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ABSTRACT

This paper gives a method for quantitative evaluation of
reliability parameters of components which are essential
information for probabilistic evaluation of system reliability
and safety. We take a linear operator theoretic approach in
constructing our method for solving a linear system of integral
equations which govern the time-dependent behavior of the

reliability parameters.



1. INTRODUCTION

Probabilistic evaluation of system reliability and safety is
essential for designing and upgrading systems, optimization of
inspection and repair policy, etc. Reliability characteristics
of a system are completely represented in terms of reliability
and maintainability parameters of components whether the system
is coherent [3, p.6] or non-coherent (a typical example of a
non-coherent system can be found in computer-controlled systems
with sensor systems; for example, see [4]). It is necessary to
compute reliability parameters of components with high precision
of accuracy for precise evaluation of system reliability and
safety.

This paper gives a method for quantitative evaluation of
reliability parameters (more explicitly, unconditional failure
and repair intensities) of a system component. We take a linear
operator theoretic approach in solving a linear system of
Volterra integral equations of the second kind which represents
the time-dependent behavior of the reliability parameters of a
component. We give a method for solving the system of integral
equations numerically, where (i) covergence of a numerical
solution of an exact solution, and (ii) convergence of typical

iterative methods are proved.

2. PROBLEM STATEMENT
System unavailability As(t) at a specified time point t and
the expected number of failures WS[O,T] in the prescribed time
interval[0,T] are essential quantities for safety and reliability
evaluation of a system. Methodologies for computing As(t).and
WS[O,T] are established by Vesely[2] for coherent systems[3,p.6]
and by Inagaki and Henley[4] for non-coherent systems. Both of
these theories assume as their fundamental information reliability
parameters w(t) and v(t) of each of system components where
w(t) : unconditional failure intensity at time t;
viz. w(t)dt is the expected number of failures of a
component during time interval (t,t+dt]
v(t) : unconditional repair intensity at time t;
viz. v(t)dt is the expected number of repairs of a
component during time interval (t,t+dt].

It is important to evaluate w(t) and v(t) at high precision of
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accuracy so that Qs(t) and WS[O,T] can be obtained accurately.

The following linear system of integral equations relates
unknown parameters w(t) and v(t) with known parameters f(t) and
g(t) [1,p.193]:

t
w(t) - J f(t-u)v(u)du = £(t)
(1) 0
t
vit) - f g(t-u)w(u)du = 0 ' 0 <t<T
0

where f(t) and g(t) are probability densities for the first
failure time and the repair time of a component, respectively.
It is usually difficult to solve (1) analytically except for the
case in which f(t) and g(t) are probability densities for
exponential distributions. In this paper we study a method for
solving (1) numerically for the case in which f(t) and g(t) are

arbitrary probability densities.

3. OPERATOR EQUATION
We reformulate (1) as an operator equation. Let C[0,T]
denote the Banach space of real-valued continuous functions on

[0,T] with sup-norm

(2) |¢]] = max { |¢(t)] = 0 <t < T}
for ¢ in C[0,T]. Let Ag and Ag denote integral operators defined
as:
t t
(3) A_d = ( f(t-u) ¢ (u)du = J K.(t,u)d(u)du
£ Jo 0 f
t t
(4) A ¢ = f g(t-u)¢(u)du = f K _(t,u)¢(u)du
g 0 0 9
where
f(t-u), t >u
(5) Kf(t,u) =
0 ’ otherwise
g(t"u), tZu
(6) K (t,u) =
' El L o , otherwise

Let (¢,¢)T be a column vector for ¢ and ¥ in C[0,T]. The space

of all such vectors gives a Banach space X with norm defined by:

(7) e Tl = max O llell vl 3



Let L denote an operator on X defined as:

I —Ag 1
(8) L = |

-A I
-2 )
where I denotes an identity operator for which I¢=¢. Then (1)

is written as

(9) Lx = Db }
where x = (w(t),v(t))T (unknown) and b = (f(t),O)T (known) .
Ikebe and Inagaki [5] showed that (1) is well-conditioned (i.e.
the condition number cond(L) = HL[|-HL_1H is not very large)

T T
irrespective of the value of G(T) = fo g(t)dt if F(T) = jo f(t)dt

is not close to 1 and F(T)<« G(T), where the last condition is

usually valid.

4. CONVERGENCE OF AN APPROXIMATE SOLUTION

Let Pn (n=1,2,...) denote a bounded linear projection
(P%1= Pn) of C[0,T]onto ann-dimensional subspace Sn of C[0,T],
where
(10) P 9-0]] >0 (n > )
for every ¢ in C[0,T]. We discretize (1) as:

I -P_A w P £
n £ n n
(11) =
—PnAg I Vn 0

Then we obtain the following lemma.

LEMMA 1. Assume that Pn satisfies (10), then
(a) sup ||P [| < +=
(b) P A0-Ags]| >0 and [lp A 6-A o]l > 0

for every ¢ €C[0,T]

(c) HPnAf—AfH -~ 0 and ||P_A —Ag[[ > 0

ng

(d) (I—PnAanZ-\g)_l exists for sufficiently large n.



For the proof of LEMMA 1, see Appendix 1.
The last property (d) means that (11) is uniquely solvable

for sufficiently large n:

1 1

Wn (I—PnAanAg) PnAf (I—PnAanAf) Pnf
(12) =
p A (I-P AP A ) T (I-p. A P A_) "L 0
Vn n’g n'f'ng ngn'f

Then we have the following theorem of convergence.
THEOREM 1. Suppose that Pn satisfies (10). Then,

wn € Sn' Vn & Sn’
and

W W in C[O0,T]
(13)

v, TV in C[0,T]
where (w,v) is the solution of the original equation (9).

For the proof of THEOREM 1, see Appendix II.
5. MATRIX EQUATION
Let {ei: i=1l,...,n} be a Schauder basis for subspace Sn of
C[0,T]. Then Pn can be written as
= * (R * * —
(14) Pn e e, + + e e, s e; ej Gij
where el*, e, en* are linear functionals defined by
* e * =

(15) e (d))el + + e, (¢)en Pn¢

for any ¢ in C[0,T] (for detail, see [7]).
For every n, n=1,2,--+, we have

n n
(16) w_ = z ciey v, = z d;e;

1t i
where cy and di are real numbers depending on w and v, respectively.
By substituting (14) and (16) to (11), we obtain the following

linear system of equations with 2n unknowns {ci: i=l,---,n} and
{di: i=1l,---,n}. '

n
s * . o * ] = . ee
(17 a) c; jzlei Afej dj e *f, i=1, ,n



il

n
(17b) a, - Z e;*A_e.-c. =0, i=l,-.+,n

1
. g3j 3

In matrix form, (17) can be written as

3\ r *
cl dl el f
) - * .o *2 vee . * ' = “x
ci ei Afel ei Afej ei Afen dj e, f
c . d e *f
nx J \ nJ \ n J
(18) . ) ., . ) \
dy . cq 0
—_ * e o s * * — "
?1 e.*A e e AgeJ e Agen cj ?
d : c 0
\ nJ hd n; \ J

It is easy to solve (18) by the Gaussain elimination method or
by an iterative method.

Suppose we solve (18) iteratively by the point Jacobi method
or by the Gauss-Seidel method. Then we have the following theorem.

THEOREM 2. The point Jacobi method and the Gauss-Seidel method

converges, if
(19) e lI°F(me(m) < 1.

For the proof, see Appendix III.

APPENDIX I: Proof of LEMMA 1.
Property (a) follows from the uniform boundedness theorem [6].
The proof of (b) is obvious from the assumption on P s since
a9 €Clo,T].

Next, since A_. and Ag are completely continuous, the argument in

f
{7, p.470] can be applied and we have (c).
Finally, the relation (c) means that there exists an N > 0

such that

(A.1) 1P 2]l <0 <1 and J[PA |l <8 <1

for all n > N, since ||Af|] = F(T) < 1, ||Ag|| = G(T) < 1 (see Ikebe



and Inagaki [5]), and

e agll = llagl | < llpap = Agll > o
(A.2)
[ leagll = llagli | < lizgag = agll + o
as n~+ ., Therefore,
-1 -1 -1
(A.3) || (T - PnAanAg) | < (1- HPnAanAgll) < (1-aB) ~.

End of proof of LEMMA 1.

APPENDIX II: Proof of THEOREM 1.

First property follows immediately from

wn = PnAfvn + Pnf & Sn

PnAgwh (S Sn

v
n

Next, Suppose that n is sufficiently large and (11) is

solvable, then

_ _ “lo . -1
) [ wo- W ] _ (I Angl £-(I-P AgA ) Pnfl
t v, -V J Ag(I—Ang) f—PnAg(I—PnAanAg) P £
Hence
-1
(A.5) lwy = wil < [l (T-2ga ) "I I £-£]]
+ || (1-A_A )" . (1-p_ A )'lllllp £1|
fg n'fg n
-1
< Il a-aga) M eyl
: ‘ <1 . A Tl .
+ l-pap ) lHP AR A AR 111 (T-2aga,) e g |l

nfnyg

Application of (A.3) , HAfH =F(T), HAgH =G(T), and the inequality

(A.6) 2B Al < I ag-acll I A ]l + llpag-agll llagl
leads to
(A.7) |w -wl| < <1~F<T)G(T))‘l(Hpnf-fn+(1—&8)“lupn_f|} (elenAf—-AfH

+ G“””Pnad*b”))'

Thus wn~>w in C[0,T] as n~+ «.

Similarly, we have



-1
(A..8) [lv -vll < (1-F(T)G(T)) (lepag=a ll [1£1] + (/o £-£]]

-1
+ (1-aB) Hpnf||u[PnAf—AfH4-G(T)HPnAg—AgH))).

Hence v,V in C[0,T] as n+«. End of proof of THEOREM 1.

APPENDIX III: Proof of THEOREM 2.
The linear system of equations (18) g_:==(cl,...,cn)T and

g==(dl,...,dn)T can be rewritten as follows.
I -F c] b_]
n — —
(A. 9) =
-G I d 0
n —

where F and G, are nxn square matrix the (i,j)-th element of

which are e,*A_e. and e,*A e., respectively, and b= (e, *f,...,e *f)?
i "f75 i g7j = 1 n

The point Jacobi method for (A.9) is represented as:

C(k+l) 0 F)
= n
(A.10) = + = B

® L

1c’

(]
——

o

o
N

Let A be an eigenvalue of the point Jacobi matrix B. Then

-A1 F -ATI F
n n

(A. 11) 0 = det = det -1
. G -AI 0 -AI+A GnFn

(—l)ndet(GnFn—AZI)

Let us consider a particular norm of an n-vector x

=(xl,x2,...,xn)Tdefined by ||x|| = Hixiei|]==a norm of ?Xiei as
a function in C[0,T]. Then the matrix norm of Fn and Gn are
given by
IF Il = sup ||F _x]||.
n
Ixll=1 "

It is obvious from (A.1l1l) that

) 2
(A..12) 2 < e F Il < e I HEL L
where
@.13)  IF < llepagll, llegll < liega ]



The first inequality, for example, is proved as follows.

IF || = sup ||F x|| = sup || (P Ag) (Ix e.)]|
" Ix|]=1 © || 2x.e. |l=1 nfl it
i 11
= su llp. AP _¢|| < sup ||P AfCDH = ||p_Aa.|].
leoll- 2 E R loll=2 ™ nf

By (A.11) and (A.13),
a.10)  A] < IR [IVTELTTATT = |le, || /GCDE(D

If the last quantity is less than one, then |A| <1, which means
that the point Jacobi method converges.
For the Gauss-Seidel method, iteration scheme is represented

as

gD _p gty

C(k+l)
n=

Il

g(k+l) G

Then the eigenvalue of the iteration matrix is given by

-AI F )
n

det = 0.
0 - AI+G_F
n n

Hence it follows that the eigenvalues of the iteration matrix of
the Gauss-Seidel methods are exactly the square of those of the

Jacobi method and n zeros:

s legrall < el 2lagliliagl = lle,lI*F(mem.

From the last relation it is clear that the condition (19) is
sufficient for the convergence of the Gauss—Seidel method. End
of proof of THEOREM 2.
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