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ABSTRACT

A numerical method for solving a problem in unsteady
slag flow in the hearth of a blast furnace is presented.
This problem is reduced to some free boundary problem
for an elliptic system. The potential problem for a
given free boundary is approximated by the penalty meth-
od. The derivatives of the potenﬁial function on the
free boundary is approximated by the integration of the
penalty term, and then the subsequent shape of the free
boundary is obtained by solving the differential equa-
tion for the motion of the free boundary. The finite
difference method is used to solve the penalized prob-

lem. A numerical example is given.
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Numerical Solution of Free Boundary Problem

for Unsteady Slag Flow in the Hearth

Makoto NATORI and Hideo KAWARADA

1. Introduction

We present a numerical method for solving a problem in unsteady
flow of molton slag in the hearth region of iron producing blast
furnaces dufing the tapping operation[l]. This problem is reduced
to' some free boundary problems for an elliptic system. This type
6f problem is similar to the porous flow of underground water in
which the water surface is a free boundary. The numerical calcula-
tions of this type of problem were done by various researchers[2-4].
The three-dimensional problem of the slag flow in the hearth was
solved by using the finite element method by Ichihara and Fukutake[5].
They concluded that their computation scheme is not so efficient as
it is applied for the practical use.

The object of this paper is to settle this computational insta-
bility by using the penalty method developed by Kawarada and Natori

[6-9].



2. Formulation

We consider two-dimensional slag flow in the hearth which is
bounded by impermeable boundaries y=0, x=0 and x=a. One of vertical
boundaries, x=0, has a tapping hole near the bottom. While y=g(x,t)

denotes the free surface of the slag region(See Fig.l).
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Fig. 1

A velocity potential can be defined by

where p is the fluid pressure and Y is the specific weight of the

fluid. If it is assumed that Darcy's law holds, the potential is

given by

Il
o

(1) A ¢

(2) ¢ =y on y=gxt)



(3) ¢. =0 on y =20

(4) ¢ =0 on x

0 and x = a, except on the tapping hole

(5) ¢ k ( >0 ) on the tapping hole.

X

where k is some constant.

The motion of -the free surface is given by

- - 2 9¢
B 1+ 9% on | y=g(x,t)

The initial shape of the free surface, y = g(x,0), is given and
forms an initial condition for equation (6).

When we try to solve the problem formulated above, a numerical
procedure must contain a routine for solving the potential problem
(1)-(5) for a given free boundary y = g(x,t). When this is done,
the derivatives of the potential function can be calculated on the
free boundary, and then the equation (6) can be solved for the sub-
sequent shape of the free boundary.

If we use the method of the integrated penalty to solve the
potential problem, then the derivatives of the potential function
on the free boundary are easily obtained. This is the reason of

our application of the penalty method to the free boundary problems.

3. Penalty Method
3.1 Penalized problem

We define the characteristic function Xs(x,y,t) such as

e 1 in Q-0 €
(1) x“(x,y,t) = g

0 in Q_ e
g



where the domains Qge and Q, which includes Qge, are defined by

e = {0 <x<a, 0<y< g% (x,t)}

and

{(x,y) |0 <x <a, 0<y < Db}

o]
Il

as shown in Fig.2.
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Fig. 2

By the use of xe, equation (]) is approximated by

(8) 8- 2 (o%-y) = 0 in g,

where € is a positive constant. We add a new boundary condition:

(9) ¢ =y on y=ob,

to the boundary conditions (3)-(5).
In fact, if we let & be sufficiently small then we know that
¢€'approximates ¢ in Qge and ¢€ is nearly equal to y in Q—Qge.

Therefore the boundary condition (2) is approximately satisfied.



If we use the method of integrated penalty, equation (6) is

approximated by

b
S X (65- y) dy ).
O

-(1-

[0l o

(0) g}

Now, the second term in the right‘hand side of (10) is called the

integrated penalty.

3.2 Discretization of the penalized problem

The penalized problem (8) with the boundary conditions (3)-(5)
and (9) is discretized by the finité,difference. Also the free
boundary equation (10) is solved by Euler's method. The intervals
0 <x<a and 0 <y < b are divided into N and M equal subinter-

vals of width h. The mesh size of time is denoted by At. We use

the following notations in the discretized system:

x. = ih ' 0 N

A
He
In

M

A
.
A

yj=jh ’ 0
t, = kAt , 0 <k

€

bise = O (xi.y-,tk)

j
_ €.
glk - g (Xi'tk)
= v (x t. )
Xijk T X Fir¥yrtk

We define the discretized characteristic function by

(1 j > [g4/hl]
1 - p.
ik .
(11) Xijk=< ——1'12_—'— J = [gik/h]
L+ ZePix
L 0 j < [gik/h]




where [ ] denotes the Gauss symbol and
pik = gik/h = [gik/h]’

Then the potential function ¢ijk satisfies the following equations

for any k

h2

(4+% X330 %55k %i-1 5k %i+i 3 k%1 5-1 k7% 41k

2

h
e Y4 Xijk

(12) =

(0<izN , 0<j<M ) .
This system of linear equations is solved by the incomplete Cholesky
decomposition combined with conjugate gradient method [11].

The free boundary 9k is obtained by
(13) 9y g41 = 93k TAEF (95y)
h M
(14)  Flggy) = 'l+€§§%Xijk(¢ijk_yj)

It should be noted that Xijk and ¢ijk are determined by Iik*

3.3 How to chooée the penalty parameter €.
We assume € is expressed by
(15) e =h°
and try to find an optimal value of o to minimize the difference of
the right sides of equations (6) and (14). For this purpose, we
consider a simple test problem (See Fig.3) :
Aa = 0 in 9]

g
l-y on x =0

It

u
(16)
u=1-x on y =20

Il
=
I
b

u=20 on v
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Fig. 3

This problem has an exact solution u = l-x-y.

2 du ‘
(17) - ,/l+gx §Hly=g(x)= 2,

where g(x) = l-x.

Therfore,

Here we construct the discretized problem (Pﬁ) of the penalized

equation

(18) A - %xug =0 in @

We investigate the difference between (17) and the integrated

penalty :

M
_n
(IP); = Ej_goxijuij

by varying the value of o in (15). We get that the optimal value of

o is 3-4 for 1/8 <h < 1/16.



3.4 Stability condition
Here we study the stability condition of (13). It is well

known that the stability condition is

(19) At|g§- < 2,

where

b
F(g) = -1+% S X (9) (6% (9) -y)dy.
(0]

If we use the property [12]

6% (x,9(x,£)) | < €y €,

where C0 depends on ¢€and ge, then we have

|F(g)-F(9) | < =|g-g].

™ Ioo

- If we substitute CO/JE into |3F/3g| in (19), then we have
C

0 < At < 2.
’J'e’__

Therefore we may choose

(20) At = Cy4E

4. Numerical Example
In this section we present results for the problem (1)-(6),
obtained by the method of integrated penalty. Data of the problem

are as follows : .

a=1
b = 0.3125
k = 0.625

The tapping hole is located at (0,1/16). The initial surface is

given by



g(x,0) = 0.25.
The parameters used for the numerical calculations are

h

1/16

3
h~ = 1/4096
At = Je = 1/64.

In Fig.,4 we show the results.

€
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