ISE-TR-81-25

LEARNING SYSTEM FOR AUTOMATIC STRUCTURAL
ANALYSIS OF MASS SPECTRA

by

TAKASHI NAKAYAMA

and

YUZURU FUJIWARA ™

April 1, 1981

INSTITUTE
SCIENCES AND ELECTRONICS




LEARNING SYSTEM FOR AUTOMATIC STRUCTURAL

ANALYSIS OF MASS SPECTRA

*
TAKASHI NAKAYAMA and YUZURU FUJIWARA

Institute of Information Sciences and Electronics, University

of Tsukuba, Sakura-mura, Niihari-gun, Ibaraki 305, Japan

A computer-assisted mass spectral interpretation system which
has the capability of learning is described. The set of
correséondences between substructure and spectral component
(CssC) is used for interpreting mass spectra. CSSC is
generated, renewed and improved automatically in the system.
This automatic generation is learning. Chemical structures

are represented in terms of blocks.



I. Introduction

Many kinds of structural analysis methods of mass spectra have

-

been presented and Jevelooced, such as the nattern recocnition

dd Ll
1-6 . ... . ;
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technicue and structure generation.
structure is regarded as a graoh, and is described hierarchically
by means of not only the structural unit “atom”, but also the
intermediate concept "block". This hierarchical representation
simplifies and saves time in analvsing process. A vertex of

a graph is a "cutpoint" if its removal increases the number of
connected components of the graph. A "block" of a graph is a
maximal subgraph which has no cutpoints.7 For example, the

ring assembly corresponds to a block. A block is treated as

a constituent unit of an ion giving some spectral pattern in
case of structural analysis. Therefore, these is no need for
substructure inference to use such an inefficient algorithm

as one that enumerates all the combinations of atoms. This
brings about great advantages in simplicitv and time saving

in the analysing process. The total structure of a chemical
compound (connectivity among blocks) is represented by means

of block-cutpoint tree (BCT)S. The structural analysis is to
describe a sample spectrum in terms of couplings of substructure
and spectral component. These couplings of substructure and
spectral component are sets of pairs of substructure represented
by blocks and corresponding spectral components. This set is
not rigid (i.e. not a ready-made data set), but is automatically
generated and renewed by the system. This property of self-

organization of knowledge is the capability of learning. The



advantages of the structural analysis method described here
are (1) that the unit of structural representation is a block,

and (2) that the system has the capability of learning.

IT. Analysing System

A block diagram of the system is shown in Figure 1. Structural
data of chemical compounds, mass spectral data and the table

of correspondence between substructure and spectral component
(CSsC) constitute the data sets. When a sample spectrum is
given, programs ANALYSIS/LEARNING perform analysis/learning
referring to the data sets. The program LEARNING is activated
by program ANALYSIS if necessary, but‘the two programs work
independently. Therefore, the learning can be advanced even

at the same time as ANALYSIS works.

1. Data Sets. A structural data set and spectral data set are

shown in Figure 2. Structural data is stored in two files,

FCF and VCF. The FCF record is a bit sequence of fixed length
which gives’block constitution of compounds. The length of the
bit sequence is 540 bits and the i-th bit value (1/0) of the
sequence specifies the presence/absence of the block whose
identification number is i. Blocks which overflow the 540-bit
table of FCF are described in VCF. Further details of block
constitution are described in the VCF record, which consists

of the number of kinds of blocks, the number of each block,

the degree of each block in BCT, and so on. The blocks, which



are specified by bit sequence, are identified by block file
BF. VCF and BF records are of variable length and are accessed
by means of each directory file shown in Figure 2.

The spectral data set consists of IF and SF. IF is an
information file which contains items such as compcund name,
molecular weight, and other conditions of the measurement.

SF is a file of mass spectral data.

Since the identification numbers of compounds are common
throughout these data sets, each file is considered as a set
of attribute data of compounds.

CSSC consists of two kinds of records. One is records
whose substructure item is known, and the other is records
whose substructure item is unknown. The latter is detected
as a pair of spectral component and unknown substructure in
the structural analysing process, and is registered in CtescC.
These records are also used for analysing sample spectra
(i.e., the spectral component is treated definitely even though
the corresponding substructure is unknown). It is possible
that the unknown substructure is inferred by means of program
LEARNING, if the spectral data set is renewed (e.g., new spectral
data are added). The former is an ordinary CSSC record. Tbis
record format is shown in Figure 3. A pair of substructure and
spectral component is represented as two fixed length items,
CSST and CSSP. CSST is a 540-bit sequence and has the same
meaning as the FCF record. The BCT code of CSST is linked to
the CSSC record, which represents the connectivity among blocks.
(Further strict representation of connectivity among blocks is

given by specifying cutpoints in each block.)



CSSP is a 958-bit sequence whose i~th bit value (1/0)
represents presence/absence of a peak at m/e = i. It does
not indicate intensity. Spectral data in SF is regarded as
a specific CSSP which has intensity information, and the
corresponding structures are given by structural data set
FCF/VCF. (Actually, spectral analysis is performed by matching
sample spectrum with spectral data in SF, prior to description
by CSSC.)

Thus, structural data of compounds is represented in terms
of the block as an intermediate conczpt, and file organization

is achieved by using the block as a processing unit.

2. Learning. CSSC is a set of pairs of correspondence between
substructure and spectral component. If these correspondences
are precise and sufficient, any mass spectrum can be described
by CSSC. Sample spectrum can be retrieved and identified in
spectral data set, if spectral data of all compounds are pre-
pared. However, the method described here identifies a com-
pound ccnstructively by CSSC. Therefore, it is possible to
analyse as many compounds as the number of combinations of
substruc£ures in CSSC. It is necessary for practical analysis
to prepare CSSC adequately, in both quality and gquantity.
Learning is the process to organize good CSSC. Namely, the
generation and improvement of CSSC are performed by automatic
judgement of the system. This generation/improvement process
corresponds to the process of acquirement, refinement and
accumulation of knowledge, i.e. learning. In other words, the

framework of spectral analysis, which is the correspondence



between substructure and spectral component, is not given in
the form of rigid input data, but is organized automatically
from spectral data or CSSC records by the system.

Generation of initial C33C The initial CSSC is generated

from sample spectra by the program LEARNING shown in Figure 1.
The basic idea of the generation method is, first, to nake a
set of compounds similar to arsample (there can be a variety-
of criteria for the similarity), then to extract common sub-
structures and common spectral components from the set.

Using the similarity between the two spectra as a crite-
rion, the outline of the generation procedure is as follows:
(1) Noise elimination of spectral data. The peak intensity
is compared with the value of the function f(x) = a + c/(x+b),
and any peak smaller than that is eliminated. x represents
m/e. Coefficients a, b and ¢ are determined empiricaily.

(2) Computation of similarity. After the noise elimination
of spectral data, the similarity between a sample spectrum
(P

) and a spectrum is SF(P2) is computed. The similarity

1

is defined by the expression below:

S(pP,, P

where P1 and P2 are 958-dimensional vectors (the positions

where m/e = 1, 2, ..., 958 are regarded as the area where the
spectra exist). The part of spectra which overZflow the size
of SF file of m/e = 958 are stored in additional SF. The

spectrum P, in expression (l) is often filtered. The filtering

2

vector F = (fl, cee, f958) is made from spectrum P1 as follows.
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fi = 1 if there exists a peak of Plat m/e = i, fi 0 other-

wise. Then P, = (2, ..., PSSB) is renewed by Pf fi'Pi.

(3) Extraction of common substructures and common spectral
c's;omponents. A set of similar compounds C = {Cl, cee, Cn}

is obtained through preprocessing (1) and (2), where Ci (i =1,
l--., n) is selected for a member of the set of the similarity
between a sample spectrum and ci's spectrum is greater than
some standard value. The structural data of Cl’ s, Cn are
obtained from data set shown in Figure 2, The common sub-
structure is extracted in the foim of a common block set. The
extraction procedure is performed rapidly using a file FCF
whose record is a bit sequence. The spectral data of Cl' ceey,
Cn are obtained from SF as shown in Figure 2, then Fhe common
spectral component is extracted. Though spectral data in SF
contain peak intensity, the common spectral component consists
of mass numbers (m/e values) where Cl, ey, Cn give significant
peaks (i.e. peaks which are not noise) in common.

(4) Check of extracted correspondence. Actually, there occur
many cases in which the similar compound set is not generated,
or common substructures/common spectral components is not ex-
tracted. The improvement procedure is applied to these cases
through feedback technique (this procedure is described in
detail in the next paragraph). When the correspondence is
obtained, it is checked if it is proper as a CSSC record. The
check points are (a) that the common substructure should be a
connected subgraph for all members of the similar compound set,

(b) that the common substructure should contain at least one

terminal block, and (c) that the maximal mass numbers of the



common spectral components should not exceed the mass of the
corresponding substructures. Conditions (a) and (b) stem
from the supposition that the mass spectra reflect mainly the
simple fragmentation. However, these conditions do not mean
that the other types of fragmentation are eliminated.

The initial CSSC is generated in another way: first a
common substructure is specified, then a set of compounds -~
are chosen which contain the substructure in common, and
the common spectral components from the set are extracted.
This common spectral component should be checked by the con-
dition (c) described above.

Improvement of CSSC The accuracy of the correspondence

of CSSC record is checked when it is initially generated, but

it is not always satisfactory. Even when that the substructure

is accurately specified, it is still probable that the correspond~-
ing spectral comvonent mav contzin noise peaks or mav lack some
peaks. The accuracy of the correspondence of CSSC depends on

the size of the spectral data set as a whole. 1In general, the
aLcuracy is expected fo improve as the aata set grows.

When the size of the data set is limited, it is still
possible to improve the accuracy by reconstructing the compound
set from which a CSSC record should be extracted. The compound
set is constructed by collecting compounds in which a kind of
similarity reaches a standard value. Three measures of simi-
larity are prepared: (1) similarity between twc spectra, (2)
existence of common substructure, and (3) similarity of molec-
ular weights. The compound set varies according as these

three parameters vary, as shown in Figure 4. These are two



ways of constructing compound sets: reduction and expansion.
The reconstructing method shown in Figure 4(a) is used for
eliminating ncise peaks of CSSP (i.e. the peaks which should
not be given by the corresponding CSST), and the new compound
set Su is generated in the form of an expansion of the original
set'Si which is generated on the basis of spectral similarity.
The expanded set (Su) consists of the members which contain
the reference CSST as a substructure and are extracted from
the whole compound set (FCF/VCF). In other words, the measure
of the similarity is changed from the spectral similarity to
the existence of a common substructure. It is certain that
Su includes Si’ so the common spectral component extracted
from Su does not contain more noise peaks than the original
CSSP. That is to say, CSSP is improved.

The compound set is expanded/reduced by varying a stan-
dard value of the spectral similarity as shown in Figure 4(b).
This construction technigue is used for the same case as (a).
The measure of the similarity is the spectral similarity and
is unchanged. While the members of the compound set are ex-
tractéd from the compound data set (FCF/VCF), the set is not
always the proper one for extracting CSSP, because the possi-
bility that specific compounds are included in the set increases
as the set size becomes larger. In this case, or when csstT/
CSSP is not extracted at initial generation, the compound set
is reduced. The set reduction is performed by selecting par-
ticular members of a compound set, specifying parameters appro-
priately. Figure 4(c) shows that si/su is reduced by using

molecular weight as a new parameter. There are two kinds of



parameter (molecular weight) setting: one is to collect com-
pounds whose molecular weight should become nearly equal

(this implies that each member compound is required to be

more Similar), and the other is conversely to collect com-
pounds whose molecular weights should scatter widely (this
implies that the similarity measure other than the existence
of common substructure should be excluded as much as possible).
Figure 4(d) shows a kind of partitioning of Si' When on common
substructure can be found in Si’ the following partitioning

(1) (2)

procedure is applied: Suppose that Su pocty, Su be all

the substructures contained in the compounds of Si’ the subset

(k)
()
u

of S, which consists of the members containing Su is con-

(1)

structed for k = 1, ++-, L. (Si = Su U+ Us )- A
common spectral component is extracted from these subsets.

The reconstruction procedure of these compound sets is
applied dynamically in the generation/improvement procedure
of CSSC, and it is intended to construct an optimal compound
set.

Figure 5 shows the process of constructing compound sets
and extracting a pair of common substructure and common speétral
component when the spectral similarity is varied as a parameter
(for a sample spectrum). Figure 5(a) shows that the size of
compound set Cl is 4, that CSST (common substructure) is benzene
ring, and that CSSP (common spectral component) is given as a
mass number set (50, 51, 74, 77, 78, 123), for reference simi-
larity of 0.90. It is found that the mass number m/e = 123 is

irrelevant to this CSSP (benzene ring) by the check of corre-

spondence, so the nocise elimination procedure is applied as



shown in Figure 5(b). This shows that CSSP is refined by
.varying reference similarity from 0.90 to 0.75. The ex-
panded compound set for eliminating roise peaks is constructed
also by means shown in Figure 4(a), and this set gives the
same result as described above. A part of CSSC obtained is

shown in Figure 6.

3. Analysis. If CSSC is provided with records that are
adequate in both guality and gquantity, it is possible to
analyse any sample spectra. The analysis of mass spectra
by CSSC means to describe given sample spectra in terms of
CSSP's. Given that S is a sample spectrum; it is expressed

as follows:
| , )
s=zpi+zqi+s (2)

where Pi is a CSSP for which correspondence between CSST and
CSSP is established, d; is a CSSP for which the correspondence
is not established, and S' is the spectral component which
cannot be explained by the present CSSC. If S' = o, the de-

)

scription of a sample spectrum is considered complete. )

is interpreted as follows:

n n
Y P, =) P, +) ] P.eP + ...+P.eP, = ... &P
j21 o421 1 5 k Jj k 1 2 n
(3)
n
where ) P, represents the vector summation of P, (P; is im-
i=1

plemented as a 958-dimensional vector). 1If the peak intensity



n
is not taken into consideration, ) Pi represents the logical
i=1
summation of the mass position of Pi' The operator e rep-

resents the composition of substructures, so Pj-e P, repre-

k
sents the spectral component corresponding to the substruc-
ture tje' tk composed of substructures tj and tk. Therefore,

) Pj-o P, represents the vector summation of spectral com-
j ok
ponents corresponding to all the possible structures composed

cf two CSST's. Similarly, spectral components up to P. & P

1 2
- @ Pn (this corresponds to the total structure) are com-
puted, and the total vector summation of these components gives
Z'Pi.

when S = Z'Pi (i.e. X'qi = S8' = 0 in expression (2)),
the chemical structure of the sample spectrum contains sub-
structure tl,--- P tn (ti corresponds to Pi)’ composed sub-
structure tje- tk,--- , and tle cer @ tn as a total structure.
The example of the analysis is shown in Figure 7. The input
sample spectrum is shown in Figure 7(a). The analysis pro-

cedure is applied to the noise cut spectrum shown in Figure 7(b).

Given that this spectrum is S, it is expressed as follows:
3
S =] P, (4)

where Pl’ P2, P3 are the CSSP's shown in Figure 6. Expression

(4) is expanded according to expression (3):

wn
1

ZPi+2ZPjoPk+PloP20P3

P1+P2+P3+P19P2+P20 P3+P3e P1+P10P29P3

(5)



Substructures tl, t2, t3 and composed substructures are found

as follows:

1
NO
= 2
t)
CH
(*? 3
ty = @
t1e t, = %
tl-e t3 = t3 I}]H3
o)
tze t3 = tle t2-e t3 = N02

Therefore, expression (5) gives the mass position derived

from the last term Pl<> Pz-e P3 in addition to the mass

P. and P.:
3

position of Pl, 5

P,e P, o P, =] P, + (153)

where the second term of the right side means that Pl-e Pz-e P3
includes mass position m/e = 153. The synthesized spectrum is

shown in Figure 7 (c).
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III. Conclusion

As the arguments so far indicates, if the mass spectral data
and the structural data of compounds are adeguate in both gquantity
and gquality, it is possible to generate a CSSC which is able to
analyse any sample spectra. That is to say, the more data increase
in quantity, the more available substructure increase (guantity of
knowledge), and the less the noise of spectral data is, the faster
the speed of learning becomes (quality of knowledge). The experi-
mental CSSC was generated using EPA/NIH Mass Spectral Database (
1975 edition). The mass spectral data of this database contains
systematic noises such as spectral pattern of solvents, air, etc.,
so they are not always appropriate to generate a CSSC. However,
they can become available by eliminating such noises previously,
or by selecting only such data that do not contain those noises
from the beginning.

Chemical structures, therfore CSST (an entry of CSSC for sub-
structures) are represented by means of BCT, so the processing
efficiency has been improved largely for CSSC generation (extraction
of substructures) and structure generation.

The description of a sample spectrum by CSSC is to infer the
constituent substructure of the compound. Structure generation
based on BCT representation of chemical structure is the subsquent

step of structural analysis, and can be referred in our next paper.
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1.

2.

Block diagram of the system.

Organization of structural data file and spectral
data file. Each record is referred by identifica-
tion number of a compound in case of fixed length
records, and/or directory file in case of variable
length records.

CSSC record format.

Reconstruction of compound sets according to pa-
rameters similarity (Si), substructure (Su) and
molecular weight (M).

Improvement of a CSSC record by varying parameter
similarity.

Example of CSSC.

A sample spectrum and a synthesized spectrum by

analysis.
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