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This paper develops a method for evaluating the magnitude

of errors which may arise in numerical computation of

probabilistic parameters for system safety and reliability

quantification. Our method is constructed on the basis of

the theory of linear operators in functional analysis.

Reliability theoretic interpretation for our main mathematical

result is presented.



1. INTRODUCTION

Probabilistic evaluation of reliability parameters is
essential in system safety and reliability quantification.
For coherent systems [1], the computer program KITT basing on
the theory by Vesely [2] is widely used to calculate reliability
parameters such as availability, expected number of failures,
etc. Inagaki & Henley [3] developed recently a new probabilistic
method for evaluating reliability parameters of non-coherent
systems to which the Vesely's theory does not apply.

It is necessary to obtain reliability parameters with
high precision since the parameters are basic information for
designing or upgrading systems, inspection Scheduling, repair
policy determination, etc. The authenticity of the obtained
reliability parameters is dependent on (i) the degree of
uncertainty contained in data which are used in assessing
reliability parameters, and/or (ii) the magnitude of errors
which may occur in numerical computation by use of computer.

The problems of data uncertainty are discussed in
WASH-1400 [4], in which a statistical approach (Monte Carlo
simulation) is adopted for evaluating the effect of error
caused by data uncertainty to system reliability characteristics.
The error analysis of numerical computation, on the contrary,

has not been performed.



This paper develops a method for gquantitative evaluation
of the magnitude of errors which may arise in computing
reliability parameters numerically. We take a linear operator
theoretic approach in constructing our method for evaluating
errors. The developed method have a potential applicability
in the data uncertainty problems. This suggests that we will
have a non-statistical (i.e. deterministic) approach as well
as a statistical approach which has already been developed

in [4] for the problems.

2. INTEGRAL EQUATIONS

System safety and reliability characteristics are
completely represented in terms of component reliability
parameters whether the system is coherent or nén—coherent.

It is known that reliability parameters of every component
are governed by the following simultaneous system of integral

equations (see, e.g. [5]):

w(t)

It

£(t) + [5 £(t-u)v(u)du
(1)

v(t)

[§ g (t-u)w(u)du



where:

w(t) :

v(t):

f(t):

‘g(t):

unconditional failure intensity at time t; viz.

the s-expected number of times the failure of
component occurs at time t per unit time
unconditional repair intensity at time t; viz. the
s-expected number of repairs of component
completéd at time t per unit time

probability density function for first failure of
component; viz. £f£(t)dt is the probability that

the first component failure occurs during the small
interval [t, t+dt), given that the component was
like new at time zero

probability density function for repair; viz.
g(t)dt is the probability that component repair is
completed during [t, t+dt), given that the

component failed at time zero

Integral equations in the form of (1) are called "Volterra

equations.

Let A and B denote integral operators called

"Volterra operators" of convolution type defined as follows:

A(-)

B(-)

Il

[E g(t-uw) ()au, i.e. A(W(t)) = [§ gt-ww(wdu (2)

[§ f(t-w)v(wdu  (3)

Il

[§ £(t-u) (-)du, i.e. B(V(E))

%’mThe abbreviation "s-" implies "statistical(ly)".
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Then (1) can be written as follows:

w(t) £(t) o Ihs f(t—u)v(u)du)
+

v (t) 0 [§ g (t-u)w()du 0

(f(t)) 0 [5 £(t-u) (.)du) w(t)
+ ;

0 [§ g(t-u) (-)au 0 v (t)

B w(t)
(4)

0/ |v(t)

By introducing the identity operator I, i.e. I(w(t)) = w(t),

I
——
Hh
o —
: ct
—_—
+
——————
b= o

I(v(t)) = v(t), we obtain more compact representation for (4);
viz..

I -B w(t) f(t)

= (5a)

-A I v(t) 0
or

Ix = b (5b)
where



3. POSSIBLE ERRORS IN NUMERICAI. COMPUTATION

It is difficult to obtain an exact solution x of (5b)
because of:

1) data uncertainty which arises by shortage of enoughi
amount of field data for assessing the true f(t) or g(t)

2) truncate error in representing feal f(t) or g(t) in
- terms of tractable analytic functions

3) round-off error in computation

4) use of approximate formulae for numerical integration,
é.g. trapezoidal rule.

Errors 1) and 2) occur in data representation, and 3,
and 4) occur in numerical computation. Because of these errors,
parameters in (5b) are actually L+AL and b+Ab instead of L and
b, respectively. Thus the integral equation which we actually

solve is written in the form:
(L+AL) (x+Ax) = b+Ab (6)

where x+Ax is the exact solution of (6).
An essential problem is to assess the magnitude of the
deviation Ax from the exact solution x of the ideal equation

(5b) in terms of AL and Ab. By expanding (6), we obtain:



(L+AL) " (= (AL)x + Ab)

It

AX

=+t a7t (m(an)x + Ab) o
Thus
o I
lax |l < (Janl- =l + abl)
1 - |7t s
=
< Vel (lanf- =l + Janl) (8
1 fllL’ln-ﬂALﬂ '
Therefore

exll e B A (uALu L )
I TR P S E I FA N
cond (L) ( f AL .\ || 2ol )

- (Al Vo ol

1l - cond(L) «——
(B4

where cond(L) is the "condition number of L" which is defined

as follows [6]:
cond () = |zi |7t (10)

(9) tells us the relationship among norms of relative errors
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b axW/px\\, U1ALN/ LN and HAbW/ bl . Also says (9) that cond (L)
governs the precision of the solution; viz. if cond(L) is
small,then solution x is insensitive to the parameter
deviation AL or Ab; if cond(L) is large, on the contrary,
then x may be sensitive to AL or Ab and it may be hard to
obtain a high quality solution by use of any sophisticated
solution method even if the integral equation (5b) has slight

parameter errors.

4., EVALUATION OF cond (L)
4.1 Upper Bound for cond (L)
Now let us evaluate || Ll and HL_lu, and thus cond (L).

Operator norm | LI is defined as:

ol = sup (| Lz|| (11)
lzy= 1

where vector norm uz|(=|\col.(zl, 22)H is taken as the

"maximum norm" which is computationally tractable; viz.
Nzl = max{liz 0, Wz, I} (12)

Then ||L|| is evaluated as follows:



[\L\\= uiwzll\col.(zl - Bz,, z, - Azl)“

= sup maX{“zl - B22“l “22 - AZl“}
hzlh=1

< sup max{lz.,\ + IBz, I, Nz, Il + WAz, |}
lzi=1 1 2 2 1

P A

sup max{llzl“ + “Bl\’“Zzll, I\ZZ\\ + (lAl\-Nle}

Wzi=1
=max{ 1L + \B} , 1 +{{al} (13)
. -1 . -1
Let us proceed to evaluating |L "||. The inverse operator L

is given by:

_ (1 - Ba)~t B(I - AB) T
L~ = (14)

A(I - BA)"l (I - AB)"l

as is easily verified, where LL ' = 171 =

“L_l“ is evaluated as follows:

sup “ L—lz“
Wzl =1

[Fa

1
)

(I - BA)_lzl + B(I - AB)

sup

lzil=1 A(I - BA)_lzl + (I - AB)_lzz



= sup max{n(I-BA)'lzl+B(I—AB)_lz2“,nA(I-BA)'lzl+(I-AB)'122H}
lzl=1
-1 -1 -1 -1
< sup  max{||(I-BA) "z} +|B(I-AB) "z, ,||a(1-B2a) “z,l +I[(1-aB) 22"}
lzi=1

< sup max{lKI—BA)_H

- — —l -
Sup, =Wzl + IB(T-2B) | szn ,

\acz-ea) TH| -z + N(z-28) "Mh-llz, | 3

= max{ || (1-B2a) “tl+ B (1-2B) 7Y}, \a(z-Ba) U + W(z-aB) "N} (15)

By applying the following inequalities

\z-Ba) ™Y < 1/(1 - \BAD < 1/(1 - [BI-IAl)
WI-2B) "1) < 1/(1 - UaBI) < 1/(1 - | Al-1B])

(16)
\a(z-Ba) Y| < (al/ (1 - iBal) < yal/ (1 - | BY-1al)
HB(I—AB)'ln < IBl/(1 - paBj) < IBl/(1 - hal-1Bl)

to (15), “L_l“ is further evaluated as:

-1 1 + | B 1+ lal
“L | < max{ — } (17)
1 -jAal-iBj 1 - Qak-isl




Thus cond (L) is evaluated as follows:

cond (L) = | Ll-)z 7
1 + |IBl 1 +]al
< [max{1+\Bl, 1+§Al}}]- [max{ ,
1 -al-isl 1 - nAu-uBu
(1 + (a2 (1 + ||BI)?
= max{ ' } (18)
1 - tal-usy 1 - a8l

4.2 Evaluating | Al and | Bj

We now need norms | Al and ||Bll of Volterra operators A and
B defined by (2) and (3), respectively. To this end, we
briefly turn to another class of integral operators called
"Fredholm operators." We have the following well-known fact [7]:

"If the Fredholm operator
_ b . _ b
c(-) = [, K(t,u)(-)du, i.e. C(y(t)) = [] K(t,w)y(u)du (19)

has kernel K(t,u) which is continuous in t and u, then the norm

of operator C is given by:

lch= max [° |K(t,u)|au * (20)
a<t<b
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It is noted that the Volterra operator
et . t
D(:) = fa K(t,u) (-)du, i.e. D(y(t)) = fa K(t,u)y(u)du (21)

can be transferred to a Fredholm operator by redefining the

kernel K(t,u); viz. if we introduce

K(t,u), a <u < t
R(t,u) = (22)
o, t <u<b
then
D(.) = fg K(t,u) (-)du, t < b (23)

Thus derived Fredholm operator D has kernel k(t,u) with
discontinuity on t = u. In the similar manner to the case of
the Fredholm operator C with continuous kernel, it is showﬁ
that the norm of operator D with non-negative kernel K(t,u)

is given by:

IDl = max [P R(t,wau (24)
a<t<b a

(for the proof, see APPENDIX).

Thus we can determine |A| and ||BIl as follows:

T
Nal= Jmax [o d(t-w)au (25)

-11-



| B = max fg f(t-u)du (26)
0<t<T
where
N g(t-u), 0 <u<t
g(t-u) ={ (27)
0, t<u<T
f(t-u), 0 <u <t
¥(t-u) = (28)
0, t <u<T
and T is a constant such that t < T.
It is useful to note that:
[o §t-wau = [§ g(t-w)au = G(¢) (29)
[5 ¥tmwyau = [§ £(t-w)au = F(t) | (30)

where

G(t):

F(t):

probability distribution function for repair;

viz. G(t) is the probability that component repair
is completed by time t, given that the component
failed at time zero

probability distribution function for first

failure of component; viz. F(t) is the probability.
that the first failure of component occurs by time t,

given that the component was like new at time zero

-12-



Since G(t) and F(t) are monotonically increasing in t, we

obtain:
lal = max G(t) = G(T) (31)
0<t<T
Bl = max F(t) = F(T) - (32)
0<t<T

The above (31) and (32) give reliability theoretic interpretations
for the norms of Volterra operators A and B; i.e. Al is the
probability that component repair completes in T units of

time , and | Bl is the probability that the first failure of
component occurs in T units of time. Substituting (31) and (32)

into (18), we obtain:

(1 + G(T))? (1 + F(T))2
cond (L) < max { ' } (33)

1 - G(T)F(T) 1 - G(T)F(T)

If we evaluate numerical errors in solution x of (5b) for large
t, we may usually expect that G(T) >> F(T) holds and that (33)
reduces to:

(1 + G(T))?

cond (L) < (34)
1 - G(T)F(T)

-13-



5. CONCLUSION

Linear operator theoretic method was presented for
evaluating the magnitude of errors in numerical computation
of reliability parameters. It was shown that our method has
an easily understandable interpretation from the viewpoint of
reliability theory though the derivation of the method might
be rather mathematical. Applications of the presented method

to practical problems will appear in the succeeding paper.
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APPENDIX: Derivation of norm D

We will determine the norm of operator
b o
D(-) = fa K(t,u) (+)du (A-1)
with non-negative kernel %(t,u). We will follow the procedure
given in [7, pp. 83-84].
Putting

py = /2 R(t,u)y(uau, (a-2)

there results

Il

Dy = sup |2 R(t,0)y (w)au]

AN

sup |y(u)| sup fg |¥ (t,u) |du
t
b &
= max |y(u) | sup [ K(t,u)du
t .
b
= max |y(u)| max fa K(t,u) du
u t

where fhe last equality holds since fg %(t,u)du is continuous

in t. We thus know that:

-16-



IDY | < \y Wl max IZ K (t,u)du (A-3)
t
or

IDl < max fg K(t,u)du (A-4)
t

Since fg K(t,u)du is continuous in t, fg R (t,u)du must assume

its maximum at a point to of the interval [a, bl; viz.

fg %(to,u)du = mix fg R(t,u)du

We put

z,(u) = sgn k(to,u) (A-5)

Let yn(u) be continuous functions approximating zo(u) such that

always |yn(u)|i 1 and in addition everywhere except on a set

M€n of measure €p7 yn(u) = zo(u) holds. Here €, < 1/(2Mn) whe;e
M = max K(t,u) (A-6)
t,u-
Then on M, ]yn(u),— zo(u)l < 2. Furthermore

|f§ %(t,u)zo(u)du - fg %(t,u)yn(u)dul

< f? Ik(t,U)llzo(u) - yn(u)]du

-17-



= [P ¥(t,u) |z, (w) - vy () ]|du
a 0 n

= stn %(t,u)|zo(u) - yn(u)]du
1 1
< 2 max K(t,u) = (A-7)
t,u 2Mn n

for every t ¢ [a, Db].

Consequently, for all t ¢ [a, b],

1 1
fg %(t,u)zo(u)du < fg %(t,u)yn(u)du + — E.RD“'“yn" + —
, n n

Now putting t = tO, we obtain:

1
2 Kt wau < fof-ly )l + — (3-8)

Since Hyn“ < 1, there results from (A-8) as n + «

[2 X(ty,mau < |p (2-9)

max fg K (t,u)du < lInl\ (A-10)
t

-18-



It follows from (A-4) and (A-10):
WDl = max [ ¥(t,u)au (A-11)

t

(End of APPENDIX).
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