ISE-TR-83-33

SYSTEMATIC DESIGN OF A PIPELINED LEXICAL SCANNER

by

Kozo Itano

April 15, 1983

~ INSTITUTE s
- INFORMATION SCIENCES AND ELECTRONICS

~ UNIVERSITY OF TSUKUBA

Systematic Design of a Pipelined Lexical Scanner

Kozo Itano

Institute of Information Sciences
& Electronics
University of Tsukuba
Sakura, Niihari, Ibaraki 305
Japan

This work was partly performed while the author was visiting
at the Department of Computer Science, University of Maryland.

Contents

Abstract

1. Introduction

2. Hardware Design Methodology

2.1 Algolithmic Level Design

2.2 Register Transfer Level Design

2.3 Physical Design and Implementation
3. Case Study - Design of a Lexical Scanner

3.1 Design Blueprint
3.2 High-Level Description of the Pipeline Structure
3.3 CDL Design

4, Simulation in CDL3

5. Concluding Remarks

6. Acknowledgements

7. References

Appendix A. Design Blueprint of the Pipelined Lexical Scanner

Appendix B. CDL Design of the Pipelined Lexical Scanner

Figures

Abstract

A simple lexical scanner for ALGOL 60 subset was designed for
the demonstration of the hardware design methodology. The lexical
scanner was originally described in Software Design Language (spL) [1].
A top-down approach was employed; first the equivalent hardware lexical
scanner was described in the high-level hardware design language, and
then it was translated into the register transfer level hardware design
in Computer Design Language CDL [3-9]. Five stages of the pipeline
architecture was described in both languages, and its simulation was also

performed on the CDL3 simulator of the UNIVAC 1100 to test the algorithm.

Systematic Design of a Pipelined Lexical Scanner

Kozo Itano

University of Tsukuba

1. Introduction

As a result of the recent improvements in fabrication technology,
achievable circuit density has rapidly increased and LSI chips now could
consist of multiple complex systems easily. However, the design of such
complex hardware is still difficult, since it is usually done in ad-hoc
manner. In order to cope with this problem, a systematic approach has

been introduced for the design of large and complex hardware systems.

For the demonstration of the methodology, a simple subset of ALGOL 60
was used; the hardware was described in high-level design language, "and then
it was translated into a lower level design gradually. As the lexical scanner
has a pipeline architecture, an algorithm for parallel processing is
described both in high-level design language and low-level language. The
high—levél language is an extention of SDL (Software.Design Language) [1,2],
and the low level language is the register transfer level Computer Design’
Language CDL [3-9]. 1In this paper, the hardware design methodology is
demonstrated basing on the experimental design of the pipelined lexical

scanner [17].

2. Hardware Design Methodology

The hardware is designed systematically in a top-down manner.
First the algorithm to be executed in the hardware is described in
software-like manner, then it is translated into the high-level hardware

design , and finally the register transfer level design is developed.

D) Algorithmic Level Design

The fifst and probably most improtant step of the design is to
describeAprecisely what to be implemented; a complete and understandable
description can be a good start point. From the view point.of the
algorithm description, software-like "sequential" description would be easiest,
because a dgsigner doesn't need to pay extra attention about detailed hardware
concepts and sophisticated parallel processing possibility. Therefore,
Software Design Language (SDL) [1] was chosen to design the algorithm

at the first level.

Once an algorithm is described in SDL, it is translated into a
high-level hardware description using high-level hardware design language.
At this level, a physical structure of the hardware is reflected to the
deciaration and,definitions of the operations. Each data unit is defined
as physical storage such as a register and a memory. Hence, the operations
are defined at the register transfer level in some sence. As the parallel
data processing is to be described, parallel processing constructs are

introduced into the design language.

Translation of the sequential algorithm defined in SDL into the parallel
processing algorithm is carefully performed by analyzing it. There are two
cases: (1) If the algorithm consists of explicit parallelism, it can be executed
in parallel; (2) If the algorithm is purely sequential, we consider about
sequential parallelism, or reconstruction of the algorithm. One important
guide line which is commonly applied to these cases is to analyze the flow of

data instead of control flow of the algorithm.

2.2 Register-Transfer-Level Design

The next step of the design is to develop the precise hardware design
at the register transfer level using the Computer Design Language CDL from the
high-level algorithmic description metioned above. The translation at this
level is not so difficult, because it is madg rafher straightforward manner.
The described algorithm in CDL can be simulated and the design can be checked.
When some errors are found at this level, they are corrected at the high-level
design and trgnslated into CDL design again. These steps are repeated until the

design is tested completely as possible.

2.3 Physical Design and Implementation

Once a verified hardware design is developed, it could be implemented
easily. Several approaches are possible for the physical design and its
implementation. Y. Chu at the Univ. of Maryland‘suggested the algorithm for
the franslation of the CDL design into VLSI pattern. Microprogram implementation

would also be feasible as well as wired logic implementation.

3. Case Study - Design of a Lexical Scanner

As an example of the systematic hardware design, a simple lexical
scanner was designed. A very simplified ALGOL 60 subset is scanned by the
lexical scanner. It has 26 kind of tokens: 13 single character tokens ('=',
TAT TN, et rRT ot o,), Y, e, '8, and blank), 11 multiple
character tokems ('**', ':=', 'GoTO', 'IF', 'THEN', 'ELSE', 'BEGIN', 'END',
'"INTEGER', 'READ', and 'WRITE'), unsigned integer, and identifier. A sourcé
program of this language is scanned by the lexical scanmner, separated into

tokens, and each token is translated into a binary token code.

3.1 Design Blueprint

The lexical scanner was first described in éDL [1], The blueprint
has seven procedures: MAIN, SCAN, NEXTCHAR, LOOKUPLEGAL, ERRORHANDLER,
LOOKUPOPERATOR, and WRITETOKEN. These procedures were defined considering
the control structure shown in Fig.1l(a). The blueprint shows precisely and
completely what to do in the lexical scanner and it behaves a good specification

of the system to be designed.

In this design, a source program is assumed to be stored in the area IN
and the generated tokens are to be stored in the area TOKEN. Two tables: LEGAL
and OPERATOR, define legal characters to be permitted in the language and operators

and reserved words of the language respectively.

3.2 High-level Description of the Pipeline Structure

At the next step, the blueprint was translated into the
pipelined lexical scanner. The ofiginal procedures are reorganized
as the pipelined stages considering the data flow. Fig.1l(b) shows
the structure of the pipelined stages. The blueprint of the pipelined
lexical scanner is given in Appendix A. The operation of each stage

is described below.

1) First Stage (NEXTCHAR)

The first stage of the pipeline is used to fetch a character
from the IN. Register I points to the cufrent character‘location.
This location is incremented one by one. The current character is
fetched from the IN and sent to register. CHV. At the same time, the
contents of register I are sent to register II before the incrementation
is performed. Thus, register II points to the location of the character
in register CHV. 1In the blueprint shown in Appendix A, these operations

are described as three assignment statements:
CHV:=IN(I); II:=I; I:=I+1;
These statements are performed in parallel.

(2) Second Stage (LOOKUPLEGAL)

The second stage of the pipeline is used to get the type of
the character from the character-type check unit. An associative

table is used in this unit; the character code is used as a key to the

table LEGAL, and it outputs the type of the character. This operation
is simply described as 'LCR:=LEGAL(CHV)', where LEGAL is declared as an
associative table. 1In this stage, the contents of register CHV are sent
to register CH; the contents of register II are sent to register ILII,

and the output of the associative table LEGAL is sent to register LCR.

(3) Third Stage (SCAN)

The third stage of the pipeline is used to control the most
essential operations of the lexical scanner. Operations to be performed
here depend upon the type of the next character LCR and the type of the
token processed in the string register SA. The type of the token M indicates
that the string register holds the state of (i) empty, (ii) numeric,

(iii) identifier, (iv) operator, etc.

Initially, the string register SA is cleared. Then, the character
in register CH is sent to the string register, and it is appended to the
character string in éA. When the first character df the current token is sent
to the string register, the corresponding location is also sent to register
IV to hold the first character location of the token in the IN. This
operation is repeated until the current token string is terminated by the
next token. When the next token is detected in this way, the state of the
string register is changed and the next stage of the pipeline is invoked.
Then the string register is cleared again, and the processing of the next token

begins. State transition of this stage is shown in Fig.2.

In this stage, '++' means bitwise concatenation of the both sides

':=+' means that a new item is appended to the left-

of the operator, and
hand register. The construct 'Exec' is used to invoke the corresponding

stage.

(4) Fourth Stage (LOOKUPOPERATOR)

vThe fourth stage of the pipeline is used to access the operator
and reserved word look-up unit. An associative table is used in this unit;
the string register SA is directly connected to the associative table
OPERATOR in parallel, and it outputs the type of the token. When this
stage is invoked by the third stage, the type of the token generated by
the reserved word look-up unit is sent to register TOKENR, and the location

in register IV is also sent to register V.

(5) Fifth Stage (WRITETOKEN)

The fifth stage of the pipeline is used to output the token into
the memory TOKEN. After the token and its location are written into the

memory, register J is incremented.

(6) Error Code Handler (ERRORHANDLER)

An error code handler was installed in the lexical scanner. When
an error is detected on the third stage of the pipeline, the error code
handler receives the error code indicating the type of the error and its
location. The handler stores the error code into the memory ERROR and

increments register Q.

3.3 CDL Design

The design blueprint of the pipeleined lexical scanner was translated
nto the CDL design by hand. Each stage of the pipeline was retained in the
CDL design. As shown in Fig.B, the design defines 19 data registers, 5
control registers, two associative tables, and three memories: IN, TOKEN
and ERROR. As‘the hardware is to be described concretely at the detailed
level, the three high-level notations: SA, LEGAL and OPERATOR were defined in

detail. 'Synchronization mechanism was implemented also.

) String Register SA

The string register SA is used to hold a token string which is
concatenated with a character fetched from the memory IN one by one. To
implement this register, a shift register C0-C6 and OV was introduced as
shown in Fig.3. OV is an overflow indicator of the register C0-C6. Every
concatenate operation is replaced by a parallel shift operations of the
shift rehister. By the use of this shift register, the string register SA
was realized very compact, and the related operations can be performed very

fast.

(2) Associative Table LEGAL

The associative table LEGAL is used to generate the type of the input
character. The type specifies blank, digit, letter, éingle character
operator, two character operator, and illegal characters. For the speed up
of the table look-up operation, a sequential table ldok—up mechanism was

avoided, and a ROM was used for the table LEGAL. As only 50 kind of characters

are to be processed, the character code itself is used directly as an address
to the ROM LEGAL. The addressed word of the ROM contains the type of the
corresponding character. This table look up is assumed to be performed within

a single clock cycle.

(3) Associative Table OPERATOR

The associative table OPERATOR is used to generate the type of a token
from the token string. The token type specifies each token with a binary
number. Every single character operators, multiple character operators and

reserved words are transformed into a unique binary number.

As the token string is too long for ROM implementation, a PLA is used
to realize the table OPERATOR. The PLA logic is defined with TERMINAL statements
in CDL3 [4-7]. The table consists of whole predefined multiple and single letter
operators and reserved words. Characters of these operators and reserved words
are arranged in a reversed order as shown in Fig.4, so that they can be compared
with input token string in the shift register CO-C6 and OV. If the input token
string matches with one of the contents in the PLA, the corresponding signal is
sent to the encoder logic and a proper token type is generated from the encoder

as an output.

(4) Synchronization of the Pipeline Stages

For the synchronization of each stage of the pipeline, four control
registers are used: NEXTCH, NEXCH2, G, and WI. NEXTCH is used to control
the frist and second stages of the pipeline, and NEXCH2 is used to control the
NEXTCH. G is used to control the third stage of the pipeline. WT is used to

control the fifth stage of the pipeline.

10

4. Simulation in CDL3

Fig.5 shows the surmarized traced chart of the simulation and
the output of the simulation of the pipelined lexical scanner.
Simulation was made by the translator/simulator CDL3 on the UNIVAC 1100
at the University of Maryland. The necessary simulation cycles for the
test data (79 characters) shown in Fig.5 are 85 cycles and it takes
about 35 seconds in execution on the UNIVAC 1100. The simulation
result shows that each chafacter of the source program is processed

in one clock period.

11

5. Concluding Remarks

A systematic hardware design methodology was developed to design
a complex hardware system. The experimental design of a pipelined
lexical scanner was successfully done in both high-level and low-level
languages. Actual simulation was performed using CDL3 simulator on the
UNIVAC 1100 to test the design. The methodology showed that the high-
level design language gave us good prospect what to be made and also
a precise specification of the hardware system. However, the pipeline
processing is a special subclass of parallel processing which we should
cope with. Therefore, the capability of tﬁe description of the high-level

design language should be evaluated for the more general cases.

6. Acknowledgements

The author would like to express his sincere thanks to Professor
Yaohan Chu at the University of Maryland for his helpful suggestions

and discussions.

12

9. References

[1] Y. Chu, "Software Blueprint and Examples', Lexington Books, 1982.

[2] Y. Chu, "Computer System Design Description", Proc. of Design
Automation Conference, Las Vegas, June 1982.

[3] Y. Chu, "An Algol-like Computer Design Language', CACM, Vol.8, No.10,
1965, pp.607-615. |

[4] C.K. Mesztenyi, "Translator and Simulator for the Computer Design
and Simulation Program (CDSP) Version I ", Technical Report TR-67-48,
Computer Science Center, University of Maryland, May 1967.

[5] C.K. Mesztenyi, "Computer Design Language - Simulation and Boolean
Translation', Technical Report TR-68-72, Computer Science Center,
University of Maryland, June 1968.

[6] Y. Chu, "User's Manual for the CDL3 Simulator', Department of
Electrical Engineering, University of Maryland, May 1978.

[7] Y. Chu, "How to Use the CDL3 Simulator on the Univac 1100", Department
of Electrical Engineering, University of Maryland, May 1978.

[8] J. R. Heath, B. D. Carroll, and T. T. Cwik, "Capabilities and
Limitations of CDL as a System Hardware and Software Design Aid",
Journal of Design Automation & Fault-Tolerant Computing, Vol.Z, No.2,
May 1978, pp.93-116.

[9] F. J. Mowle and L. R. Stine, "Purdue Extended CDL - A Digital Design
Language for the Specification and Simulation of Computer Hardware",
‘Technical Report TR-EE 75-14, School of Electrical Engineering,
Purdue University, May 1975.

[10] Y. Chu, "High-Level Language Computer Architecture", Academic Press, 1975.

[11] Y. Chu, "JOVIAL Direct-Execution Computer", Proc. of High-Level
Language Computer Architecture Conference, 1980, pp.17-32.

[12] Y. Chu and M. Abrams, '"Programming Languages and Direct-Execution
Computer Architecture", Computer, Vol.l4, No.4, July 1981, pp.22-32.

[13] Y. Chu, K. Itano, Y. Fukunaga, and M. Abramé, "Interactive Direct-
Execution Programming and Testing", Proc. of COMPSAC'82, Chicago,
Nov. 1982.

[14]

[15]

[16]

[171]

[18]

13

K. TItano and Y. Chu, "A Pascal Interactive Direct-Execution Computer:
PASDEC, Part I: High Level Design", TR-1198, Department of Computer
Science, University of Maryland, August 1982,

K. Itano, "A Pascal Interactive Direct-Execution Computer: PASDEC,
Part IT: CDL Design and Simulation', TR-1202, Department of Computer
Science, University of Maryland, August 1982.

K. TItano, "PASDEC: A Pascal Interactive Direct-Execution Computer",
Proc. of High-Level Language Computer Architecture Conference,
Dec. 1982,

K. Ttano, "CDL Design of a Pipelined Lexical Scanner", TR-1093,
Department of Computer Science, University of Maryland, Sept. 1981.

D. P. Sengphiel, "Design of a Hardware Text Editor'", TR-283, Computer
Science Center, University of Maryland, Dec. 1973.

14

MAIN

arrow means

control flow

NEXTCHAR ERROR LOOKUP WRITETOKEN
OPERATOR
LOOKUP
LEGAL
Fig.1(a)

[NEXTCHAR |
[LooKUPLEGAL |
y
['scan]
| LOOKUPOPERATOR|
[WRITETOKEN |

Fig.1(b)

Relation between procedures in SDL Design

arrow means

data flow

Relation between stages in SDL-H2 Design

15

Class of thé input character State of the shift-régister
i (LCR=1): illegal char M=0: empty
b{LCR=2): biank M=1: number

=1

=2: identifier or multi-letter op,
3: single or double letter op.
4

error skip

n{LCR=3): numeric
a(LCR=4): alphabetic
s(LCR=5): symbolic

LTI L
il

Figure 2. State diagram of the SCAN

level of
pipeline

ist stage

2nd stage

3rd stage

4th stage

Sth stage

[}—| ERRoR

Figure 3{

B o SR

16

source
program

ram

LEGAL

rom

LCR

OPERATOR

pla

A
.—-— — — — [TOKENR]

:

ram

TOKEN

ram

control
registers

NEXTCH

NEXCH2

IHH

WT

Hardware organization of the pipelined lexical scanner

17

CH

OPERATOR /PLA

ENCODER

-

TOKEN CODE

A: null char

Organization of the "OPERATOR" PLA

4.

Figure

START = ON

LABEL CYCLE

or O 12 KF 678 Yo 2SR AN B BNEA 10X 2DRX NN BURRREN IS DD I NI ANALL R N RANBUNTIRINNS VRN I
CLOCK TIME

1 01 23 & s|6[7 80 0 xidislaf o778 030 22 2324 2728 20 30 3 2B PKUIS J2) 8N Vo &7 K2 81 W\ WY D of SUSY IR b4 45 34 67 Spbo|ar 248 brde M €782 41 M 20 10 Bw 28 24 72| 811
IN(1) $BEGIN| [INTEGER| [SALARYRATE(,| [SALARY|:] [SARALYRATE:=5000; SALARY|: =[SALARYRATEP41 2 [END[S

1st stage————»

(1] elrar a sty dqernnntdnmAeyan Upy 282y Yo R Nnuvnluulnuwkafquq. SEisII oy KOV P Sdtr R B Us e b B Y PR OV R b o

CHV e|$BEGIN| [INTEGER| tALARYRATE. SALARY|:| ISALARYRATE|:=5000i| [SALARY|: =SALARYRATE*12 END($
2nd stage———» \ N \ - N .
n 01lNHTrvho///:mum/m/y»um;;‘ux:;aan.;wnmumvn»p.u wrlow il sy l/nahdrloltr»xnﬂnrux»';r
CH eeSBEGIN [INTEGER SALARYRATE'. SALARY|i| [SALARYRATE|:=5000;: SALARY: =|SALARYRATE[#12| [ENDS
LCR al5444442444444424444444444&24444445244444444445533335244444455444444444453324445
3rd stage——————» N S W N\
M 0‘033,222220222222202222222222302222223022222222223311113022222233222222222231102223
v olrrarilifzrrr T rrw s s w8 APAPI NI ORPIPTR A X BB B KB U WhY @7 9 SI[VISVS A1y 0353100 $1 4140 61 41 01 61 & k1 & Q1122 22 (% 2 4100 |
co eeeSBEG|NeI NTEGER|/e][SALARYRATE|. e SALARY elSALARYRATE|:=[5000|:|eSALARY|: 'SALARYRATE*IZeENos]
Ct eeee,eBEGleeINTEGEeeSALARYRATeeeSALAneeeSALAnYRATe:esooeeeSALARe:leSALAnvnATeme-eEN;e ;
C2 eeeereeBEG_eeelNTEGeeeSALARVRAeeQQSALAeeeeSALARYRAeeeesoeeeeSALAeeeeSALARYRAeeee:eeE'e i
C3 eeek]eeeaﬁ'eeeelNTEeeeeSALAaneeeeeSALeeeeeSALARVR-eeeeeseeaeeSALee:eeeSALARYReeeleeeee |
C4 eeele,eeeeageleeee|NTeeeeesALAHYeeeeeeSAeeeeeeSALARYeeeeeeeeeeeeSAee«eeeeSALARv'eeeeeeee |
Cc5 eee‘e:oeeeege!eeeee|NeeeeeQSALAReeeeeeosaeeeeeOSALAReeeeeeeeeeeeeseeeeeoesALAReeee‘eeee
Ccé eee"eeeeeeie'eeeeee|eeeeeueSALAeeeeeeeeeeeeeeeesALAeeeeeeeeeeeeeeeeeeeeeesALAeeeeeeee
ov ooo000000500000000000000001110000000000000000011l0000000000000000000000011100000000
TKNYO-4 1uu$uwloum&u$xuozhhnlxhuxum1ouumuhl»ozhhlauuzhuu”/n:amnuuuuuuiy/xuuzuuuuxukysoxdwa
4th stage —————> AN } SN [ARNRREN
v ololr t 11 4t12 22 771718 % a6 Siss s kis|8 VP Yy P 8xnlrlnrncrnlrnr¢ﬂ9¢)vnﬂnrvaum B RYrsplero A& 7 éi 61 & 1Y P2 72| R 20U
TOKENR lruunuu-urxusxuun”uuuauxxzxrauxxxaw..utsuasuuxsrnmmxwuyxu:ux//cxduuvml:mv;x FY-TRTE P2
. e e Va : / .
WTCTL ﬂ(oc 00loooonooloooooooooo||[e(oooon lﬂ”ovoooooool[b‘!oool\Ioﬁbaoo\0‘Loooooooolil6.ltb°|l[ol\
N, . N N\ N ~
WwT Doohlaood|oooooooloooooaoooo||ooooto|loaoooooooo|0|ooo||o’oeooo|a|0°¢>oooooo||ovooo|||lh
. i !
Sth stage ! “‘
J N oooololirri/lzlzazaaazlasssssssaslslfisssssslé 77777777777:”\71r,o//nf/a:;anlan,nnmuaanaa,,,,flqm«ev7,3
Y AN N N N N LN, N o, SN -
TOKEN{J) code n 2 | 2 A 0 u) a8} A 4 | o 2\
position ol / ‘] &1 ‘ *‘H)i * U‘I v nl ol 2817
Ll
NEXTCH g
NEXCH2 T | I
G — 7 [S

Figure 5, Surmmarized trace chart of the simulation.

8T

Appendix A.

Hardware Blueprint of the Pipelined Lexical Scanner

19

01 Hardware Blueprint

02 Stage

03 Declaration

#1
#2
#3
#4
#5
#6
#7

02 Data

MAIN
NEXTCHAR
LOOKUPLEGAL
SCAN

/* main control */

/* fetch next character from IN */
/* look up legal character table */
/* recognize a token */

LOOKUPOPERATOR /* look up operator table */

WRITETOKEN
ERRORHANDLER

03 Declaration

Ram

Associative Table

/* output token into TOKEN */
/* error code handler */

IN(I)=IN(0-127,0-5); /* stores source program */
TOKEN (J)=TOKEN(0-127,0-11); /* stores token codes */

ERROR(Q)=ERROR(0-127,0~14); /* stores error code & location

LEGAL(CHV)=

OPERATOR (SA)=

(707 93)9(71793)9("2793)9s(" 393y
(747939’ 932906 33)9(’7’+3)y
(‘87932 ("9’93)s (‘A 54)y ("B’ 94
(‘C/ 94Xy (‘DN 34823 (’'E"s4)s(‘F 94
(‘G 24)y(’"H 24)9 (179435 (" J’94)
(‘'K794)s ('L 94)y('M'94)y('N’54)»
(‘07 94)y(‘'F’'34)s(’'Q"s4)s(’R’"54)>»
(‘S 24Xy (‘T 9422’ U " 54) (Y’ 94),
(‘W s4)Xr ("X 24)9(‘Y?34)s(2" 94)>
GNP ENES AN D ENEE MINDERGE MM PR
S8 SR DERGNAN - DENGE G D ENGE RSP R
(7593)9 (" 375)y(37 2T)2("% 93)

(7 75232 (@7»1)5

(=741 e (#£,2 e+’ 43 Ye (
(YK 9yS D9 (’/" 96 Yr (7 (797 PN ¢
(72799 D (’'37510 Yr (73911)
(7$7912 Ds(’ 7913 Dy (’%X%k’»14
3=7915 D (’GOTO’s16 Dy (‘IF’
(‘THEN’+18)9 {(’ELSE‘»19 Yy
("BEGIN’»20 DJ)s(“END’,21)y
(/INTEGER »22 D)y (’READN‘' 23),
(‘WURITE’»24 D)y ('UN’»25)
(INs26 DI (@927)%

‘=794

)y

b
v17

)y

*/
5

Dy
Yo

Register
I1(0-6);
II(0-6);
III(0-6);
IV(0-6);
V(0-6);
Q(0-6);
J(0-4);
CHV (0-5);
CH(0-5);
SA(0-2,0-5);
TOKENR (0-4) ;
ERR(0-7);

- 02 Control

03 Declaration

20

/* source program pointer */

7,
o«

bd

/
/
/

b

ol
G

ERROR Memory pointer */
TOKEN memory pointer *
character register */

ok
~

¢ token string register */

/* token code register */
/* error code & location register */

Switch LCR Of Status(l,2,3,4,5);

/.’.
®

LCR=1: illegal character,

LCR=2: blank,

LCR=3: digit,

LCR=4: letter,

LCR=5: special symbolic character */

M Of Status(0

/*

02 Definition

#1 Stage MAIN;

M=0:

RRERX

]
M~ N

»1,2,3,4)3

SA is empty,

SA holds unsigned integer,
SA holds identifier,

SA holds operator,

error skip */

/* Initialization & synchronization */

End MAIN;
#2 Stage NEXTCHAR;

Block

CHV:=IN(I); II:=I; I:=I+1;

Endblock;
FEnd NEXTCHAR;

#3 Stage LOOKUPLEGAL;

Block

LCR:=LEGAL(CHV); III:=I1; CH:=CHV;

Endblock;
End LOOKUPLEGAL;

21

##4 Stage SCAN;

Case M Of
M=0: /* string register SA 1is empty */

1:

2:

3:

Case LCR 0Of
LCR=1: Block ERR:=0++III; Exec ERRORHANDLER; Endblock;
LCR=2: Do Nothing;
LCR=3: Block M:=1; SA:=CH; IV:=ITI; Endblock;
LCR=4: Block M:=2; SA:=CH; IV:=III; Endblock;
LCR=5: Block M:=3; SA:=CH; IV:=III; Endblock;
Endcase;
/* string register SA has unsigned integer */
Case LCR Of
LCR=1: Block ,
ERR:=0++I1I1; Exec ERRORHANDLER;
Exec WRITETOKEN; SA:=empty; M:=0;
Endblock;
LCR=2: Block Exec WRITETOKEN; SA:=empty; M:=0; Endblock;
LCR=3: Block SA:=+ CH; Endblock;
LCR=4: Block
ERR:=1++I11; Exec ERRORHANDLER;
Exec WRITETOKEN; SA:=empty; M:=4
Endblock;
LCR=5: Block
Exec WRITETOKEN; SA:=CH; M:=3; IV:=I1T1;
Endblock;
Endcase;
/* identifier */
Case LCR Of
LCR=1: Block
ERR:=0++I1T; Exec ERRORHANDLER;
Exec WRITETOKEN; SA:=empty; M:=0;
Endblock;
LCR=2: Block Exec WRITETOKEN; SA:=empty; M:=0; Endblock;
LCR=3: Block SA:=+CH; Endblock;
LCR=4: Block SA:=+CH; Endblock;
LCR=5: Block
Exec WRITETOKEN; SA:=CH; M:=3; IV:=iii;
Endblock;
Endcase;
/* operator */
Case LCR Of
LCR=1: Block
ERR:=0++I1I1; Exec ERRORHANDLER;
Exec WRITETOKEN; SA:=empty; M:=0;
Endblock;
LCR=2: Block Exec WRITETOKEN; SA:=empty; M:=0; Endblock;
LCR=3: Block
Exec WRITETOKEN; SA:=CH; M:=1; IV:=III1;
Endblock;
LCR=4: Block
Exec WRITETOKEN; SA:=CH; M:=2; IV:=I1I;
Endblock;

22

LCR=5: If SA='*' And CH='#®' Or SA=':' And CH='='
Then SA:=+CH;
Else Block
Exec WRITETOKEN; SA:=CH; IV:=III;
Endblock;
Endif;
Endcase;
=4 [* error skip */
Case LCR Of

LCR=1: Block
ERR:=0++III; Exec ERRORHANDLER; SA:=empty; M:=0;
Endblock;
LCR=2: Block SA:=empty; M:=0; Endblock; ,
LCR=3: Block SA:=CH; M:=1; IV:=III; Endblock;
LCR=4: Do Nothing;
LCR=5: Block SA:=CH; M:=3; IV:=III; Endblock;
Endcase;
Fndcase;

#5 Stage LOOKUPOPERATOR;
Block TOKENR:=0PERATOR(SA); V:=IV; Endblock;
End LOOKUPOPERATOR;
#6 Stage WRITETOKEN;
Block
* TOKEN (J) :=TOKENR++V; J:=J+1;
Endblocks;
End WRITETOKEN;

#7 Stage ERRORHANDLER;

Block
ERROR(Q) :=ERR; Q:=Q+1;
Endblock;
End ERROR;

APFENDIX

$TRANSLATE

XMAIN

B.

23

CoL Coding of the Pirelined Lemxical Scanmer

COMMENT XX A Firelined Lewxical Scanner

REGISTER>»

Ll e e o T e o P R e S O N T I T L Ty ey Wy WPy

MEMORY »
1
1

1

DECODER»

1

TERMINAL>»

bt b bt ()

TERMINAL »

1
1

IC0-4)y $rpoints to buffer IN

II¢(0-6)» $ro0sition of charscter in CHV

ITI(0-6)y $rosition of character in CH

IV(0-6)>» $rosition of the first char of the token
V(0-6)y $head rosition of tokem in TOKENR

J(0-4) $roints to the memory TOKEN

Q(0-6) $r0ints to the memory ERROR

M(0-2)>» $state of the shift redgister CO-Cé6s 0QV

G $control reg for 3rd and 4th stade

NEXTCH > $control reg for 1st and 2nd stasge
NEXCH2» $control NEXTCH

WTy $control reg for Sth stade

LCR(O-=2)» $holds class of character in CH

CHVY(0-5)y $holds character (between 1st and 2nd stade)
CH(O0-3)» $holds character (between 2nd and 3rd stade)
COC0-3)y $1st redister of the shift register
C1(0-5)» $2nd redgister of the shift redister
C2¢(0-5)» $3rd redgister of the shift redister
C3(0-5)» $4th redister of the shift redister
C4(0-5)» $5th redister of the shift redgister
C5¢(0-9)» $6th redister of the shift register
Cé6ECO0-5)y $7th register of the shift redister

0OV, $overflow indicator of the shift redgister

TOKENR(0-4)

INCI)=IN(O-177+0-5)»
TOREN(J)=TOKEN(0-3150-13)»
ERROR(Q)=ERRDR(Q0~177,0-14)
LEGAL (CHV)=LEGAL(0-775,0-2)

LC(1-5)=LCRy $class
MX(0—4)=M $state
MOE=MX(0)y $sihift
MON=MX (1) $shift
MOI=MX{(2)» $shift

$holds token code

$source Frogram memory
$token memory

$error information
scharacter class table

of character
of the shift redister

redister is emrty (CO-C620V)
redister holds mumeric
redister holds identifier

or multi-letter orerator

MDO=MX(3) »
MOR=MX(4) »
MONI=MX(1)+MX(2) "
MONIO=MX(1)+MX(2)+MX(3)

$shift

LCILL=LC(1)>»
LCBLK=LC(2)
LCNUM=LC(3)»

$CH is
$CH is
$CH is

redgister holds sumbolic orerstor

$skir mode (error handling)

an illedgal charascter
a8 blank character
3 numeric character

TERMINALy

TERMINAL »

Pt et e b

LCALP=LC(4)
LCSYR=LC (D)

$CH is an alrhabetic character
$CH is a2 symbolic character

OFTWO=CO.EQ.’ ! XCH.EQ,’="+CO.EQ. "X XCH.EQ. X’ $/1=" OR ‘%3

WTCTL=LCILLXMDNIO+
LCELKXMONIO+
LCNUMXMDO+
LCALFXMDO+
LCSYRBXMIDNI+

$error/illedgal character
$serarator/blank

$numeric rreceding by orerator
$alrhasbetic rrecedind bw orersor
$rmum or id followed by sumbolice char

LCSYRBXMOOXOFTWO $two char orerator ($= or ¥%)

COMMENT PLA Definition

TERMINAL »

R e e

g

TERMINAL

T T e e e et el ol el Rl)

ZC1=C1.EQ+77> $Cl is emrty

ZC2=C2.EQ.77» $C2 is empty

ZC3=C3.EQ.77>» $C3 is emrty

ZCA=C4.,EQ.77>» $C4 is emrty

ZCS=CH.EQ.77» $CH is emptw

ZC6=Co.EQ.77 >y $C6 is emrty
ZC546=Z2CSXZCO6X0V 7y $CS5yC6,0V are emprty
ZCA6=ZCAXZC56y $C4sC5+C6,0V are emrtu
ZC36=ZC3XZCAb $C3yCAsCS9L6s0V Bre emrty
ZC26=ZC2XZC36y $CRrC39CALCSyLHO0V are emriy
ZC16=ZC1XZC246 $C1+C2sC39C4+CS5»C60V 210 empty

Definition of AND terms

Y1=CO.EQ.’="%ZC164y
Y2=C0.EQ.‘#/XZC16»
Y3=CO.EQ.’+/%ZC16»
Y4=CO.EQ.‘~‘%ZC1é»
YS=CO.EQ. ‘%’ *%ZC16
Y6=CO.EQ./'¥ZC16s
Y7=CO.EQ.’ (' XZC1lés
Y10=CO.EQ.’)’ %XZC16s
Y11=CO.EQ.’y ' ¥ZC1lbs
Y12=COEQ.’ 5’ ¥XZC16s

"Y13=CO.EQ.’ ' %ZC14>»

Y14=CO.EQ. " $'%XZC14>»
Y15=CO.,EQ.’ ‘XZC1l6>»

T4

ol
I+I

, 4

I*l
I/I
I(l
I)I

NN ~
e ee wr e
LY ~

R R AR

2 4

Y16=CO.EQ. X’ ¥C1.EQ. X XZC264> LIS ¢ 3
Y17=CO.EQ.’="XC1.EQ,’ " %ZC26,» 4 ‘1=’
Y20=CO.EQ.’0’%C1.EQ.'T'¥C2.EQ.’0’*%C3.EQ. G’ %XZC46» $°GOTO’

¥Y21=CO0.EQ.'F'XC1.EQ. I "%ZC24» $7IF

Y22=CO.EQ.’N XCL.EQ, "E’X¥C2,EQ."H’¥C3.EQ. " T’ XZC46» ' THEN"
Y23=CO0.EQ.‘E‘%C1.EQ.,‘S/XC2.EQ. 'L"%C3.EQ.‘E'XZC46y $'ELSE’
Y24=CO0.EQ.’N‘¥C1.EQ.’ I/ %C2,EQ.'G'XC3.EQ."E"X '

C4.EQ."B’'XZCS&» $ BEGIN'
Y25=CO.EQ. "D’%C1.EQ. "N’/XC2.EQ. "E’XZC36s - $END”
Y26=CO,EQ.,"R’*XC1,EQ.‘Evy¥C2:EQ. "G’ %C3.EQ."E“X

C4.EQ.'T'XCS.EQ,'N'XC6.EQ. “I"%0V" % INTEGE

Y27=C0.EQ.“D’%C1.EQ.‘A‘X¥C2.EQ."E'XC3.EQ.“R‘XZC46» $'READ’

25

1 Y30=CO.EQ, "E“¥C1.EQ.,’'T'XC2.EQ. "I '"%C3.EQ. ‘R’ %
1 CA.,EQ. ‘W' XZCS56»
C Definition of OR terms

TERMINALy TRKO=Y28+Y21+Y224Y23+YR244Y25+Y26+Y274+Y30,

R

TERMINAL > ZTK=(TKO+TK1+TK2+TK3+TK4)’+0V
c 31INUMERIC, 32!IDENTIFIER

TERMINAL Y TRNYO=TKO+ZTKX (MON+MDI) »
TRNY1=TRKI1+ZTK% (MON+MDI) »
TRNY2=TK2»
TRNY3=TK3+ZTKXMLIs
TRNY4=TRK4+ZTKXMIN

Pt et et et

COMMENT Block Defimition

RLOCK » CLEAR(CO=77+C1=77sC2=77s

1 C3=77yCA=77505=77y

1 Cé6=77+0U=0)y

1 INI(CO=CH»C1=77yC2=77»

1 C3=77+C4=77yCS5=77>

1 Cé6=77s0VU=0sIVU=ITI)>

1 SHIFT(CO=CH»C1=C0sC2=C1yC3=C2y
1 CA4=C3yLS5=CA4yC6=CS>»

1 IF(C6.NE.77) THENCOVU=1))
SWITCHy START (ON)

CLOCK P

c Initislization

TRI=Y104+Y11+Y12+Y13+Y144Y1S+Y16+Y17+Y30y
TR2=YA+YS+Y6+Y7+Y14+Y 154+ Y164 Y174Y244Y254Y26+Y27
TR3=Y2+Y3+Y6+Y7+Y12hY134+Y164Y174YR2R24Y23+Y26+Y27
TRA=Y1+Y3+YS+Y7+Y114Y134Y15+Y174Y214Y23+Y25+4Y27

$WRITE”

$RIT
$BIT
SRIT
$BIT
$RIT

S W= O

$SHIFT REG HOLDS IDENTIFIER

SRIT

$RIT

SRIT
$RIT
$RIT

HOINHO

OF
oF
oF
OoF
OF

TOKEN
TOKEN
TOKEN
TOKEN
TOKEN

cone
COong
CODE
CODE
CODE

$Clear whole shift
CO-Cé6 amd 0OV

$redgistert

$Set the 1st char in CO»
$a3nd ke®r the location

$of it
$Shift dats and
$check overflow

/START(ON)/ I=0sJ=0yQ=0sM=0+s6=0yWT=0sLCR=0>»

NEXTCH=1» $invoke FETCH ser.
NEXCH2=1,
CHVY=77, $Set emrtw character
CH=77>» ’ $Set emrty character
D0-CLEAR

c Fetch character from memory IN

/NEXTCHXF/ CHU=INC(I)y $15T STAGE

I=I.COUNT.»
II=1»
ITII=II» $2NII STAGE
CH=CHV»

LCR=LEGAL (CHV)»
IF(CHV.EQ. “$‘) THEN(G=1,M=3)

$invoke SCAN seq.

26

/G XP/ CO=CHy> $3RD STAGE
V=111
/GXP/ IF(CHV.EQ.’$%’) THEN(NEXTCH=0)y $terminate FETCH sea.
IF(NEXTCH.EQ,0) THEN(NEXCH2=0)s $turm off G
IF(NEXCH2.EQ.0) THEN(G=0)y ¢sterminate SCAN seq.
TOKENR=TKNYO-TKNY1-TKNY2~TKNY3-TKNY4, $4TH STAGE
V=1V $4TH STAGE
c State tramsition of SCAN
/GXLCILLXMDEXF/ M=0y S$NEXT STATE=MIE
ERROR(Q)=0~V-I1I1» serr code O meamns illegal char
A=Q.COUNT ., »
‘ no-CLEAR
C/GXLCRBLKXMDEXP/ N0 NOTHING
/GXLOCNUMXMDEXF/ M=1y $NEXT STATE=MIN
DO—-INI
/GXL.CALPXMDEXF/ M=2y SNEXT STATE=MDI
DO0~-INI
/GXLCSYMEXMUEXF/ M=3» S$NEXT STATE=MDO
DO-INI
/GXLCILLXMONIOXF/ M=0y SNEXT STATE=MDE WTCTL=1
ERROR(Q)=0~VY-T1II» $err code 0 means illedgal char
A=Q,COUNT.»
NO-CLEAR
/GXLCEBLKXMDNIOXF/ M=0» SNEXT STATE=MIE WTCTL=1
DO0-CLEAR
/GRLCNUMXMONIXF/ DO-SHIFT
/GXLONUMXMDOXF/ M=1y S$NEXT STATE=MION WTCTL=1
, DO-INI
/GXLCALPYXMONXP/ M=4y SNEXT STATE=MIDK
ERROR(Q)=1-V-~I11Iy $err code 1 means seUence eri
D0-CLEAR
/GXLCALFXMDIXP/ Do-SHIFT '
/GXLCALFXMDOXFP/ M=2y SNEXT STATE=MDI WTCTL=1
DO-INI
/GXLCSYRRMONIXF/ M=3» $NEXT STATE=MDO WTCTL=1
DO-INI
/GRLCSYRXMDOXF/ IFCOPTWO) THEN(DO-SHIFT)
ELSE(DO-INI) $WTCTL=1
/GXLCILLXMDKXF/ M=0y $NEXT STATE=MDE
ERROR(Q)=0~-VU-III> $err code 0 means illegal chs
B=Q.COUNT.»
; Lo~-CLEAR
/GXLCBLKXMDOKXF/ M=0y SNEXT STATE=MDE
No-CLEAR
/GXLONUMXMORKXF/ M=1y SNEXT STATE=MION
D0-INI
C/GXLCALPXMIKXF/ DO NOTHING (CONTINUE SKIP)
/GXLCSYRXMOKXF/ M=3» SNEXT STATE=MDO
N0-INI

c Write token into memorwy TOKEN

27

JUT%XF/ TOKEN(J)=TOKENR~-V» $5TH STAGE
d=J. COUNT .
c Sunchronization for WT
/MIOE XWTCTLXGXP/ WT=1

/(MDE " %WTCTLXG) ‘XWTXF/ WT=0
END

$SIMULATE

XOUTFPUT CLOCK(1)=I»IIsyIIIsIVsNEXTCHsVsWT
XOUTFUT CLOCK(1)=GsCHVsCHsLCRsNEXCH2yJy TOKENR
XOUTFRUT CLOCK(1)=C0»C1yC25C35C4+C5»C6

XOUTPUT CLOCK(1)=0V,QrM

XLOAD
LEGAL(QOO=)=3y3s35393s373r37373s4s4y4y4y4y4y $/0123456789ARCIHEF /
LEGAL(20-)=4y4y45454y4y494y454y454y4+s4r4y4y $/GHIJKLMNOFPQRSTUV
LEGAL(40-)=4y45454s5y5:595s595r595+5:5+55 5 $WXYZ=F+-X/()ri %’
LEGAL(60-)=2y1s1lvlslslsisrlvlislslsislolelely $ @7

INC(OOO-)="$REGIN INTEGER SALARYRATE» SALARYJ:"
INC(O35-)=" SALARYRATE:!=50007 SALARY:="
IN(O&1-)="SALARYRATEX12 END% *

XSWITCH 1sSTART=0N
XSIM 125,20

INSTITUTE OF INFORMATION SCIENCES AND ELECTRONICS
UNIVERSITY OF TSUKUBA
SAKURA-MURA, NIIHARI-GUN, IBARAKI 305 JAPAN

REPORT NUMBER
REPORT DOCUMENTATION PAGE ISE-TR-83-33

TITLE

Systematic Design of a Pipelined Lexical Scanner

AUTHOR(S)

Kozo Itano

REPORT DATE NUMBER OF PAGES
April 15, 1983 27
MAIN CATEGORY CR CATEGORIES
Hardware, Register-transfer-level Bl, B5, B6
implementation
KEY WORDS

hardware design methodology, systematic design, hardware logic simulation,
lexical scanner, pipelined architecture

ABSTRACT

A simple lexical scanner for Algol 60 subset was designed for the
demonstration of the hardware design methodology. The lexical scanner was
originally described in Software Design Language (SDL). A top-down approach
was employed; first the equivalent hardware lexical scanner was described
in the high-level hardware design language, and then it was transtlated into
the register transfer level hardware design in Computer Design Language CDL.
Five stages of the pipeline architecture was described in both languages,
and its simulation was also performed on the CDL3 simulator of the UNIVAC
1100 to test the algorithm.

SUPPLEMENTARY NOTES

