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ABSTRACT
The degree theory and the homotopy hethod related to it are
applied to nonlinear two point boundary value vproblems of
ordinary differential -equations. The system is described by
first order differential equations which can not necessarily be
brought into a second order system. Two types of the applications
are considered. First, existence of the solution of a class of
the boundary value problems is considered by using the Leray-
Schauder degree theory. The differential system is reduced to a
nonlinear integral equation, which is imbedded into a homotopy
with compact operators. Sufficient conditions for the existence
of the <solution are given. Secondly, an algorithm for
calculating a fixed point of a differentiable mép suggested by
Watson 1is applied to the boundary value problem.b The algorithm
follows a homotopy curve from ah initial value to the fixed
point. A sufficient condition on which the homotopy algorithm
converges globally is discussed. Matrix differential equation to
be go]ved in the algorithm is derived. Moreover, the property of

finite arc length of the homotopy is proved.
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1. Introduction

Nonlinear boundary value problems have been extensively and
widely studied, because of their importance in physical
processes. Theoretical studies have been mainly concentrated on
boundary value problems of the second order differential

equations [17:

(1) x" Flt,x,x*),

Many problems in engineering such as those of optimal control
are, however, reduced to the solution of first order differential

equations

%! F(t,x,y)
(2) 0<Ct<T

y! G(t,x,y)

i

with the boundary condition

x{(0) = xn y(T) = vy ,

0’ T

which can not be written in a form of the second order systems
such as (1). For the latter form of +the boundary value
problems, techniques based on local 1linearization have been
studied, but global studies are still rare.

On the other hand, recent s{udies on topological properties
of continuous maps have proved that the homotopy techniques are
important both as a theoretical tool and as a method giving
algorithms useful in applications. Both features are typically
exhibited 1in the study of fixed point theorems. Namely, the
Brower fixed point theorem is proved by the degree theory [21.
Furthermore, methods for the computation of a fixed point are

based on the homotopy from a known initial value to the solution

£33,C417.



This paper 1is concerned with the application of the
homotopies to fhe study of the bouﬁdary value problem of the
first order system (2). The content is divided into two parts.
The first part discusses the existence of a solution of a <class
of nonlinear boundary value problems by using the Leray-Schauder
degree theory [21; the second part concerns the computation of

the solution based on a fixed point algorithm.

2. Existence of a solution of a class of two point boundary value

problems

2.1 Preliminaries

Let En be n-dimensional Euclid space and a system in En is

considered:

(3) ‘ y' = F(y,t), 0 <t <1

(4) M y(0) + N y(1) = ¢ ,

where y(t) € En H M¢N ¢ n x n constant matrices, ce EMN

constant vector. Moreover we assume that F{(y,t) 1is a C1 map .
It is necessary to consider a linear two point boundary

value problem associated with the above system:

(3 z' = V(t)z + (1), 0<t <1,

(6) M z{0) + N z(1) = ¢,



where V{(t): n x n matrix, f(t): n vector.
Let the fundamental solution for
z' = V(t)z
be ®(t,s). Then the following three propositions are tfue £313.
Prop. 1¢L53, p.61)
Suppose
(7 detl M + N (1,00 1 # 0 .

Then, there exists a unique solution z(t) for (5),(6) satisfying

(8) z(t) = H(t)c + I;G(t,s)F(s)ds ,
where
(9) H(E) = 0Ct,O0L M+ N o(1,007 "
@(t,O)tM%N 01,001 (0,5, 0<s <t
(10 G(t,s) =

-®(t,0)CM+N ©(1,0)J—1N o(1,8), t <s <1



Prop. 2(C31,p.62)
A necessary and sufficient condition that there is a V(t) such

that detlM + N ®(1,0)] # 0 is that the n x 2n matrix [M NI have

full rank n.

Prop. 3([51,p.68)
Assume that detlM + N ®(1,0)] # 0. Then the nonlinear two point

boundary value problem (3),(4) has an equivalent representation

: , v
(11) y(t) = H(t)c + [ G{t,s)LF(y(s),s) - V(s)y(s)1ds ,
0

where H(t) and G(t,s) are given by (9) and (10), respectively.

On the other hand, we need an important result based on the

Leray—Schauder degree theory.

Prop. 4(Schaefer; see [2]1,p.71)

Let X be a Banach space and ¢ :X -> X be a compact nperatnr‘uhich
is not necessarily linear. If the set

(12) S={u| u= x¢w ,.For some A e [0,1) 2

is bounded, then ¢ has a fixed point ut u = ¢(u).

2.2 The existence of the solution

n
Let us define the norm |z |, z = (z,, z,,..., zr)Te E
by
[z] = max |z.]|
T<i<n

and let |A|denote the matrix norm of nxn matrix A, associated with



the vector norm |z| . Assume that there exists a monotone

nondecreasing function k(x> R ->R and constants M1 > 0,

M2 > 0 such that
(13) IFiy(s),s) - Visry(s) | < k(]y(s)])
0<t,s <1 .

where H(t) and G(t,s) are bounded by the previous result (9),

(10). Then we have the following theorem.

Th. 1

Suppose that detfM + N ®(1,0)] # O and the relation (13) holds.

If the solution of the inequality
x < M1 + Mzk(x), x € R

satisfies x < m for a constant m > O. Then there exists a
 501ution of the two point boundary value problem (3),(4).

(Proof) We consider the equation (11), which is equivalent to
(3),(4), according to Prop. 3. Let

1

G(t,s)[F(y(s),s) - V(s)y(s)1ds .

d(y) = H(tdc +J
0

Since G(t,s) is bounded and continuous when t # s,  it is easy to
see that the map u(t) -> [G(t,s)u(s)ds is compact. ( See
(631.) Seeing that F{(y,s) represents a bounded operator, it

follows that ¢ is a compact operator.



Let us see that if y = A ¢(y) for some A€ [O , 1), then there
exists m > 0 independent of A such that ||y|f< m. Let
X =CL O, 13 in Prop. 4 and |y | =]ly]]_= s%p |y(t)] + Then,

1
lycty | < My o+ My [ k(|y(s)[)ds
0 .
from (13). Hence it follows that

Iy ll< m +m kdlylh

which means that [[y||< m from the assumption. That is, y(t) is
bounded, independent of A. Therefore there exists a solutiaon

y{(t) of (11) by referring to Prop. 4. ' Q.E.D.
2.3 Examples
An important class of the boundary conditions in application

takes the form

y1(0) = 31, y2(0) = a2, coa yr(O) = a ,

Yr+1(1) :br+1, L A A N N RN N T Yn(l) =bno
For y(t) = (y. (1), yo(£), vee » v ()1 .
1 * 72 ’ * 'n
Then
.
(2,
I, 0 0 0 a,
(14) M= N = ¢ =
0 0 0 In-r Tr+1
(b, )




The above condition is assumed in the sequel.

(135
(16)

The component A(t)y is the linear part of F(y,t),

represents the

Fly,t) = Alt)y +

[BGy, )] <K [v]® + K

0(@(1’ K,]

By, t)

2 ’
> 0, K

nonlinear part of it.

0.

The relation (16

Assume also that

whereas Bly,t)

means

that the nonlinearity grouws slowly with |y|. ( See Fig. 1.)

Suppose
then &(t,s)
M+ N (1,0
conditian (7)

Moreover,

first that V(i) = O,

= I, whence

I, ioQO,

is satisfied.

H(t) = I,
| M, 0 £ s <t
G{t,s) =
=N, t <s <1,
therefore |[G(t,s)| < 1, |H(t)| = 1.
Th. 2
Under the hypotheses (14),

statement is

(135,

/

WW Yo
K\\y

and

valid. If |A(t)] < B for

Fig. 1

the following

then there exists

a splution of the two point boundary value problem (3),(4).

(Proof) It
halds.

Since

is sufficient to verify that the condition in Th. 1

[Fev,t) = vty [ < Blyl + Kyly ™+ K,



and M, =M, =1, it follows that
My + Mok () = gx + Kyx® + K, .
The inequality
o
x < Bx + K1x + KZ

is transformed into

o
x < ( K1x + H@

from which it follows that x is bounded. Therefore Th. 1 applies

/1 - 8, 1-8>0,

and the proof is finished. Q. E. D.

Next, suppose that V(i) = A(t). In this case it is not
obvious that whether det[M + N ®(1,0)] # O or not: the condition

(7) should be examined individually.

Th. 3

Under the hypotheses of (14), (15), and (16), the following
statement is valid. If detflM + NO® (1,003 = 0 for V(1) = A(D),
then ‘there exists a solution of the two point boundary value
problem (3),(4).
{Proof) From the equation
[Fly,t) = V(t)y| = [Bly, )] <K [y]* + K, ,
My + Mok (x) = My + MoKy + MoK, x% o
It is clear that the solution of
x < MoK, x%  + My + MoK,
satisfies x < m for some constant m > O. Therefore Th. 1 shows

the existence of the solution. e. E. D.



3. A fixed point algorithm applied to a boundary value problem of

first order differential equations

3.1 ResUlts on the traceability of the zero curve of a homotopy
This section is independent of the previous one; here the

consideration is devoted to an algorithmic feature.

Let wus consider a subclass of the two point boundary wvalue

problems considered in the previous section:

T

X = F(t,x,y).
(17 y' = G(t,x,y) ,
x(0) = %, y(T) = O, 0<t<T,

Wwhere x(t), y(t) ¢ En s F and G arevof C2 class.
A shooting method of the solution assume a variable v for

the initial wvalue of ¥

x' = F(t,x,y)
(18) y' = G(t,x,y) ,
X(O) = XO, Y(O) = V

Let y(T) = f(v), then the equation

(19 f(v) = 0O

must hold. Namely, the boundary value problem (17) is reduced to
the solution of a nonlinear equatiaon (19).

The continuation method [7] to solve (19) use the homotopy

10



(1 - v = w) + ) f{w)

(200 H, (A, v)
o< A< 1) .

Zero curve (A, v(X)) of H (A,v())) = O should be followed from

A= 0, Q =wto A =1, v =V, where it is easy to see that f(¥)=0.

The following proposition is a modified version of the theorem by

Chow, Mallet-Paret, Yorke L[81.

Prop. 5

Let DC E" be an open convex set isomorphic to an open sphere in
E" . Put g(v) = -f(v) + v. If g(B) C D, then the following
statements (i) - (iv) are valid.

(i) There exists a v € D such that f(v) = 0.

(ii) For almost all w € D (= Int D), the soglution (), v{)A)) of
}4w Cx, viA)) = 0 representsv curves, each connected
component OF, which is isomorphic to a line segment or a
circle. In other words, for the solution (X , v) of

HW(A s V) = 0, the Jacobian has full rank.

D[)\,V]Hw
(iii)A component Fw of Hw( A, v{(A)) = 0 connects (O, w) to

(iv) If Df(¥V) is not singular, Fw has finite arc length.

A condition for applying the above proposition to the

boundary value problem (17) is given in the Fol]ouing.'

Th. 4

Suppose that |y| denotes an arbitrary norm in E" .  Assume that

there exists a constant M > O such that for arbitrary initial

11



value y(0) = v satisfying
(21) [v | <M,

the inequality

1 |
(22 lf G(t,x(t),y(t))dt | <M
0

holds, where (x(t),y(t)) is the solution of the initial value

problem (18) with (x(0),y(0)) = (x_ , V). Then g(D) C D for

0
D=<{¢v]| |v]|]<M?2 and the conclusion in Prop. 4 are valid.
(Proof)
lgtv) | = | Flv) = v | = | y(T) - y (0) |
= | f%(t,x(t),y(t))dtl <M
which means g(D) C D. 0 , Q. E. D.

Sufficient conditions for different norms such as and

|
(e o]

so that the inequality (22) holds are as follows.
) | G({,x(t),v(t))|u)< M, for any tef O, 1]
o 'I%(t,x(t),y(t))dtla>< Mo
(B) | G(t,x<t>,y0(t>>|oo <M/YR o, forany te [ O, 11
Ifle(t,x(t),y(t))dtlz <M.
() | G(t,x(t),;(t))lz < M, for any te [ O, 1]
|JIG(t,x(t),y(t))dt|2 <M.
0
Remark Watson [8] has shown a résu]t analogous to The 4 for a
second order differential system. If we apply his method of the
proof in our case, the condition (21) can be made vsomeuhat
weaker: |v |= M. In application, however, the both conditions

make no difference.
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3.2 Computation of the derivative
Watson [9] has proposed an algorithm to compute thé solution
of f{v) = 0. He made A a dependent wvariable by introducing an

indepdendent variable s of arc length and considered the equation
A(s)Ff(v(s)) + (1 =) (s)){v(s) - w) = 0.

Thus the zero curve of Hw( As V) 1s the solution of the initial

value problem

H ( A(s), v(s)) = O

T
A(0) =0
(23) v(0) = w
(d)\ dv) -
ds * ds )

In order to wuse standard ordinary equation solvers, the
differential equation in (23) must be put in the explicit form
d) /ds = H1(S, A V), dv/ds = Hz(s, A sV ) e For this purpose the

first equation in (23):

dX
ds

Cf(v)—-v+w , (1-0I+ ADf(w) ] = 0
dv
ds

must be computed and the kernel of the matrix should be found.
After the matrix is computed, the algorithm of Watson [?] works.
In this computation of the matrix the most difficult part is

the calculation of DBf(v). Let us show that ©Df(v) is a solution

13



of a matrix differential equation which is called sensitivity
equation [10] in the control engineering. Denote the Frechet
derivative of x with respect to v as d&x/dv. Then, from (18) it

follows that

i(dX) - d (SX) _ é_E X + oF (SY

Sv'dt dt'Sv’ T 3x Sv dy Sv
(24)

6 (dyy _ d  Syy _ 3G &x 3G Sy

sviae) T w® S syt oy 5

S ( _ §

sOx(0) ) =0, 20y0)) =1
and

DF(V) = o ( y(t) )]
t=T
Note that ©oF/9x, oF/3y, 09oG/3x, and 3G/dy are computed along the

soplution (x{(t),y(t)). Let

r(S 3 ' N
X oF oF
= (t) = 5
Z(t) = s L(t) =
Sy 3G oG
\W(t)‘ :5;(- -a—yj
for simplicity, then
0
dz _ | : _
(25) JF - Lz, Z(0) =|---
In

Let the fundamental solution of this system by ¥(t,s), then

14



whence it follows that

0
(26) Df(v) = g%()l(t)), = (01 1.)¥(T,0)|---
t=
I
n
Thus, the derivative Df(v) is <calculated by wusing the
sensitivity equation (24) or (25). Further, nonsingularity of

Y{(t,s) (See [111.) shows that Df{(v) is nonsingular. Therefore

we have

Th. 5

The arc length of Pwin Prop. 5 for the solution (17) is finite.
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