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Structure Generation on the Basis of BCT

Representation of Chemical Structures

abstract
A method of structure generation based on BCT
( block-cutpoint tree ) representation of chemical
structure has been developed. The generation pro-
gram is a part of the automatic structure analysis
system of mass spectra( ASASMAS ), and is used
when a set of the inferred substructures are given

as input data. The input substructures are repre-

sented by means of BCT.



INTRODUCTION

The major parts of the process of chemical
structure analysis are inference of constituent
substructures and structure generation by combin-
ing those inferred substructures. A method of
structure generation from substructures already
inferred is described in this paper. Various
schemes for structure generation have been devis-

’l—lO each of these methods is based on'a method

ed
of representation of chemical structures, and it
may be said that the method of representation of
chemical structures determines the method of
structure generation. All of these methods in-
cluding the present one pursue the governing prin-
ciple of reducing the number of combinations. In
this paper, the chemical structure is represented
in terms of BCT( block—cutpoin; tree ),ll which
clarifies the hierarchy in chemical structures
wholely so that the idea of the connectivity stack3
and the superatom5 are included naturally in our
method presented. Combinatorial problems that
occur in the process of structure generation are

thus partitioned into subproblems and are classifi-

ed into strages.



Structure generation is regarded as a problem
in combinatorial analysis. There must be neither
duplications nor omissions in the generated struc-
tures, and the method of structure generation
should be efficient; processing time should be
short in practice. The processing time depends
largely on the method of representation of chemi-
cal structures. The constituent unit of the BCT
representation of chemical structures is a block
( a biconnected component of a graph ), and this
makes it possible to reduce the number of combina-
tions greatly by omitting atom-by-atom processing.
Another feature of the method of structure genera-
tion described here is the availability of a graph
database. The various graphs which appear in the
process of structure generation are not generated
for each case, but instead are.retrieved from the

graph database.



| REPRESENTATION OF CHEMICAL STRUCTURES

Chemical structures are represented by means
of graphs, and atoms and bonds of a chemical
structure cofrespond to vertices and edges of a
graph respectively. However, it is inefficient to
process chemical structures at the atomic level,
and sometimes a superatom/ ring assembly is used
as the processing unit. In ASASMAS, the concept
of the superatom is extended to represent the
chemical structureslin a way that is consistent
with BCT. The following is a brief description of
BCT representation of chemical structures.12

Let ueV be a vertex of a connected graph
G=( V,E ). A vertex u is a "cutpoint” if the
- removal of u yields the disconnectivity of the
graph G. A "block" of a graph G is a maximal sub-
graph of G which contains no cutpoints. Now,
bc(G) ( block-cutpoint graph of G ) is defined:
T=( W,F ) 1is a bc(G) if (1) W=AuB 1is a set of
vertices where A= { aj, **+ ,a 1 is a set of
all cutpoints of G, and B= { by, *+* ,b } is a
set of all blocks of G, and (2) F={ £, =-* £,
= {( a b, ) | a; e bj’ a, €A, bje:B }, where

J

aie:bj means that a cutpoint a; is a member of a



set of vertices of block bj' A bc(G) has the
following properties: (1) it is a bipartite graph
of subsets A and B, (2) it is a tree regardless of
the original structure, (3) terminal vertices
correspond to blocks of G, and (4) the distance
between any pair of terminal vertices is an even
number. A bc(G) is called a block-cutpoint tree

( BCT ) because of property (2). A tree is a BCT
if and only if it possesses property (4), and this
property is used for generating BCT. Examples of
the BCT representation of chemical strucutres are
shown in Figure 1. The internal structure of each

block is filed in the block dictionary.



GRAPH DATABASE

The graph generation procedure which would
usually be performed in the process of structure
generation is replaced by the retrieval of object
graphs from the graph database. As it is impossi-
ble to prepare all of the graphs, a graph which
cannot be found in the graph database is generated
when it is first required and this generated graph
is also added to the database. There are five ma-
jor files in ASASMAS: (1) a compound file, (2) a
table of correspondence between substructures and
mass spectral components ( CSSC ), (3) a block
file, (4) a BCT file, and (5) a spectral data file.
A compound file and a CSSC contain the chemical
structures or substructures in the form of BCT
representation, and are used for inferring sub-
structures in the process of structure analysis.
The internal structures of block in that BCT rep-
resentation are stored in a block file. A BCT
file is a set of BCTs which are organized accord-
ing to parameters ( m,n ), where m is the number
of blocks and n is the number of cutpoints of a
BCT, and is used when needed during the process of

structure generation. The records of a BCT file



are trees which possess the BCT's property (4)
described previous section and furthermore satisfy
the condition; deg us 4, where u is a cutpoint of
a BCT, because the degree of u cannot exceed the
valence of u which is considered to be an atom
such as carbon, oxygen, or nitrogen. The outline
of the system ASASMAS ( especially the relatibn
between programs and these five data files ) is

shown in Figure 2.



METHOD OF STRUCTURE GENERATION

Outline of structure generation. Program

GENERATION is initiated when a set of substruc-
tures bl’ s 'bm is given as input data, where
bl' s ,bm are simple blocks that have been
inferred by program ANALYSIS. GENERATION generates
all the possible combinations of blocks bl’ e,
bm with neither omission nor duplication. The
outline of the procedure is: (1) all the BCTs of
m blocks and n cutpoints are generated, where
l<n<m-1l; (2) blocks bl’ vee ,bm are assigned
to block vertices of a generated BCT ( labeling );
(3) cutpoints are assigned to vertices in each
block of the labeled BCT: and (4) object struc-
tures are obtained by connecting blocks according
to the cutpoint assignment.

Generation of ( m,n )BCT.. A BCT of m blocks

and n cutpoints is denoted by ( m,n )BCT. The
first step of structure generation which generates
( m,n )BCT is for the most part accomplished by
retrieving them from the BCT file. This reduces
the processing time of structure generation. When
m blocks are given, the number of cutpoints n var-

ies from 1 to m-1, i.e., 1<n<m-1l. The case of



n=1 corresponds to a "star" whose center is a
cutpoint, and n=m-1 1is the case that the de-
gree of every cutpoint is equal to two.

The procedure of ( m,n )BCT generation is to
collect the trees that have m block vertices and
n cutpoint vertices. Let N-tree denote the tree
with N vertices, where N=m+n. An N-tree is
generated from an (N-1)-tree by adding one vertex.
Now, let T={ ty,ty, «=-° 'ty } be a set of all
(N-1) -trees, where ti represents an (N-1)-tree,
and let Ti be a set of trees which are generated
from t. e T by adding one vertex, T'==T1L1T2U
oo uTZ is a set of N-trees. Therefore the
generation procedure of N-trees is divided into
two parts: the generation of T, (i=1, *** ,17)
and the generation of the union T'.

{1) Generation of Ti' Let ti==( V,E ), tie T.
-First a set of vertices V is divided into orbits
of permutation group on V. The element of this
permutation group is automorphism of tss that is
to say, the permutation on a vertex set V which
preserves the adjacency relationship among ver-

tices:



V=‘V1u'vzu s+ UV_, Vpnvq=¢> for any p=zdg.
The vertices in a subset Vj ( j=1, ¢+« ,r ) are
topologically equivalent. Second, an N-tree is
generated from ts by adding one vertex to the
arbitrary vertex in Vj ( =1, *¢*+ ,r ). There-
fore the number of generated N—treés is the number
of orbits, i.e., lTi]==r.

(2) Generation of T'. T'==TllJT2 U 7
gives the total N-trees, but Tierj==¢ dose not

LAY uT

always hold. The duplications ( i.e., the el-
ements of Tierj ) should be eliminated. This
problem is solved by introducing linear order into
the set of N-trees; an N-tree is coded into numer-
ical sequence by Edmonds' method,13 and is stored
in the appropriate vertex of binary tree which
should represent the set of N—trees.14 Duplica-
tion is detected when a generated N-tree is found
in the vertex in which it should be stored. The
set of N-trees is generated in this manner, but it
consists of BCTs and non-BCTs. An N-tree is a BCT
if and only if it satisfies the BCT's property (4)
described in section 2. An N-BCT is a bipartite

graph whose vertex set consists of block and



cutpoint vertices, and are classified according to
the parameter ( m,n ), where m and n are the num-
bers of block vertices and cutpoint vertices re-
spectively. The BCTs which are stored in the BCT
file are restricted to those in which the degrees
of all cutpoint vertices do not exéeed four,
because the ceiling of the free valence may be set
to four for most organic compounds. These are
called valid BCTs. Table I shows the number of
BCTs in each class corresponding to ( m,n ). The
valid ( 6,n )BCTs ( n=2, *+*+ ,5 ) are shown in
Figure 3. The total number of valid ( 6,n )BCTs
is 20.

Labeling vertices of ( m,n )BCT. A BCT is

a bipartite graph whose vertex set consists of
block and cutpoint vertices, and the terminal
vertices are all block vertices. Therefore, it is
easy to distinguish block vertices from cutpoint
vertices. The second step of the structure gen-
eration is to assign the elements bl’ s ,bm
of the given block set to the block vertices of the
"( m,n )BCT. This procedure is called labeling.

Now let Cl’ s Gy denote the colors of

blocks, and let ni be the number of blocks whose
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color is Ci (li==1,--- +k ), where it is assumed
that Ny<n,<eses<n without loss of generality.
Labeling is in block number order; the first is Cl'
the second Cyr and so on.

(1) 1f nl=n2=---=nk_l=l, Ci (i=1, ¢+,
k-1 ) is assigned to the representative block
vertex of a class partitioned on the basis of .
topochromatic equivalency. If block vertices of
an ( m,n )BCT are partitioned into 7 classes

gyr *t* 9y there are I ways of assignments of Ci'
When C; is assigned to the representative of a
class, bj' the following condition should be sat-
isfied between the degree of the representative in
the ( m,n )BCT ( deg bj(Ci) ) and the number of
the constituent vertices of the block C; ( [SERE

deg bj(Ci) < |c. (a)

il
If there are no classes which satisfy the condi-

tion (A), it means that the assignment of

Cyr ***,C;_; which resulted in the assignment of
the Ci should be forbidden. After the assignment
of Cy,*+*,C,_y 4is finished, C, is assigned to

the remaining block vertices under condition (A).

- 11 -



This labeling procedure can be represented in the
form of a tree, and an assignment of Cl’ cee ,Ck
corresponds to a path in the tree which connects
the root with a terminal vertex. Therefore the
number of labeling methods is egquivalent to the
number of terminal vertices of depth (m-1) in
the tree, and there are no duplicates. This tree
is called a generation tree.
(2) When sz 2 for some <k, the vertices
whose depth is from In to (n.-1+ I n_)
p=1 P ] p=1
for j=2, or from 0 to ( nj-l ) for Jj=1, are
the same color in the generation tree, so if the
procedure described above is applied, there will
be duplication. To avoid the duplication, color
Cj is assigned nj times to block vertices: First,
the block vertices to which colors are not yet
assigned are partitioned according to topochromat-
ic equivalency. This partition is not limited to
the simple classification based on orbits, but is
further subdivided. Those classes are organized
hierarchically. The subdivision is performed
according to the degree of consanguinity among

vertices. If the distance between vertices u and

- 12 -



v of the same orbit in a rooted tree is k, the
degree of consanguinity between u and v is k.

This is denoted by san( u,v ) =k. The relation
introduced into vertices of the same orbit as the
degree of consanguinity within k ( san( u,v ) <k )
is an equivalence relation ( denoted by "=" ).

The following apply if u, v and w are vertices
which belong to the same orbit: 1. a reflexive
law: u=zu ( san( u,u )=0 ). 2. a symmetric law:
if uszv, then vzZu. 3. a transitive law: 1if
uzv and vZw, then u:z=w. ( The transitive law
is shown as follows: assuming that u%§w, and x
is the closest common ancestor of u and w, there
should exist two paths which connect v with y or z
(#x ) which are on the path between u and w. Then
there exists a cycle which contain vertices x, y
and z, and this contradicts that x, y and z are
the vertices of a tree. ) If partitions of

san{( u,v )f;kl and of san( u,v ):Sk2 are ob-
tained for k1 and k2 when kl-<k2, the former must
be a subdivision of the latter. Therefore the
hierarchical partitioning structure is obtained
based on the relation of the degree of cbnsanguin—

ity ( see Figure 4 ).
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This partitioning structure can be represent-
ed in the form of a tree ( called a partitioning
tree, as in Figure 4 ). Then the labeling problem
at this step is equivalent to enumerating all the
ways of assignment of the same things ( color Cj )
to the rooms ( vertices in a level ) stepwise
in order of depth. The capacity of each room
( i.e., the maximum number of colors to be admit-
ted ) is determined for every depth. That is to
say, the capacity of a room is equivalent to the
sum of the numbers of members of classes corres-
ponding to the descendant leaves of the vertex
( a room ).

After color Cj is assigned to the leaves of
a partitioning tree, specific block vertices to
which color Cj is to be assigned are selected
arbitrarily from leaf classes hy the number of
assigned members. In the generation tree, label-
ing paths are grown by connecting Nj members se-
lected serially with the parent. This problem is
equivalent to the problem of partition of an in-
teger under some restriction.

The example of labeling one of the ( 6,4 )BCT
is as follows: A ( 6,4 )BCT and block colors C

l,

- 14 -



C, and C4 which should be assigned to it are shown
in Figure 5(a). Block vertices ofvthe { 6,4 )BCT
are numbered from 1 to 6. As nl==l, n2==2
and C

and n3=3 (i.e.,n1<n2<n3),c are

1’ 72 3

assigned in this order. And

#node(C1)= 3, #node(C2)==6, #node (C5) = 2
and

degl = deg2 =degd = deg5=degb6=1; deg3=4

so colors Cl and C3 cannot be assigned to vertex 3
( condition (A) does not hold ).

(1) Assignment of Cq- Block vertices are parti-
tioned into three orbits, gl='{ 3},9,=11,2}
and g,= { 4,5,6 }, but g; is rejected by condi-
tion (A). Therefore there are two kinds of assign-
ment of Cl: g, and gs3- It is .arbitrary to select
representative vertices from each class, and the
selecting vertex 1 from 95 and vertex 4 from g3
corresponds to the roots of generation trees Tl
and T, shown in Figure 5(b).

(2) Assignment of C,. 1In case of generation tree
Ty the remaining vertices are partiticned into

three orbits gl='{ 2}, g,={31} and
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g4 = { 4,5,6 }. Since further subdivision based on
the degree of consanguinity dose not exist for
these classes, n, (=two) of the color C, are
assigned to gqr 9, and g3~ There are four sets of
assignments, { gy,9, Yol gy09;3 YA 95193 } and
{ g5 }. The number of members assigned to each
class ( each element of a set calculated above )
are {1,1},{1,11%},{1,1} and { 2 }.

And finally, selection of specific members
from each class is arbitrary, so we get { 2,3 1},
{2,4}y,{3,4} and { 4,51} as examples.

Procedures for generation tree T, are similar
and straightforward.
(3) Assignment of C3. This is the final color to
be assigned, and the only way is to assign C, to
all the remaining vertices. However, it should be
noted that some paths are blocked by condition (A)
upon assigning Cyi color Cq and Cy cannot be as-
signed to vertex 3, and this is shown by X in
Figure 5(d). Final generation trees are obtained
as in Figure 5(d) when C3's are assigned.

Specific labelings corresponding to paths
connecting a root with leaves of depth 5 are shown

in Figure 5(e)

- 16 -



Assignment of cutpoints. It is not clear

how those labeled block vertices are connected at
the atomic level at this stage. The detailed
structures which specify the connectivity among
blocks at the atomic level are generated by alloc-
ating cutpoints in each block of the labeled BCT.
For example, in the ( 6,4 )BCT in Figure 5(a),
cutpoints a; from block 1 and 2, cutpoints ays Ay,
as and a, from block 3, cutpoint a, from block 4,
cutpoint aj from block 5, and cutpoint ay from
block 6 are selected and the connectivity among
blocks at the atomic level is determined.

The procedure of selecting cutpoints
ay, **° ,ap from a block bi is as follows: let
j=1.
(1) The constituent vertices of bi are partitioned
into orbits: gqr 'gq'
(2) An arbitrary vertex of Iy (k=1, *++ ,qg ) is
selected as a candidate for aj. There are g kinds
of selections of aj for a given selection of
ayr ttt oAy g
(3) If j=p, then end. Otherwise, go to (4).

(4) The selected vertex is regarded as a vertex

which is given a new color aj; go to (1) with
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j+« i+ 1.

This procedure is also implemented in the
form of generation tree described in the previous
labeling procedure for BCT.

The example of cutpoint assignment for a ben-
zene ring is shown in Figure 6.

Connecting blocks according to cutpoint as-

signment. Using the method of cutpoint assign-
ment for each block vertex of a labeled BCT,
structures are generated by connecting blocks with
other blocks in turn, fusing the cutpoints which
should be the same atom in the generated struc-.
tures.

If there are no symmetries in a labeled BCT
( i.e.; if there are no block vertices which are
equivalent topochromatically ), all the combina-
tions of cutpoint assignments for block vertices
give different assembled structures, i.e., there

are no duplicates among them. The number of
m
combinations of cutpoint assignment is Inz. ,

where there are Zi kinds of cutpoint assignment
in block bi' However, if there is a symmetry in

a labeled BCT, there are duplicates in
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h=e

Zi structures. To avoid these duplicates, the
1

i
problem of connecting the blocks is considered in
the same way as the problem of coloring block
vertices. This is equivalent to selecting a kind
of cutpoint assignment for each block vertex,
where the kinds of colors are equivalent to the
kinds of cutpoint assignment inherent to the
blocks. Therefore, this problem is solved sim-
ilarly to the problem of BCT labeling. The struc-
tures generated by connecting blocks of Figure 5(e)
are shown in Figure 7. Six structures shown in
the lowest part of Figure 7 correspond to the
first and last three assignments for six-ring (C2)
shown above them. There is only one labeled BCT
which could be connected at the atomic level.

The other three BCTs are excluded by the condition
that the degree of a cutpoint must not be greater
than four.

Partitioning vertices into orbits. When

block vertices of ( m,n )BCT are labeled, or cut-
points are selected from constituent vertices of
a block, it is necessary to partition these ver-

tices into orbits according to topochromatic

- 19 -



equivalency. Vertices u and v of a labeled
graph- G are equivalent toporochromatically if
f(u) =v for some automorphism f of G, where an
automorphism of a graph G is a permutation on a
set of vertices of G which preserves the adja-
cency among vertices. A set of all automorphisms
of G forms a group. The orbits of this group
are'the classes partitioned according to topo-
chromatic equivalency.

Therefore, if all the automorphisms are
found, it is easy to partition vertices. In prac-
tice, it is easy to find all the automorphisms for
a graph that is not highly symmetrical by using
backtrack search. The procedure of finding auto-
morphisms is as follows:

Let v=4{ 1,2, «*+ ,n } be a set of vertices
of G. The procedure checks whether the adjacency
relationship among vertices is preserved for a

permutation;

Let £(k) = ( il, es+ ,i, ) denote the left por-

k

tion of a permutation f corresponding to k
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vertices, i.e.,

k+l s 0 n
f = £(k)

lk+l e o @ ln

Assuming that £(k) is given, £(k+1l) is deter-
.

mined as follows: (1) i ev-{ il’ cee i

k+1
(2) Both ( k+1 ) and i

k
k+1 belong to the same
orbit. (3) The adjacency relationship formed by
vertices { 1, *++ ,k,k+1 } should be formed by
{ SRS S S }, where it is guaranteed that
the adjacency relationship formed by { 1, «-- ,
k' } is formed by { i;s *++ ,i }, so it only has
to be guaranteed that the adjacency between ik+l

and { i *++ ,i, } 1is the same as the one be-

1’ k
tween ( k+1 ) and { 1, *++ ,k }. Automorphisms
are obtained when the procedure reaches f(n).

If there are no vertices that satisfy the condi-
tions (1), (2) and (3), then there are no auto-
morphisms which contain f(k) as a part of a
permutation ( see Figure 8 ).

It is not required necessarily to find all
the automorphisms for partitioning vertices into

orbits, because vertices can be classified into

some classes ( these are integrated to some orbits
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when an autpmorphism is found, and the automor-
phism that should be found next is conditioned
that it has to contain at least one cycle that
maps a vertex ( member ) in some class to another
class's member. If there is no automorphism that
satisfies the condition, the resulted classes give
the orbits. The program that is implemented ac-
cording to this algorithm is also prepared, and is
useful for getting orbits for highly symmetrical
graphs.

Partitioning vertices of a tree into orbits.

The programs that give partitioning of vertices
are prepared for both highly and not-so-highly .
symmetrical graphs by finding automorphisms de-
fined on a set of vertices. On the other hand,
the particular partitioning procedure that dose
not use automorphisms explicitely is prepared for
trees.

This partitioning is accomplished by using
Edmonds' canonical form of a tree. Assuming that
there is one "center" in a given tree. Then the
only vertex that is topologically eguivalent to
the center is itself. Regarding this tree as a

rooted tree whose root is the center vertex,
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vertices u and v are equivalent if and only if
they satisfy the following three conditions:
(1) Vertices u and v are the same distance from
the center.
(2) The parents of u and v are the same vertex, or
an equivalent one.
(3) The subtrees whose roots are u or v are iso-
morphic, where a subtree is defined as a subgraph
that consists of a vertex ( u or v ) and its all
the descendants in the given rooted tree. Since
these conditions are checked immediately in terms
of Edmonds' canonical form of a tree, partitioning
vertices is given by investigating vertices for
every distance from the root to leaves of a maxi-
mal distance. The classes partitioned in this
fashion agree with the orbits of the automorphism
group described previously.

When there are two centers in a given tree,
it can be coped with by inserting a dummy vertex
between the two vertices, converting the case of

one center ( see Figure 9 ).
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CONCLUSION

A method to generate chemical structures is
presented, and it is based on BCT representation
of chemical structures, on labeling nodes of bi-
partite graphs ( BCT ) corresponding to blocks and
on allocating cutpoints in the blocks.

The programs were implemented in FORTRAN on a
ACOS-900 computer, and the spectral data were
edited from EPA/NIH Mass Spectral Database ( 1975
edition, about 11300 records ). BCT file is or-
ganized according to parameter ( m,n ) as shown in
Table I. The execﬁtion speed of structure genera-
tion depends on the times of orbit computation in
the generation stages such as BCT lébeling, cut-
point assignment and then connecting blocks.
Apparently orbits should bé computed for each
node of a generation tree except leaves, so the
number of orbit computation equals to the number
of nodes ( not leaves ) of generation trees.

The execution time of orbit computation depends on
the number of vertices and symmetric degree of the
graph, so we prepared three types of programs for
orbit computation. This method of structure gen-

eration is useful for automatic structure elucida-

- 24 -



tion, and constitutes a part of ASASMAS.
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

FIGURE LEGENDS
BCT representation of chemical struc-
tures.
Block diagram of the automatic struc-
ture analysis system of mass spectra
( ASASMAS ); GENERATION is the program

set for structure generation.

‘Valid ( m,n )BCTs for m=6.

Partitioning of vertices of a tree

including the degree of consanguinity.

(a) A skeleton of a ( 6,4 )BCT and
blocks.

(b) Assignment of Cq to ( 6,4 )BCT and
roots of corresponding generation
trees Tl and T,

(c) Growth of generation trees through
assignment of Cs.

(d) Completion of generation tree T,
and T,.

(e) Four kinds of labeling correspond-
ing to four paths of generation
trees.

(a) Partitioning of vertices.

(b) Assignment of Cy and following
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Figure 7.

Figure 8.

Figure 9.

Table I.

partitioning.
(c) Assignment of C, and following
partitioning.
(d) Assignment of Cs-
Connecting blocks at the atomic level.
Example of vertex partitioning. There
are 32 automorphisms on the set of
vertices of this graph.
Example of tree vertex partitioning.
There are 9/ automorphisms on the set
of vertices of this tree. In practice,
it is impossible and unnecessary to get
all of them for the purpose of parti-
tioning vertices.
Number of BCTs classified according to

parameter ( m,n ).
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node 1256738910%4111213
code 13411141114111
s1 s2 s3

S1=S2=ZS3 > 2= 3=y

similarly
S5mgu7=gugui0niini2s3

Figure 9

n
m 1 2 3 4 5 6 7
2 1

3 1 1

4 1 1 2

5 1 2 3 3

6 1l 2 6 7 6

7 1 3 9 17 18 11

8 1 3 13 30 51 44 23
9 1 4 17 53 109 148

10 1 4 23 79 213

11 1 5 28 119

12 1 5 35

13 1 6

14 1

Table I. Number of BCTs classified according

to parameter ( m,n ).
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