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ABSTRACT

This paper discusses rotations and reflections in
three-dimensional (3D) computer graphics as an application of
matrix algebra. We ine two representation theorems in which
a given 3 x 3 real orthogonal matrix L is expressed in terms of
vdirection cosines of the axis of rotation and of the angle of
rotation. It is shown that these representation theorems enables
us to compute the axis of and the angle of rotation that the
given matrix represents, where reflection is combined with
rotation in the case of det L = -1. Several applications of our

method in 3D computer graphics are included.



1. INTRODUCTION

This paper discusses rotations and reflections in three-dimensional
(3D) computer graphics aS an application of matrix algebra. It is well-
known that a 3 x 3 real orthogonal matrix can be constructed that represents
the 3D rotation about a given straight line through the origin by a given
angle; see, e.g., Rogers and Adams [1, Chapter 3].

In this paper we are mainly interested in the converse problem:
given the initial and the final states of a rigid body with é single
fixed point (i.e., the origin), find the 3D rotation of the space
which brings the given initial state of the rigid body to the given
final state of the rigid body; i.e., find the axis'of the rotation
and the angle of the rotation in question. We will give a numerical
method for computing these quantities.

To this end, we first state and prove two representation
theorems (Theorem 1 and Theorem 2) each of which expresses a given
real orthogonal matrix L, depending on det L = 1 or det L = -1, in
terms of the direction cosines of the axis of rotation and the angle
of rotation that the matrix L represents. We agree that the action of
L means the mapping v -~ Lv, where v is a column vector of order 3,
regarded as the position vector emanating from the origin. We will show
that the solution to the stated problem is easily derived from the
representation theorems. We might mention in passing that our main
representation theorems are obtained entirely without geometric
1ntuifion_but in a language of matrix algebra. Applications to 3D

computer graphics is then effected by interpreting the main theorems



in an appropriate geometric language,

As an application of our approach to 3D computer graphics,»we
will state a method for mapping a given right-handed orthonormal set
of vectors existing at a point in a space onto another right-handed
orthonormal set of vectors existing at another point in the space,
using translations and rotations.

We will also show that our matrix algebraic approach applies

to cases in which 3D reflections are combined with 3D rotations.

2. REPRESENTATION THEOREMS

Let L = (Kij
viz., LLT = LTL = I where LT denotes the transpose of L and I denotes

), i, 3 =1, 2, 3, be a 3 x 3 real orthogonal matrix;

the third order identity matrix. We give a representation theorem
for L for each case that det L = 1 and det L = -1.
The first theorem connects a 3D rotation about a straight line

with an orthogonal matrix whose determinant equals one.

Theorem 1. Suppose det L = 1. Then we have the following five
properties:
1° L has the eigenvalue 1.

2° There exists an orthogonal matrix V with det V = 1 such that

1 0 0
(2.1) VLV = | 0 coss -sing
0 sin® cosh



3° Letn = (n1, Nys n3)T denote an unit eigenvector (nTn =1)

associated with the eigenvalue 1 for L. Then L is represented as follows:

(2.2) L = nnT(1 - cosB) + I cose + N sing
where
- N
0 -ng N,
N = ng 0 ol
.-n2 Ny 0 |
or equivalently,
4 2 ‘ . ~
n](l-cose)+cose n]nz(l-cose)-nBSine n]n3(1-cose)+nzsine
(2.3) L= n]nz(l—cose)+n3sine n%(]-cose)+cose | n2n3(1-cose)-n]sine

n]n3(1-cose)—nzsine n2n3(1—cose)+n]sine n§(1-cose)+cose

N

4° If L # I, then the eigenvector associated with the eigenvalue 1

for L can be found among vectors C1s Gy and C3 given by:

~ R " ‘ - T
07772927433 Wty ) 3%
(2.8) ey =1 tqpthyy s € 7|1y Mapaggl s O3 7| Rag*iy
SR 237032 | [Pteetiag

~

whose representation in terms of Ny Ny, Ny and 6 are given by:

(2.5) ¢y = 2(1-cose)n] Nols Cy = 2(1-cose)n2 Nyl, g = 2(1-cose)n3 N,




5° The angle 0 satisfies the following equations;

r

"

22] - Q/"lz 2n35ine

Proof of Theorem 1 will be given in Section 3.

The above theorem states that an orthogonal matrix L with det L =1
performs a 3D rotation about the axis n of rotation by the positive angle 6.
The fact that the straight 1ine specified by vector n is the axis of
rotation may be seen by noting that Ln = n.

The second theorem is for the case det L = -1.

Theorem 2. Suppose det L = -1. Then we have the following five
properties:
1° L has the eigenvalue -1.

2° There exists an orthogonal matrix V with det V = 1 such that

10 0
(2.7) ViLv = | 0 cose -sine
0 sind cosH

3° letn = (n], Ny» n3)T denote a unit eigenvector (nTn =1)
associated with the eigenva]Ue -1 for L. Then L is represented as

follows:

(2.8) L = —nnT(1 + cos®) + I cosé + N siné



where

r 0 N3 N,
N = N, 0 —n1
~—n2 ﬂ-] 0 ]

or equivalently,

(2
-n](1+cose)+cose

—n]n2(1+cose)-n3sine

(2.9)L.=-n1n2(1+cose)+n3sine -n§(1+cose)+cose

[n]n3(]+cose)-nzsine —n2n3(]+cose)+n]sine

—n]n3(1+cose)+n251ne
-n2n3(1+cose)-n]sine

-ng(]+cose)+cose

LN

-~

4° The eigenvector associated with the eigenvalue -1 for L can be

found among vectors C1s G and Cq given by:

(2.]0) C~I = "2112"22]

“231743

~

1-291%2901 233

/
Ly %91

k'223'R32

~

148917299+ 233] 5

/
2137437

L9343

(01227433

whose representation in terms of Nys Nps N3 and 6 are given by:

(2.11) ¢y = 2(]+cose)n]

» Cp = 2(1+cose)n2 no

5° The angle 6 satisfies the following equations:

s Cg = 2(]+cose)n3 Ny




(2]] + 222 + 233 = -] + ZCQSG
22] = 2]2 = 2n351n6

>£]3 = 231 = 2n251n6

The geometric interpretation for L given by (2.8) may be stated
as follows: Let [ denote an orthogonal matrix that represents a 3D
rotation about the axis n of rotation by the positive angle 6. By

Theorem 1 U is given by:
v =-nnT(1 - cosf) + I cosp + N sing .

Now Tet H=1 - ZnnT, which is a Householder transformation [2, p.286].
For any given vector x, Hx gives the mirror image of x relative to the
plane that contains the origin and is perpendicular to vector n;
because of this, H is also called a reflector. A simple calculation

proves that H and U commute (i.e., HU = fH) and that
HY = TH = —nnT(l + cosf) + I cos6 + N sino = L.
Thus matrix L given by (2.8) represents:

(1) a 3D rotation about the axis n of rotation by the positive
angle 8, followed by a 3D reflection through a plane that contains the
origin and is perpendicular to n, or

(2) a 3D reflection through a plane that contains the origin and
is perpendicular to n, followed by a 3D rotation about the axis n of
rotation by the positive angle 6, where the positive angle 0 is

measured about the original direction of n.

—_— 7 —



3. PROOFS OF REPRESENTATION THEOREMS

Properties 1° through 5° in Theorem 1 are proved as follows:

1° We will show that det(L - I) = O:

det(L - 1) = det(L - LLT) = det L - det(I - LT)
= det L - det(I - L) = det(I - L)
= (1) det(L - I) = - det(L - I).

2° Let n be an unit eigenvector associated with the eigenvalue 1

for L. It is possible to find vectors a and b so that:

(1) the triple {n, a, b} forms an orthonormal basis in the
three-dimensional Euclidean space E3, and

(2) the 3 x 3 matrix V = [n, a, b] satisfies det V = 1.

Then,
(3.1) LV =1L [n, a, b] = [Ln, La, Lb].

Since La and Lb are expressed as linear combinations of n, a and b

and Ln = n, (3.1) reduces to:

1T ¢ d 1 ¢ d
LV = [n, a, b]J |0 e f|{=V [0 e f
0 g h| 0 g h

where ¢, d, e, f, g, and h are scalar constants. Because

1 ¢ d

Viv=1]0 e f

0 g h



is an orthogonal matrix, we have ¢ = d = 0 and thus

e f
1 g h

is an orthogonal matrix. Moreover, we have det L1 =1 since

det L, = det(VLV) = det L = 1.

It is well-known that for a 2 x 2 real orthogonal matrix L, with

det L] = 1, there exists 8 such that

cos8 ~sino

sing cosfo
We thus have:

1 0 0
VTLV = 10 cose -sing

0 sing cosf
3% For proving 3°, we need the following lemma.

Lemma 1. Let A = (aij) be an n x n real orthogonal matrix

with det A Then,

1. Let Aij denote the cofactor of aij'

it

843 Aij for any i and j.

(Proof) By the orthogonality of A = (aij)’

On.the other hand,



-1 } o
Al s (gy) = (Agy) = adi

where adj A denotes the adjoint of A, Thus we have:
aj1 = Aji for any 1 and j.
(End of Proof of Lemma 1).

We now prove property 3°. From (2.1) we have:

1 0 0 1 0

0

L=V |0 coss -sing VT = [n,a,b] |0 cose =-sine

0 sing cosH 0 sind
which yields:
(3.2) L= nnT + (aaT + bbT) coso + (baT - abT) sing .

Since V is an orthogonal matrix,

nT
I= VVT = [n, a, b] al |= nnT + aaT + bbT
T .
b J
and thus:
(3.3) aaT +bbl =1 - nnT.

A direct calculation gives:

cose



[bag-aby  byagagh,  byag-ayby

T T _ ‘
(3.4) ba - ab b2a1-a2b] b2a2-a2b2 b2a3—a2b

1

b

b b b

[ P3%17330  P33p-agb,  Dbiag-ashg
r _ N
0 ng n,
=1 n3 0 Nyl o= N
\—n2 Ny 0 )

where the second equality is obtained by applying Lemma 1 to

V=">[n, a, b]; viz.,

[a b,
_ 2 21 _
n, = det ] . = a2b3 - a3b2,
v (23 3] .
- d (a1 by} .
n, =- et ] : = a3 1 - a1b3,
L3 3]
| ra] b]\
ng = det = a]b2 - azb], etc.
a, by

Substitution of (3.3) and (3.4) into (3.2) yields (2.2). Egn. (2.3)
is obtained by expanding (2.2). |

4° Equating the matrix elements Qij with the corresponding elements
of L in (2.3) and using them in (2.4), we find the vectors Cys Cy and Cs

may be expressed in the form of (2.5). Egn. (2.5) proves that each of

C1s Gy and C3 is a scalar multiple of n. It may be verified that

[c],‘cz, cz] = adj(L - I).



5° Eqn. (2.6) is obtained from (2.3) by noting that nTn = 1.

This completes the Proof of Theorem 1.

Remark 1. Representation of L in (2.2) or (2.3) contains vector n
but is independent of vectors a and b that are introduced to form with

given n an orthonormal basis in E3.

Remark 2. Eqn. (2.2) in Property 2° in Theorem 1 is the canonical
form of a real orthogonal matrix L with det L = 1, which is obtained

by applying Schur's theorem [2, p.302].

Theorem 2 can be proved in a similar manner to the case of
Theorem 1, and we will omit the proof. -We just note that the following

Temma is required instead of Lemma 1.

Lemma 2. Let A = (a;:;) be an n x n real orthogonal matrix

— 13
with det A = -1. Let Aij denote the cofactor of aij' Then,
a.. = - A.. for any i and j.

J 1J

(Proof) Similar to the proof of Lemma 1, and is omitted.

4. APPLICATION TO 3D COMPUTER GRAPHICS

This section‘shows how Theorems 1 and 2 are applied to 3D computer
graphics. Some possible situations are stated below in the form of

problem-solution.

Problem 1. Find a real orthogonal matrix L that rotates a rigid

body about a given axis through the origin by the positive angle 9,



where the axis of rotacion is specified by a unit vector n.

Solution: The solution to this problem is well-known as

already stated.

Problem 2. (Converse problem of Problem 1) Suppose we are
given a real orthogonal matrix L with det L = 1. Find the unit vector n
along the axis of the rotation that L represents and the corresponding

positive angle 6 of the rotation.
Solution: - The procedure consists of three steps:

(1) We compute vectors Cys C, and c3 from eqn. (2.4). Among

them choose a vector ¢ for which
lell = max {{leq |l 5 llepll 5 [lesll 3,

where ||a|| denotes a norm of vector a that is defined here as

lall = (a'a)'/%. For this, we note the following two properties;

i) adj(L -~ I) = [c], Cos c3] is symmetric (see (2.4)), and

ii) the multiplicity of the eigenvalue 1 for matrix L (L # I)
is one, and thus any non-zero vector among c], <) and C can be
expressed as a scalar multiple of another non-zero vector in 1> C

and C3> as demonstrated by (2.5).

Because of the above two characteristics, we can find vector ¢
that gives the greatest norm among [|c;|| , [[c,[| and [|c,|| by comparing
the abso]ute}va]ues of elements of any one of vectors 1> € and Cs.
Let c, be taken and Tet ¢ be denoted in an element-wise form as
(c11, Co1s c3])T. An algorithm for finding vector c is stated as

follows:



If |011' = max {IC]1{ ’ ICZ]' » |C3]|}.:
then |[lc. |l = max {[[cqll » lleoll » llegll 3

(2) The unit eigenvector n that represents the axis of rotation

is computed as n = c / ||c|| .

(3) From (2.6) we have:

An algorithm for choosing one of relations for sine in (2.6) is as

follows:

If n

1]

c1,/ ”°1!l’ then sing = (232 - 223) / (Zn]);

n

If n=c, / “gzll; then sind (113 - 23]) / (2n2);

If n=cy/ Hc3||,vthen sing = (221 - %95) / (2n3).

The angle 6 of rotation is obtained by a standard algorithm for

computing arccos x and arcsinx.

Remark 3. The angle 6 of rotation generally falls in the
range of 0 < 8 < 2m. In case of m < 6 < 2m, one can represent the
same rotation by another angle 8'= 21 - 6 of rotation for which

0 <o <m provided the direction of the original axis n of rotation

is reversed, i.e., n is replaced by -n.
‘Problem 3. Suppose we are given:

(1) a right-handed orthonormal set of vectors (u1, Us u3)

with its origin at point 0 in the three-dimensional Euclidean space E3



(2) another right-handed orthonormal set of vectors (v], Vos v3)
that shares the origin with (u], Uy u3).
Find the rotation of the space about a fixed axis that maps

(“1"“2’ u3) onto (v1, Vo s v3).

Solution: Without any loss of generality, we assume that
the point 0 is the origin of a fixed coordinate system in E3; i.e.,
the position vector of point 0 is a zero vector.

Let U and V be orthogonal matrices defined by:
U= lugps uys ugds Vo= [vy, vy, V3]

where det U = det V = 1. Then the real orthogonal matrix L with
det L = 1 can be found such that:

LU=V

or equivalently,

(4.1) L= w'.

By Theorem 1, L represents a rotation of the space about a fixed axis.

Let n = (n], Nos n3)T and 6 denote, respectively, the unit vector

along the axis of rotation and the angle of rotation such that
L represents. The vector n and the angle 6 are determined by the

same procedure as given in Problem 2.



Application. We will provide here an example of direct
application of Problem 3. Suppose we are given right-handed orthonormal
sets of vectors (u], Us s u3) and (v], Voo v3) at two distinct points in

E3

, say P and Q, respectively. Let us assume that a smooth three-
dimensional curve C connects P and Q and is represented parametrically;
->
viz., the end point R(t) of the position vector OR(t) = r(t) =
T
(r(t), ro(t), ra(t))

>
coordinate system in E3 describes the curve C, where OP = r(a) and

,a< t < B, emanating from the origin 0 of a fixed

=
0Q = r(g) (see Figure 1).
Let L = VUT denote the same matrix as that was computed in

Problem 3; viz.,

L=w' =
[ n?(]-cose)+cose n]n2(1-cpse)—n3sine n]n3(1-cose)+n251neT
n1n2(1-cose)+n3sine n%(]-cose)+cose n2n3(1-cose)-n]sine
n]n3(1-cose)-nzsine n2n3(1-cose)+n]sine n%(]-cose)+cose

~

where

U= [ups ups uzl, V= Lvys Vo V31,

det U =det V =1.

We compute n = (n], Ny n3)T and 6 as in Problem 2.



Let 8(t) and L(t) be defined as follows:

S

B8(t) = (t - o)
B —a
L(t) =
[ ny(1-cosT(t))+cosBlt)  nyn,(1-cosB(£))-ngsin(t)  nqny(1-cosB(t)+n,sing(+)
nynp(1-cosB(t))+ngsinB(t)  n5(1-cosB(t))+cosB(t) n,ny(T-cosB(t))-nysind(t)

\n]n3(1-cos§]t))-nzsinEKt) n2n3(1—cos@(t))+n]sin§(t) n%(]-cos@(t))+cos§(t)

It is easily checked that:
(4.2) ©(a) =0, 8(B) = 05 L(a) = I, L(B) = L.

In a commomly used homogeneous coordinate expression (e.g., see Rogers
and Adams [1] where points in space are represented by row vectors
instead of our column vector representation), the transformation Z(t)
that maps (u], Us u3) at point P onto an orthonormal set of vectors
(w](t)J wz(t), w3(t)) with its origin at point R(t) on curve C (see

Figure 1) is described by:

10 0 ir(t)] [ o] [1 00 r(a
01 0 :rz(t) L(t) 10 010 :—rz(oc)
Z(t) = : : !
10 0 T rg(t) ' 0 0 0 1 :-r‘3(oa)
0 0 0 DT ooo0i1|floool 1




and V, be column vectors of order 4 defined by:

Y
If we let wi(t), ; ;

H(e) = [ @)y v @) g e[y e

1 1 1

then we have:

(4.3) Wi(t) = Z(t) ¥, , a<t<s,
where
(4.4) Wi(a) =T, , Wy(8) =¥y, i=1,2,3,

which follows from (4.2). Roughly speaking, (4.3) and (4.4) give the
mapping of the orthonormal set of vectors (u], Uss u3) onto (v1, Vos v3)
by continuous rotation about the fixed direction (n) combined with

the continuous translation of the origin of the orthonormal set of

vectors along the given curve C.

The following problems describe further cases that may happen

in handling 3D reflections combined with 3D rotations.

Problem 4a. Find a real orthogonal matrix L that rotates
a rigid body about the axis n of rotation by the positive angle 6 and
then reflects the rigid body relative to the plane that contains

the origin and is perpendicular to n.

Problem 4b. Find a real orthogonal matrix L that reflects
a rigid body relative to the plane that contains the origin and is
perpendicular to n and then rotates the mirror image of the rigid

body about the axis n of rotation by the positive angle 6.



Solutions to the above problems are obtained in a similar

manner to the cases of Problems 1 and 2, and are omitted here.

5. CONCLUSIONS

We have given a matrix algebraic method suitable for studying
3D rotations and reflections in 3D computer graphics applications.
In particular, a nuherica] method for finding the axis of the rotation
thatla given orthogonal matrix represents and the corresponding angle

of the rotation is given.
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Figure 1.

Orthonormal sets of vectors with their
origins on curve C
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