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ABSTRACT

This paper gives a unified derivation of a class of common
perturbation theorems for matrix eigenvalues. We prove a fundamental
inequality that appears not to have been reported despite its
usefulness. By applying the fundamental inequality to special
cases important in applications, we derive a class of inequalities

that are useful in the localization of matrix eigenvalues.



1. INTRODUCTION

The matrix eigenvalue problem arises in a wide variety of areas
in the physical and social sciences as well as in engineering, most
typically, for example, in the stability analysis of physical systems
that are modeled by linear systems of equations, differential equations,
and so on.

Perturbation theorems on matrix eigenvalues are concerned with
localization of eigenvalues, i.e., to produce regions in the complex
plane in which eigenvalues of a given matrix 1ie. The theorems place
bounds on the variation of the eigenvalues in terms of the variation
of matrix elements. The information given by the theorems is useful
in estimating true eigenvalues from compﬁted or approximate eigenvalues,
in analysing the stability of eigenvalues, and so on.

In this paper we are concerned with a unified derivation of
a class of common perturbation theorems for matrix eigenvalues. To
this end we prove first a basic inequality (see (2.1) below) which
appears to be unreported in the literature. Some of the inequalities
presented in this paper are well-known while others such as (2.1) and

(3.9) appear to be less well-known despite their usefulness.

2. PRELIMINARIES

The vector and matrix norms considered in this paper are only

the usual g-norm (or zq—norm), 1 < q < o (see below for definition).



Some of the facts that'fo11ow may be generalized to a wider class of
norms. However we will not discuss such generalization in this paper.
Instead, we refer the interested reader to [2, Chapter 2].

We begin by reviewing basic facts on matrix norms. For each n =1,
2,°++, let E" denote a real or complex vector space of column vectors
).

of dimension n, x = (x1,..., X The g-norm on E" is defined as follows:

n

1
Fxll g = Cxgl3 #e Ix B9, 1 < g < o,

[ x1l

1]

(1.1) x = w],..,meeEn ={
max |x:|, q = .
i

Let B be any n x p real or complex matrix. Let ||B||q q' denote the
norm of B as a linear transformation from EP to E", where EN 4s given

the g-norm and EP s given the q'-norm, i.e.,
= . p
(1.2) ||B]|q’q. max {||By}|q / [|y[|q. :y#0,yeE"}

[|B||q g will be denoted by simply IlBllq if g = q'. From the definition

of the matrix norm |- || ,» we have

q,q'
) p
(1.3) 118yl q< Bl g q lvllg »veE

Example 1 [4, p.179]. Let B be any n x p matrix. Then

n
I B]ly = max I |bs;| , matrix column-sum norm;
1<ep i=1 M
n
|B]|, = max £ [b,s| , matrix row-sum norm;
I<i<n  j=1 J "

B = max |b:s] -
I[ ||w,] ]ijﬂ ij

1.3.p



Example 2 [3, p.21]. Let 012(8) 3;"3_cp2(B) be the eigenvalues of
BHB, a nonnegative-definite Hermitian p x p matrix, where B is n x p

(p < n). The p numbers 01(8),..., op(B) > 0 are called the singular

values of B. It may be proved that

(B) = max (|| By /Nyl o) = BHB /2 _ B , and
o (8) = max ([l eyll 5 /1yl o) = 118°81, = Il
o(8) = min ([ Byl 5 /|1yl 5) (atways) = || (871 V2
Yy
(provided (BH )'] exists).

Example 3 [3, p.52]. By diag {dys..0s d.} we denote the diagonal

matrix with diagonal elements d],..., dn' Then
(1.4) Hdﬁg{q,“.,ﬁﬁﬂq&.=rwx|%|, 1<q'<qc<o.

In particular, IIIHq q - 1,1 <q' <q<o Inequality (1.4) is
generally false if q' > q. For example, [|I||] w = N, where I is the
n-th order identity matrix (cf. Example 1).

Remark. Let || -|| be a norm on E". It is called an absolute norm

if || x]| = | [x] || for every x in E", where |x| = ([%q]5000s [xn[)T

for x = (Xy5...5 X )T. The norm || -|| is called a monotone norm if

n

Ix] < |yl (i.e., |x1| 5_|y1} » 1 =1,..., n) implies || x|| < || ¥]

The following three conditions are known to be equivalent [2, p.47]:

(i) || +|| is an absolute norm;
(ii) || -|| s a monotone norm;
(i19) || -|| 1is such that for any diagonal matrix D = diag{d,..., d.} >

max (]| Dx|| /|| x|| ) = max [dil.
x#0 i



The g-norm on E" defined earlier is an example of absolute norm on N,

3. FUNDAMENTAL INEQUALITY

Let A, X and Bbenxn, nx pand p x p matrices, respective1y,
where p < n. Let B be an eigenvalue of B but not of A. Then for

1<q, q' <o,

: -1
(2.1) r}r};g(ll Xyl g ZIFyll qn) < 1 (A-B1) (AX-XB)[| ¢ o

For proof, let Bv = Bv, v # 0. Since B is not an eigenvalue of A,

(A-BI)_] exists and we compute

I

I (A-8D) T (A-gD)XV ]| o = || (A-gD) (Ax-18)v |
1 (A-gD) ™ (Ax-38) || ¢ oo -1 Vil g

vl ]

| A

by (1.3). From this (2.1) follows.

4. APPLICATIONS

We now give several app]icatibns of (2.1).

(1) Gerschgorin's Theorem [4, p.302]: Let B = (b,.) be any n x n

iJ
matrix and let B be an eigenvalue such that B # bii’ i=Ts..05 N0,
Let A = diag{byq,..., b} and let X = I. We apply (2.1) with A, X

and B as indicated and q = q' = «. We obtain by Examples 1 and 3,

n

1 <max (£ |bss| / |bss-B]) »

i j=1 11
J#i

hence

131 for some 1.

n

(3.1)  [|bss-8] < z_|b
j=1

j#i



This inequality holds even when B equals some diagonal element of B.
Thus, every eigenvalue of B is contained in at least one of the

Gerschgorin disks for B:

G.i={>\: ])\"b.i.i[i '},iz],..., n.

143

™M S

J
J#i
(2) Diagonalizable case: Let u!

AU = diag{d],..., dn}= D for some
nonsingular matrix U. The di's are the eigenvalues of A. Let X be

any n x p matrix (p < n) whose columns are linearly independent. Let

B be any p x p matrix. Let B be an eigenvalue of B but not of A.

Application of (2.1) to this case gives
-1 -1 .
¢ D" ° U -X ] 1
R P e P Y TP X T PR BT P

where the minimum on the right-hand side is positive since X has

1inearly independent columns, and where

H(D-BI)']|[q = max |d1-8|_] = {min ]di-BI}_1 (by Example 3).
' i i
Hence
(3.2)  min [d;-g| 5_condq(U) -[|AX—XB|{q,q.‘/ min (||Xy||q / |[y||q,),
i , y#0
where condq(U) = |]U||q -||U']||q , the g-condition number of U.

Inequality (3.2) asserts that given any eigenvalue B of B, there is
an eigenvalue of A whose distance from B does not exceed the number

given by the right-hand side of (3.2).

(3) Special case: q =q' = 2. We obtain from (3.2)

(3.3) min [d;-B] < condy(U) -[| AX-XB]| , 1 )'1||2”2 ,
; |



where we used Example 2 and the fact that X has linearly independent

columns so that (XHX)'] exists.

= 2 and A is normal (AMA = aaMy.
1

(4) Special case: q = q

In this case a unitary matrix U (UH = U']) exists such that U™ AU

= diag{dy,..., d } . Since Il 5

1)

-1 -H
1 and || U “2=||U ”2:]

(by Example 2), (3.3) reduces to

Hyy-1y /2
(3.4) min o8] < || ax-usll, | 0F0 7T,
!

(5) Special case: q=49q', n=pand X = 1. We obtain from (3.2)

(3.5) m}n |d;-B] < condq(U) ~[|A—B||q .

This inequality is due to Bauer and Fike [1].

(6) Special case [3, p.53]: p=1, X=x # 0 and B = (B),

where B is a given number. Inequality (3.2) reduces to

(3.6) min |d;-8] < cond (V) -] Ax-8x]] o / [l x] 4 -

Take the case q = 2. For a given A and an approximate eigenvector
x # 0, the natural choice for B is a well-known Rayleigh quotient
xHAx,/xHx which minimizes || Ax-8x|| , as a function of 8. This can be

easily seen from the relation

"

I Ax=8x ]l )2 = [ Ax]] 2 - [xax|? + |z

xHAx + z.

It

where xHx =71 and B



(7) Special case: A = [ B C } , where A is n x n and B is p X p.

F G

1

Let UT'AU = diag {dy,..., d_} for some U. We apply (3.2) with X = (I_, 0)T.

p
We find

B C I I
I A-XB G v = |l ( i G] {0] - [0] “Bllg,q T I Fllg,q

Substitution into (3.2) gives

(3.7) mgn |d;-8] < condq(U) . |]F||q’q. .

j) is an n x n matrix, B = (akk) is

alx1mtrix (p=1) and X = e, = the k-th column of the identity

(8) Special case: A = (ai

matrix of order n. We still assume U_]AU = diag {d],..., dn} for

some U. Then (3.2) gives

i ; Qwl/a o
(3.8) m}n [di-ap ] < condq(U) . {151 las 77, k= 1,000, 0,
i#k '
Taking the transpose we find
(3.8)" min |d-a,, | < cond (U) - {3 lay.|9V/9, Kk =1 n
. .i _i kk = q jz] kJ‘ 2 9. b
j#k

(9) Special case: A = (aij) is normal [2, Problem 6, p.86].

Let U-1AU = diag {a],..., an} with U unitary. Then condz(U) =]

as noted earlier. we take q = 2 in (3.8)' and obtain

n
. 2,1/2
(3.9) m;n Idi'akkl < {jE] Iakjl 1/ s k=1,..., n.
j#k



Thus each disk

123V2 =,

n
D = I = [x-ay | < {jz] Iakj
j#k

contains at least one eigenvalue of A whether Dk overlaps with others

or not. The disks D, are smaller than the usual Gerschgorin disks

for A (see (1) of this section). A stronger version of the Gerschgorin's
theorem [4, p.303] states that if p Gerschgorin disks for A are disjoint
from others, then the union of the p Gershcgorin disks contain

exactly p eigenvalues of A counting multiple eigenvalues according

to their multiplicities.

Example 4. Take a real symmetric (hence, normal) matrix

1 102 1074
A= (102 107" 107®
1074 10% 1078

Then

o
it

L= 00 A1) < 101 x 1078y
_4|

o
1

< 1.0001 x 1072,
o =108 < 1o x 107y

= (A : |A-10

[p]
1}

The disk G, contains G5 but is disjoint from G;. Hence the Gerschgorin's
theorem asserts that there are two eigenvalues of A in GZ' On the other
hand, (3.9) asserts that there is at least one eigenvalue of A in the disk

-4

D, = {A : |A-1078 B2 10,

3 < (1+10



which is properly contained in G3.

5.

CONCLUSION

We have provided a unified approach for deriving a class of

perturbation theorems for matrix eigenvalues. In particular

inequality (3.9) gives a useful complement to the well-known

Gerschgorin's theorem in that the former requires no knowledge on

the connectivity of Gerschgorin disks.
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