution of all possible division operations for elements in A and
B by B[i] Then all elements in B become equal to 1. Thus the binomial coefficient is finally

derived by just multiplying all the A[iT’s. For example,

2 3 {
(7)2 #-5-£7 _ 2-5.3-7
4 123% 1+ 132
| 2]
_ 2517 _ 1517
[-1-1-Z (~1-7-1
!
= 35

Thus formulas (2) and (2’) can directly be computed by using this algorithm.

Iz

A concrete program for calculating the binomial coefficient, (%) R
is given as follows.

O00650 function Combim,n:integer)iinteger,
goc74u var fA,Biarrayl1..501 of integer:
goasao iyvjsk,p.wiinteger;
00cso begin
a0100 if (n>»m-n) then ni=m-n,
0011C for i:=1 to n do
00120 beain
00130 flili=m-n+i;
a0140 Blil:i=i
00150 end,
0015l for ki:=2 to n do
00170 begin
00180 pi=Blk1:
0190 if (p>1) then
agzio0 beagin
00210 iv=k;
00220 ir=(m-n) mod i,
00230 repeat Ali-jli=Ali-j1 div p;
acz40 Blil:=Blil div pi
DGZ50 ir=1+k
J02&0 until i*n
00627G end
J0280 end.
002380 wi=1}
a0300 for it=1 to n do _
§0z10 if L1171 then wi=wxhlil;
an320 Combi=uw
00330 end;

12

13

J0010 program addr{input,output);
00020 label 1
00030 var M,N,sw,i: inteaer;
0C040 us arrayl[0..50] of integer;:
J0050 (%)
00340 (##zddr#)
00350 function addriinteger;
30360 var i,j.aiinteger;
06370 begin
00380 ul01:=0;
006390 a:=0C;
00400 for i:=1 to N do
0G410 for i.-'i to ulil-uli-11-1 do
30420 i=atComb(M-uli-17-j7,N-i}:
00430 addr:=a
a0440 end;
0C450 (x%addrp¥*)
00460 function addrp:integer;
00470 Var i,j.atinteger;
00480 beain
JG430 ulll:=1:
00500 a:=0;
J0510 for i:=1 to N do
0052C for ji=1 to ulil-uli-1] do
J0530 a:=a+tComb(M+N~uli-1]-j-i+1
00540 addrpi=a
IS end;
U560 (#%¥+#)
00570 beain
00580 1t read{M,N,suw);
005390 if M<>0 then
00600 beain
gogi0 for i:=1 to N do read(ulil);
00620 if (sw=0) then writeln({M,N,su,
08320 elzs :.Lil'li_i:‘iﬁ{vtg(‘ig‘_,lﬂ
U{Céﬁ goto 1
ggeso end
ﬁﬁbbﬁ end.

INSTITUTE OF INFORMATION SCIENCES AND ELECTRONICS
UNIVERSITY OF TSUKUBA
SAKURA-MURA, NIIHARI-GUN, IBARAKI 305 JAPAN

REPORT NUMBER
REPORT DOCUMENTATION PAGE ISE-TR-83-40

TITLE

Address Calculation Algorithms for Ordered Sets of Combinations

AUTHOR(S)
Seiichi Nishihara
Katsuo Ikeda
Inst. of Information Sciences and Electronics,
University of Tsukuba

REPORT DATE NUMBER OF PAGES
July 15, 1983 ‘ 13
MAIN CATEGORY CR CATEGORIES
Data Storage Representation E.2, E.1, F.2.2, G.2.1
KEY WORDS

combination, address calculation, table, retrieval, ordered set

ABSTRACT

Algorithms that calculate the addresses of given N-combinations of
M integers, {1, 2, v .., M} , arranged in lexicographic order are
discussed. Two concrete procedures for combinations with and without
repetitions are presented. Our techniques may be applicable for

searching data composed of more than one attribute-pair.

SUPPLEMENTARY NOTES

