—— ISE-TR-82-26
FERE |
w113 )

‘

SOFTWARE-FAULT DETECTOR FOR MICROPROCESSORS

by

Kozo Itano

Tetsuo Ida

January 15, 1982

s a0 OB e s
~ INFORMATION SCIENCES AND ELECTRONICS

- UNIVERSITY OF TSUKUBA




Software-fault Detector for Microprocessors
by

K.Itano and T.Ida

* Institute of Information Sciences and Electronics,
University of Tsukuba,
Sakura-mura, Niihari-gun, Ibaraki 305, Japan.

*%* Institute of Physical and Chemical Research,

Hirosawa, Wako-shi, Saitama 351, Japan.

This paper is a revised version of the paper presented at ACM-

SIGSMALL Symposium on Small Systems on QOctober 13-15, 1981.

key words: software reliability, run-time hardware support,
key-Llock memory protection, incremental protection

code, array bound checker, program module protection.



Abstract:

For the realization of the means to develop more reliable
software for microcomputers especially in real time
environments, we design a hardware tool called "software-fault
detector” which detects software faults such as misaccess to an
element beyond the range of an array. The implementation of
the mechanism for such address range checks 1is generally
difficult in microprocessor environment, since internal
registers are not readily wvisible to wexternal logics. We
introduce an "incremental” key-lock protection scheme into
fixed microcomputer architecture INTEL 8080 because of its
popularity and simplicity. In this scheme, a "lock” is a
protection code associated with the storage cell, and a "key”
is associated with access capability such as address. In each
memory access to a cell a check is made whether a key matched
against the Llock of the addressed cell. In this paper, we
present the detagts of the scheme and its analysis. Further,
we present an actual hardware design of the software fault
detector. OQur design methodology is to realize a detector by
the use of identical microprocessor 8080s, as an independent
one-board module which <can be connected to the memory bus of

the host system.



1. Motivation

Recent LSI technology has improved the hardware —cost
performance of microcomputers. Increased execution speed and
memory size ofvcurrent microcomputers invite many sofisticated
applications., As a result we are often faced with the
situations wherg we have to develop fairly large and complex
software on site (in a possibly short period of time). It is
urged to provide adequate hardware tools to support on site
software development and moreover to implement reliable
software, especially in somé applications where microprocessors

are used in real time environments.

We examined the means to make microprocessor softwaEe more
reliable and in this paper present a practical solution to one
of the wessential difficulties of software developments. We
observe that common software faults [3,4] are caused by
erroneous accesses such as 1) misuse of undefined variables, 2)
misaccess to an element beyond the range of an array and 3)
erroneous jumps. The theme of our paper is 'to prevent these

kinds of access violation errors.

Range <check of arrays may be performed by the use of software
[2] , but it may be impractical or even impossible to keep such
check codes in production programs such as of real time process

control.



The implementation of the mechanism for address range check 1is
difficult in microprocessor environment, since dinternal
registers are not readily visible to external Llogics. Page or
segmentwize memory protection mechanism performed in conjunc-
tion with address translation which. is employed in Llarge
computers (and also some recent 16 bit micro computers with
large address space) is incapable of protecting user—-defined
data structures, such as arrays, stacks and procedures, because
these data structures, large or small, are not necessarily

allocated fixed page size.

We introduce an "incremental” key-lock protection scheme into a
microprocessor architecture. As our design target we selected
INTEL 8080 microprocessor because of its popularity in

industrial applications. OQur principal design methodology is

(1) to réalize a detector using a microprocessor identical
to the host processor,

(2) to realize a detector as an independent one-board
module which could be connected to the memory bus of
the host micropocessor system, and

(3) to realize a detector by which software of the

host system is as Little affected as possible.

2.Key-lock protection scheme

2.1 Basic concept of key-lock protection



A "lock” is a protection pode associated with the storage cell
and a "key” is associated with access capability, i.e. address.
The <concept of key-lock to protect memory blocks introduced to
large computer systems is extended to the storage cell level
concept, i.e. to specific data cells such as constants,

variables, arrays, and strings.

First, for simplicity, assume that every consecutive storage
have unique protection codes on the whole storage. In making
access to such storage cell whose address is "a”, the CPU
should present the key together with the memory address "a”,
If the key matches with the lock, we know the access is

correct.

In order to present such a key in each memory access,FCPU
should obtain the key associated with the contents of the
storage, if the content is an address. To realize the scheme
we need a special memory structure in which each storage cell
contains two fields; information field, Llock field. The
information field is subdivided into data field and key fields.
The key field is significant only when address is stored in the

data field.

Since a lock is ;et at the time when the storage is allocated,
the Llock field cannot be modified by the non-priviledged
programs but is only modified by the storage allocator. On the
other hand, since the "key” is associated with the address, the

key is loaded 1into the CPU register and is stored into the

-5-



storage together with address.
2.2 Uniform protection code

First we consider assigning the same protection code to the
Locks of every cells belonging to the single consecutive area.
Hence, different areas have unique different protection codes.
A general principle of storage access operation is (cf. Figure

1(13):

(1) CPU has the head address "a” together with key "k”
to the area A as (a, k),

(2) and the CPU calcultates real address (a+i, k) by
indexing "i",

(3) then, CPU makes access to the cell(a+i) and
simultaneously checks whether k equals to the

protection code of the cell(a+i).

When there are N different areas, we need Log N bits of protec-
tion codes to distinguish the areas uniquely. If there is not
sufficient memory bits for the protection codes, complete
protection cannot be done. However, the probability of
detecting erroneous access is shown to be very high even with
Limited number of bits.

With k bits in handLing’N areas, the probabilities of error

detection q is given by the following formula [1] :



1 - ===
k
2

k

g = ——-———-—---—-— - where N > 2
: 1
1_._._._
N

k

and g =1 where N < 2 .

Probabilities of typical cases are given in table 1.
2.3 Incremental protection code

Although the wuniform protection code fs very simple to
implement, construction of the hardware based on the unifofm
protection code is difficult on microprocessor. To be
concrete, to attach auxiliary oprocessors which operate
independently from the host CPU undef different program
control, but yet <check the detailed behavior (in particular
memory accesses) of the host CPU is difficult to realize,
because dinternal Llogic and states of the host CPU is not
visible to external world. Hence, we develop é more suitable
schéme for the detector which is implemented by microprocessors
identical to the host processor as described Llater. We
transformed the scheme into a ﬁompatibte one using

"incremental” protection codes.

In handling M cells of area A whose head address is "a", we

assign protection codes to the locks of each cells as:



lLock of cell(a+j) = k + j,
for 0 £ j £ M-1,

where k is a base protection code for area A.

The term "incremental” 1is named after the property that the
incrementally increased protection <codes are assigned to the
contiguos <cells in this way. The essential feature of the
incremental protection codes is that the increment of the key
is the same as the increment of the address, and we can perform
the equivalent checks to the one by the uniform protection
codes., A general principle of storage access operations are

(cf. Figure 1(2)):

(1) CPU has the head address "a'” together with
head key "k to area A as: (a, k),
(2) and CPU calculates the real address and the real key
by index "”i"” as (a+i, (k+i modulo K)),
where K is defined later,
(3 theﬁ makes access to the cell(a+i), and checks
whether (k+i modulo K) equals to the protection

code of the cell(a+i).

We note that fn the case of the incremental protection codes we
cannot distinguish areas simply by assigning different values
to the base protection codes to each area. For example, the
areas A1 and A2 in Figure 2(1) cannot be distinguished. We

analyze the conditions for detection more closely.



On any two different areas A and B, "a” and "b"” are the head

addresses of areas A and B, and "L ” and "L ” are the base
a b

protection codes assigned to the head cells of areas A and B.

When N diffrent areas:

A,A, ..., A

exist on the storage in the same time, the condition of error

detection is given as:

L # (L + (a - a ) modulo K),
i j i j

where a is the physical head address of the area A ,
i o

and L is the protection code assigned to the head
i

cell of the area A .
.i

The sufficient condition for the complete detection is K=N.

Although a is fixed when the area 1is allocated, we can
i

determine L (0=Zi<N-1) systematically as follows:
]
_9_



1 First, choose L properly.
0

(2) Compute L as:
i i

L = ((a - a ) + L + m) modulo K,
i i i-1 i-1

where 1<i<N-1 and m is relatively prime to K.

Most simple ”"m” is 1, and we may rewrite L as:
i

L = (¢a + i) + (L - a )) modulo K.
i i 0 0
This relation gives a simple systematic method generating base
protection codes for unique dJdentification of all areas as

shown in Figure 2(2).

Both the incremental protection code and the uniform protection
code require the same size of code fields to uniquely didentify
the areas. Therefore, the power of error detection on both
schemes are the same. In the case that the number of bits for
the key-lock memory dis Llimited and the relation NZK is not
satisfied, the oprobabilities of error detection is also the
same. The incremental protection code scheme can be
implemented with much difficulty by multiple processors as is
shown later, because the scheme is based on the asﬁumptﬁon that
programs running 1in the host system can be tightly coupled to
the control programs for auxiliary processors which manipulate

keys and lLocks. We take advantage of the fact that mostly the

-10-



same program can be obeyed by the host and auxiliary

processors alike.
2.4 Program module protection

Program modules such as procedures can be considered as a kind
of consecutive storage areas. If we assign protection codes to
the _Locks associated with the instrucfion words of such
modules, the key-lock protection mechanism can also work in the
instruction fetch cycles in the same way as the data
protection. Keys are stored in the key memory associated with
address relating to the jump and call instructions shown in
Figure 5. These keys are loaded into the program counter of
the key processor on the execution of such jump and call

instructions.
3. Hardware organization of the detector

Figure 3 shows a modular software-fault detector connected to
the address bus of the host system. The detector consists of
two microprocessors, auxiliary functional Logics and three

memories: lLock memory, key memory and flag memory.

ALl these three memories are realized as independent banks, and
can be addressed in parallel with the main memory by the host
processor. Key and lock memories are used to hold the keys and
the protection codeﬁ respectively, and the flag memory is used

to hold a single identification bit which specifies whether the

-11-



associated data of the main -memory is address. We use two
identical microprocessor 8080s as a key processor and a flag
processor respectively, and outside of the microprocessor a
comparator is provided for high speed checking of the key and
the protection code. The data Lines of these processors are
connected to the specific memories through a multiplexer,
because the instruction opcodes are supplied directly from the

main memory during the fetch cycle of the host processor.

The three microprocessors (main, key and flag) should be
synchronized by the same clock system, and the same instruction
opcode (the first byte of the instruction) should be given at
the same time. Although most instructions are sent to these
three microprocessors, some special instructions are mapped
into harmless ones such as NOPs for the flag processor.
Therefore, the execution time of such a processor may differ
from the others. In order to synchronize such processors,
"wait” states are inserted in the M1 cycle (the first instruc-

tion fetch cycle) by controlling the memory ready status.

The wuse of the identical microprocessors 1is essential in
modular design of hardware, because the processors have the
same registers, instruction decoders and execution timing
controls in their own LSI chips. Hence, these LSI chips can

make our design of hardware simple and compact.

4 . Principles of operations

-12-



4.1 Basic operations

(1) Opcode fetch cycle

The first action of instruction execution is the opcode fetch.
At this fetch <c¢ycle, the following operations <a-d> are

performed in paral[el:

<a> The host processor outputs the contects of the program
counter to its own address lines, and all the four
memory banks are accessed by this same address
simultaneously.

<b> The host processor reads a byte of data (opcode) from
the main memory.

<c> The key processor outputs the contects of its 6wn program
counter (procedure-wise key) to its own address lines,
and the comparator checks the equality between this
address and the data (protection code)
read from the lLock memory. If an error is detected
during the comparison, an interrupt occurs to the
host processor.

<d> The key processor reads the same byte of data (opcode)
from the main memory; during this cycle, data bus of the
key processor is switched to the data Llines of the

main memory.

(2) The other cycles

-13-



The other cycles of the execution may be either instruction
operand fetch cycle or execution cycle. In these cycles, the

following operations <a-d> are performed in parallel:

<a> The host processor executes the opcode; if necessary it may
access to all the four memories by the same address which
is the following: the program counter, registers, or
internal working address register,

<b> The host processor reads or writes the data from or to the
main memory if necessary.

<c> The key processor executes the same opcode as the host
processor; it outputs the corresponded key to its address
lines. Then, the comparator checks the equality in the
same way as the previous case.

<d> The other actions of this key processor to the data depend
upon whether the content is a key or not. In the case that
the data is a key, the key processor reads or writes the
key from or to the key memory.
Otherwise, in the case of read operation the key processor
reads data from the main memory (as described in Llater
example), and in the case of write operation it writes
nothing to the key or main memory except that the operation
is performed to the stack area. The decision whether
the content is a key or not is made by the f&ag processor

and the flag memory.

(3 Incrementation of the keys

-14~



Once the address is Lloaded into one of the registers of the
host processor, address arithmetic operations such as
increments or index additions are usually performed on such
addresses. In parallel with such operations, the key processor
performs the same operation on the corresponded keys in order
to retain the <consistency between the key and the address.
This is simply done by the execution of the same instruction.
The incremental protection code is designed to match with such

calculations of keys.

(4) Invalid key operations

In our scheme, arithmetic operations on addresses are
prohibited other than ati or ita where a is address and i is
integer. (Address should be transformed into integér by a -
address '0', if general arithmetic operations on addresses are
required.) The flag processor checks whether the invalid opera-

tion was performed on the address.

(5 Stack operations

Although the values in the key processor should not be stored
into key. memory usually, there is one exception. We have to
save both key and value onto the stack in the case of stack

cperations such as PUSH.

4.2 Examples of the basic operations

-15-



(1) Simple reference of an array element

First, consider that CPU loads the contects of the second byte
of the array AA into A-register. The program may be written as

P1:

LXI H,AA | LXI H,base key of AA
INX H | INX H
MOV A,M | MOV ALM

(i) host processor (ii) key processor

Program P1. Reference of the second element of array AA

In this case, when the host processor executes the instructions
as program P1(i), the key processor executes the instruction as
program P1(ii) in parallel. However, we note that the program
P1¢(ii) does not exists explicitly on the memory. On the third
step of this program, the key processor would present the
contents of its own HL register to the address lines. This is
the key to be compared with the lock of the second byte of the
array AA. An example of object codes for the program Pl is

shown in Figure 4.

2) Indexed access

-16-



In the program P2, the CPU loads the contents of the fourth
byte of array AA into A-register. But the value 3 is given in
the DE register as as index. If we could not Load this value 3
into the DE register of the key processor at the second step,
the key processor could not produce a broper key in the later
memory access. Therefore, we load value 3 into the DE register
of the key processor at step 2. To perform this, the value (x
in the program P2(ii)) must be transfered from the main memory
data bus to the key processor data bus in the proper timing.
This switching is done by the contents of flag memory; that is,
the data bus is connected to main system in the case that the
flag dindicates '"not address’”, and connected to the key memory
in the <case the flag indicates "address”. Thus, keys and
values are mixed in the key processor. A flag processor is

used to prevent this confusion.

LXI H,AA | LXI H,base key of AA | LXI H,address flag

LXI D,3 I LXI D,3 (%) | LXI D,value flag

DAD D | DAD D | DAD D

MOV A,M | MOV A,M | MOV A,M )
(i) host (ii) key processor (iii) flag processor

processor

Program P2. Reference by index access

-17-



(3) Programming restriction on parameter passing

In our scheme, we <can pass the key of the parameter to the
called subroutine by the wuse of registers as parameter.
However, in the <case the parameter address is Passed by the
program counter, mostly by return address, with 8080
microprocessor we have no mean to pass the proper key of those
parameter area to the subroutine, even when we assign the
different protection <codes to such parameter area. There are

two choices for this case?

(i) We restrict the programming technique or code generation
convention, and we pass the parameter address through a
register as shown in Figure S.

(ii) Or, we abandon the runtime check; that is, we do not

distinguish the parameter area from the instruction space.

However, the first strategy is to be preferred to improve the

software reliability.

-18-



5. Concluding remarks

We designed the detector based on the INTEL 8080 microprocessor
as a hardware tool to improve the software reliability, and
further to increase software cost performance. Qur detector
reqiures additional hardware resources such as processor chips
and extra memories. However, the ocost would be minimal,
considering the fact that the «cost of software development
occupies Llarge part of the total system development cost,

especially in the case of a dedicated embedded system.

In our scheme other addifionél hardware will make further
protection possible,. For example, an additional one bit flag
memory to each memory cell can detect the illegal reference of
undefined values of a variable [7] . If we apply the bound
checking mechanism to Llimit the range of pointer (address
variable), we could incorpbrate a more compiex range checking
including subrange Limitation. Further, a mechanism which can
monitor dynamic behavior of the program [5,8,9] would
profitably be dincorporated as hardware tools for the realiza-

tion of the powerful debugging environments.

-19-



References:

(1]

(2]

[3]

(4]

[5]

[é]

(7]

(8]

(9]

K. Itano and T. lda,
Hardware array bound checker on tagged architecture,
ISE-TR-80-16, University of Tsukuba (1980).

N. Suzuki and K. Ishihata,

Implemantation of array bound checker,
Proc. of 4th ACM Symposium on Principles of
Programming Languages (1977).

G.J. Myers, Advances in computer architecture,
John Wiley and Sons (1978).

G.J. Myers, The art of software testing,
John Wiley and Sons (1978).

L.G. Stucki, New directions in automated tools for
improving software quality,

in 'Current trends in programming methodology’',
Vol. 2, Program Validation,

Prentice Hall, (1977), 80-111.

C.V. Ramamoorthy, R.E. Meeker, and J. Tunner,
Design and construction of an automated software
evaluation system,

IEEE Symposium on computer software reliability,
New York, (1973), 28-37.

J. R. Ehrman, System design, machine architecture,
and debugging, SIGPLAN Notices, 8(1972), 8-23.

J. R. Kane and S. S. Yau, Concurrent software
fault detection,
IEEE trans. Software Engineering, SE-1, 1(1975), 87-99.

H.J. Saal and L.J. Shuster,

On measuring computer systems by microprogramming,
Microprogrammin and Systems architecture:

Infotech State of the art reports, Berksire, England:
Infotech (1975), 473-489.

-20-



Figure captions:

Figure 1. Basic key-lock protection scheme.
Figure 2. Incremental protection codes
with two bit Llock field.
Figure 3. Hardware organization of the modular
‘ software-fault detector.
Figure 4. An example of object codes of program P1.
Figure 5. Procedurewise protection scheme

and parameter passing.

-21-



1 2 3 4 8

20 0.526 | 0.789 | 0.921 | 0.987 1

50 0.510 | 0.765 | 0.893 | 0.957 | 1

100 0.505 0.758 | 0.884 | 0.947 1

200 0.503 0.754 | 0.879 0.942 1

500 0.501 | 0.752 0.877 0.939 0.998

00 0.500 | 0.750 | 0.875 | 0.938 | 0.996
k = number of bits of protection code
N = number of areas

Table 1. Probabilities of error detection




address 1lock cell

I
(a+i, k) [
a k cell (0)
a+l: k cell (1)
a+2: k cell(2)
area A
ati: k cell (i)
____,,J—-——-——~~\q
(1) Uniform protection code
N,
(a+i,k+i)
a k cell (0)
atl: k+1| cell (1)
a+2: k+2 | cell(2)
. ’ area A
at+i: k+i| cell(i)
T

(2) Incremental protection code

Figure 1. Basic key-lock protection scheme.



address lock cell lock cell

15: [0=0+0 | A0(0) | ————[ 3=15+0 | A0(0)

16: | 1=0+41 | A0(1) | ————[ 0=15+1 | A0(1)|] area AO

17: [[2=042 | A0(2) | ————[ 1=15+2 | A0(2)

18: [ 1=140 | A1(0) | ————] 3=18+1 | a1(0)

19: [ 22141 | AL(1) |————[0=18+2 | AL (D

20: 32132 [ Aal(2) |————[1=18+3 | a1(2)] ) 3Fe2 AL

21: | 0=143 | A1(3) | —— ——| 2=18+4 | AL(3)

22: [[2=240 | A2(0) | ————[0=22+2 | A2(0) ]\ ,..n a2

23: [ 3=241 | A2(1) | —— ——[ 1=22+3 | A2(D)

2: | 3=3+0 | A3(0) | — ———[ 3=24+3 | A3(0) 3

25: [0=3+41 | A3(1) | —— ——[0=24%& | A3 |/ 27¢°
I S L 1l ]

(1) Incrementing the base (2) Assignment of the protection
protection codes codes by Li= ai+ i.

% All additions are made in modulo 4.

Figure 2. Incremental protection codes with two bit lock field.



Host system

| I |
I I I
I I I
clock : : synchronizer l
| I ] [ I
| I l
Y | I T i Y v I
| | Key Flag |

Host | | [|processor processor
processor | | (8080) (8080) |
(8080) | I D A . D A |
D T I | Y| B I

A interrupt| 1 17 A
I " I
| le op. |
data | ‘ map |
address
t 1Y Yy |
D A | | A D A A |
| | Key Lock Flag |
Main I | memorv memory memory |
memory I |
e 1
- _

Figure 3.  Hardware organization of the modular software-fault detector



address

1000:
1001:
1002:
1003:
1004 :

1234:
1235:
1236:
1237:
1238:

Figure 4.

key/lock cell

~———"]
* 3 21
Al 4 34
0 5 12
* 6 23
* 7 7E
* | A 41
* B 42
* | c| 43
*| D 44
* E 45

e

LXI

INX
MOV

: DB

""ABCDE"

An example of object codes of Program PIl.



address key/lock cell

e s

1024 * TOF| 21 LXI H,IX
1025: 8 [10] 2a
1026: 0 [13] 10
1027: * 112 o¢p CALL SUB
1028: 2 |13 56
1029: 0 14 23
102A: * 08 41 DB "AB"
102B: * o9 | 42 _
102C: * 1171 B7 ORA A
2356: * 102 F9 SUB: SPHL

. —”Jb——J_—~\\\\

Figure 5. Procedurewise protection scheme
and parameter passing.



INSTITUTE OF INFORMATION SCIENCE AND ELECTRONICS
UNIVERSITY OF TSUKUBA
SAKURA-MURA, NIIHARI-GUN, IBARAKI, JAPAN

REPORT NUMBER
REPORT DOCUMENTATION PAGE ISE-TR-82-26

TITLE
Software-fault detector for Microprocessors
AUTHOR(S)
Kozo Itano
Tetsuo Ida
REPORT DATE ' NUMBER OF PAGES
January 15, 1982 ’ 27
MAIN CATEGORY CR CATEGORIES
Computer systems 6.2, 6.3
KEY WORDS
software reliability, run-time hardware support,
key~lock memory protection, incremental protection code,
array bound checker, program module protection.
ABSTRACT

For the realization of the means to develop more reliable
software for the microcomputers especially in real time environments,
we design a hardware tool called "software-fault detector' which
detects software faults such as misaccess to an element beyond the
range of an array. The implementation of the mechanism for such
address range checks is generally difficult in microprocessor
environment; since internal registers are not readily visible to
external logics. We introduce an "incremental" key-lock protection
scheme into the fixed microcomputer architecture of the INTEL 8080
because of its popularity and simplicity. In this scheme, a "lock"
is a protection code associated with the storage cell, and a "key" is
associated with access capability such as address. In each memory
access to a cell, a check is made whether a key matched against the
lock of the addressed cell. 1In this paper, we present the details
of the scheme and its analysis. Further, we present an actual hardware
design of the software fault detector. Our design methodology is to
realize a dector by the use of identical microprocessor 8080s, as an
independent one-board module which could be connected to the memory
bus of the host system.

SUPPLEMENTARY NOTES




