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Abstract

We present an associative descriptor scheme to take advan-
tage of address arithmetic in accessing lists and vectors. The
scheme employs an associative table for storing descriptors for
lists and vectors. In parallel with each access to the struc-
ture with its base and index, the associative descriptor is
searched for the size of the structure and hardware’range check
is performed. This operation hence can be done with 1little or
no overhead 1in accessing the structure. This scheme is stra-
ightforwardly applied to fast indexed access to vectors and also
to fast random access of any list element when combined with
CDR-coding. This fact further suggests a method for uniform
handling of a list and a vector. Implementation aspect of the

scheme using parallel hashing is also discussed.
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1. 1Introduction

Exploitation of address arithmetic capability to access a
word 1in 1linear structure has long been a common practise. It
has been limited in Lisp environment due to the overhead of

range check and to the storage structure of a list.

“Array feature” does exist since the earliest implementa-
tion of Lisp [1], but a need for efficient implementation of
-“indexed accesgp was fully recongnized only recently by develop-
ers of a Lisp-based large scale formulé manipulation system [2].
Along this line Fitch and Norman implemented Lisp in which vec-
tors (one-dimensional arrays) play essential role in speeding up
“big-num” arithmetic [3]. Efforts have been made to establish a
vector as a basic and well-defined standard data type in Lisp

[4].

On the other hand, a technique of accessing a random ele-
ment of a list was suggested, although not seriously considered
so far, in the researches on microprogrammed Lisp machines [5].
In recent implementations of Lisp on such machines, elements of
a list are arranged in adjacent locations, wherever possible, by
replacing the 1link pointer (called CDR-1link in Lisp) by a few

bit tag for economizing the storage. This method, known as

* By "indexed addressing (or access)" in this paper we mean mem-
ory addressing (or access) by the address obtained from the ad-
dition of head address of a linear contiguous area in- the ad-
dress space and a positional positive index from the head. It
does not necessarily imply the mode of addressing specified in
the instruction words, as is often found in conventional com-
puter architecture.



“Halfword Lisp” [6] or “CDR-coding”[5], shows the possibility of

use of indexed addressing to obtain a random element of a list.

Keller also noted the possibility of random access to the
linear structure of a 1list in the CDR-coding scheme [7], but
discarding the CDR-coding scheme, proposed new data structures
tuple and conc; tuples for representing what is essentially a
fixed linear list for taking advantage of indexed random access
and conc for avoiding long threaded list structures (or more po-
sitively exploiting the resulting structure in parallel comput-

ing).

Observing the developments towards incorporating indexed
access capability to Lisp in the arena of software, wé investi-
gate in this paper the issue of the indexed addressing from ar-
chitectural point of view. Because the inefficiency involved in
the indexed access to either lists or vectors is attibuted to
the range check of whether the computed address is in the range
of the intended linear contiguous area of the storage, we first
focus on range check and propose the use of hardware range

checker.

In section 2 we consider the case for speeding up the
reference of an element of a vector and present an associative .
descriptor scheme for the range check. Then 1in section 3 we
discuss how the scheme can be applied to speeding up the refer-
ence of a random element of a list. Further in section 4 we

discuss implementation aspect of the scheme.



2. Speed-up of vector element referencing

Speeding up the element reference and complete range check
on conventional systems is a conflicting requirement and often
the latter is sacrificed for the former. However, range check
is indispensable in the programming environment where vectors
(possibly many and small) are created and deleted dynamically
and their range is generally undetermined at compile time, such
as in the case of Lisp. 1Illegal access to unintended area could

result in total disruption of storage management mechanism.

The check should be made prior to or in parallel with the
memory access. With pure software means, the code for the range
check is inserted before actual memory access. The check re-
quires time longer than the actual memory access on conventional
architecture, even when the vector 1is statically allocated.
More overhead for the range check of dynamic vectors will be ex-
pected. Program verifiers [8] and some optimizing compilers [9,
for example] can remove range check code in some restricted
cases of static vectors, but their usefulness is very limited in

general cases.

A typical and general method to cope with the dynamic vec-
tors 1is to provide a descriptor of a vector as shown in Fig.
l-a (method A). 1In this case, besides code fetch, three memory
accesses are necessary; for the upper limit, the base and the
element itself. Another method (method B) is to provide a
header in the vector body and to place the upper limit in the

header. 1In method B, a vector is represented by a pointer to



the head of the vector body (Fig. 1-b), rather than by a
pointer to the descriptor in method A. Method B eliminates the
indirection to get to the head of the vector body but loses the
flexibility in handling; in particular sharing the part of the
vector body is difficult. 1In both cases the memory access to
obtain the limit and subsequent check of the index with the

limit must precede the memory access to a vector element.

The above defects can be removed by providing descriptors
in an associative table and by representing a vector by a
pointer to the vector body, as shown in Fig. 2. We call this
scheme “associative descriptor scheme”. Descriptors disappear
from the software scene, in that only vector bodies and the
pointers to them are present in the main memory. Thus we can
obviate the indirection via a descriptor to get to the vector

body without losing the flexibility.

In accessing the i-th element of the vector, we require
that
(1) access path to the associative memory
(to be called AM hereafter) is different from the one
to random access main memory (to be called RM hereafter)
where the vector body is stored,
and that
(2) the sum of the access time to AM and the time for comparison
of limit u and index i is less than or comparable to the sum
of address addition time (base b plus index i) and the

access time to RM.



Descriptor (b u) which consists of base b and upper limit u is
stored in AM. The vector base is a key to interrogate AM and
limit u associated with the key is retrieved as a result. In
reading, access to AM and RM are made in parallel, and by the
end of RM read cycle the result of range check is reported. In
writing, access to AM should precede the RM write cycle. 1In

Table 1 we give basic operations on AM.

%)
Operations for the following basic Lisp functions in our

scheme are now described below:

GETV([v,i]: Get the i-th element of a vector v.
v points to the vector body.
l. Compute v+i and initiate SerAM[v] (cf. Table 1)
simultaneously.
2. Initiate memory read cycle with address v+i.
3. Obtain the result, u of SerAM[v]. )
4. If i>u then obey interrupt sequence ‘else return
the read-out value when the read cycle is completed.

PUTV[v,i,w]: Place the value w in the i-th element of a vector
Vo
l. Compute v+i and initiate SerAM[v] simultaneously.
2. Obtain the result, u of SerAM[v]
3 If i>u then obey interrupt sequence else
initiate memory write cycle with address v+i and value w.

MRVECT[u] : Create a new vector whose upper limit is u.
l. Set v <- alloc(u+l).
{alloc is a function which allocates storage for
consecutive u+l elements and return the head address
of the allocated storage.}
2. CreAM[v,u] and return v as the result.

T ————— ————— | —— ——————— " ———— —————— - —————— - —— — —— ] — ————— —— ——————— o -

* We use names of the functions on vector handling given in
Standard Lisp Reportl[4].
** The interrupt sequence is not elaborated in this paper.



To delete vector v whose descriptor is (v u), DelaM[v] (cf.

Table 1) is performed.

In list processing sharing the structure or sub-structure
is customary and important. The simplest functions which effect
the sharing are CDR, CDDR, ... etc.. It is highly desiarable
not only for the sake of more flexible handling of a vector but
for the sake of the notional compatibility of a list and a vec-
tor, that the sharing of the structure can be achieved with max-
imum efficiency, like CDR on a list. Function SUBVECT[v,m]
which corresponds to CADR...DR performs that function.

"
SUBVECT [v,m] : Take a sub-vector of vector v, that is the vector
excluding the first m elements of the vector v.
1. SerAaM[v] and obtain limit u of vector v.
2. If m > u then obey interrupt sequence.
3. CreAM[v+m,u-m] (cf. Table 1) and return v+m as the result.
A problem on sharing sub-structures by modifying the already

built structures is discussed in section 3 in conjunction with

RPLACD in the associative descriptor scheme.



3. Linearized lists and fast look-up of a random element of a

list

In the CDR-coding scheme mentioned in section 2, 2 bit tag
is used in each list word to distinguish the four cases of adja-
cency [5]:

. CDR is the next word (CDR-NEXT).
The next word is used as CDR-link (CDR-NORMAL).

The word is the end of list (CDR-NIL).
The word is used for indirection (INDIRECT).

B> wN -
L] L]

When n element list is structured in a way that each of the
first n-1 consecutive words is tagged as CDR-NEXT and the last
word is tagged as CDR-NIL, it is called linear. A 1linear 1list
exhibits the same data structure as a vector body and each ele-
ment of which can in principle be accessed by using the index
from the head of the list. That is, the i-th element can be ac-
cessed by computed address of p+i where p points to the head of

the list.

This simplified version of list element referencing suffers
from two defects:
(1) List structures change dynamically; for example when RPLACD
is operated on them, the linearity of the structures is general-
ly lost.
(2) Because the number of elements of the list is not readily

known in many cases, upperbound range check will be difficult.

We recall that in our scheme of section 2 the descriptors
are used for range check of accesses to any linear contiguous

area. Hence, provision of the descriptor to each linear list or



linear part of lists (partially linear lists) such as shown in
Fig. 3 is sufficient to check whether the addreséed word is a
part of a list. That is, whenever linear lists which are meant
to be accessed by an index, a descriptor of a 1list, consisting
of the head address and the upper limit is created dynamically
in AM using the primitives of Table 1, as in vectors. In the
case of a partially linear list, a descriptor for that particu-

lar linear part is created.

To further elaborate our discussion, we present three bas;c
functions to be used in the associative descriptor scheme;

VECTL[r] to create a descriptor of list r in AM,
thereby enabling the use of indexed
access capability on r,

-DEVECT[r]V to remove a descriptor of r from AM,
if exists, thereby disabling the use of
indexed access capability on r,

SELECTN[r,i] to select the i-th element of list r,
using the descriptor(s) of r stored

in AM, if any.

VECTL[r]: Let r be a 1list (r0 rl r2 ... rk) .
After the execution of VECTL[r], random access to an
element of list r can utilize the address arithmetic.

l. Set u <- SerAM[r].

2., If u > 0 then goto step 6.

3. {r is not in AM.} If the tag of the list head is INDIRECT
then terminate the algorithm returning -1.

4, Scan the list from the head until finding
CDR-NIL, CDR-NORMAL or INDIRECT, and obtain u” (<k)
of the upper limit of the linear part of the list.

5. Enter (r u”) in AM, i.e. CreAM[r,u”] and terminate the
algorithm, returning u” as a result.

- 10 -



6. {r is linear upto the u-th element.}
Access directly the u-th element by address r+u.
Scan the list from the u-th element until finding
CDR-NIL, CDR-NORMAL or INDIRECT and
obtain i (< k - u) of the additional
linear length of the remaining list.

7. Enter (r u+i) in AM, i.e. RepAM[r,u+i] (cf. Table 1) and
terminate the algorithm, returning u+i as a result.

(Figure 4 shows the process of the execution of VECTL.)
DEVECT[r]: This function is to remove the descriptor for r
from AM, if any.

DelAM[r] does exactly the function of DEVECT[r].

- 11 -



SELECTN[r,i]: This function selects the i-th element of list r
if i is less than the length of the list.

l. Set u <- SerAM|r]. :
2. If u=-1 then goto step 5.
3. If u<i, goto step 6. ' ‘
4. Read the word at address r+i and terminate the algorithm.
{steps 3 and 4 are performed in parallel.}
5. Scan the list from the head upto the i-th element and
if CDR-NIL is encountered on the way
then terminate the algorithm with error
else terminate the algorithm, returning the i-th element.
6. {r is partially linear.} Access the u-th element.
7. If the tag of the u-th element is CDR-NIL
then terminate the algorithm with error.
8. {Get to the next node.}
Set t<- the content of the word at address r+u+l.
9. Call recursively SELECTN[t,i-u-1] and terminate the
algorithm, returning the result of SELECTN[t,i-u-1].

Note that (i) even when the descriptor for r is removed, «r
can be accessed as an ordinary list scanning each element of the
list and that (ii) the execution of VECTL does not affect the
data structure in RM. Hence, CAR, CADR, CDR etc. can be per-

formed as before.

In effect, the descriptor scheme for lists is a device for
speeding up the element referencing. Programmers can have en-
tire control over the use of VECTL and DEVECTL on 1lists except
that DEVECT is also forcibly performed by the system”s garbage
collector and by thé functions which modify the structures, not-

ably RPLACD.

When RPLACD is perfomed on the 1linear 1list, the related
descriptor(s), if any, must be updated to reflect the fact that
“tail” of the list is cut. The following is the algorithm of
RPLACD in our scheme. It is noted, however, that the use of

RPLACD should at best be avoided, since the execution time of

- 12 -



RPLACD

is proportional to the length of linear part of the list

on which RPLACD is operated on, not to mention harmful side ef-

fects it would cause.

RPLACD[r,s]: This function replaces the CDR part of r by s.

l.

If the tag of the word w pointed by r is CDR-NEXT or

CDR-NIL then goto step 2,

else if the tag is INDIRECT then perform RPLACD[w,s]
else perform RPLACD[r,s] in the non-CDR-coding
(traditional) scheme.

Terminate the algorithm, returning the result of RPLACD

operated in this step.

Change the tag and the data field of w into INDIRECT and

CONS [CAR[r],s], respectively.

DelaM[r].

Set i <- 1.

If the tag of the word at address r-i is CDR-NEXT

then goto step 6 else terminate the algorithm.

If SerAM[r-i] # -1 then RepAM[r-i,i-1]

Set i <- i+l and goto step 5.

- 13 -



4. Considerations for implementation of the associative

descriptor scheme

We shall assume that the values of index i and base b are
provided by the external logic (possibly registers in CPU). The
essential part of our scheme is AM. A practical method for re-
alizing large scale AM which satisfies the requirement given in
section 2 is hashing for the followihg reasons:

(i) Hardware hashing can be performed very fast, mostly with
single access to hash table memory (which is realized by
conventional random access memory), if the memory is
configured to be multi-banks which are accessed in parallel
[10].

(ii) AM need only be a single-hit associative memory, which is

suited to hashing.

In case that the number of descriptors to be entered to AM
exceeds the capacity of AM, we have following choices;
(a) to abort the computation if the load factor of AM exceeds
the prespecified value; say, 0.85 - 0.95,
(b) to make overflow area in main memory (RM) and prepare for
possible decrease in efficiency if AM is overflowed,
(c) to trigger garbage collection and reclaim unused descrip-
tors.
Method (¢) can be combined with either method (a) or (b). In
conjunction with (c), we should note that all the descriptors of
lists may be deleted, if necessary, since they only decrease the

efficiency of element referencing.

- 14 -



None of these methods poses difficulties to hash associa-
tive memories. It is of course necessary that certain number of
look-ups of AM should give rise to the condition to trigger the
garbage collection before the hash search turns into a practi-

cally exhaustive search on AM (or RM) if method (b) is used.

5. Concluding remarks

We showed that in the associative deécriptor scheme a memo-
ry access with complete range check can be performed without in-
curring overhead. We applied the scheme to the speed-up of re-
ferencing 1lists and vectors by taking advantage of the address

arithmetic.

Our discussion also suggests a method for handling 1lists
and vectors uniformly when a tag for CDR-coding is provided in
each element of a vector. Traditionally, there is distinct dis-
ciplines on the use of lists and vectors. We can either follow
the tradition and use consciously lists and vectors in a differ-
ent way, or pursue a way for integrated use of lists and vec-
tors. 1In the latter approach, following considerations are due:

(1) Facilities are necessary for reserving a certain amount
of storage for initial “CONS” in addition to node-wise
allocation by repeated application of “CONS~”.

‘(2) We need to check the tag of the boundary word of a
vector to ensure that the structure is not extended
by CDR-1link, because condition i>u does not always

imply actual range violation.

- 15 -



However, once linear structure is constructed and the size is
fixed, there is no reason to distinguish between lists and vec-
tors with regards to random access capabilities and the data

structures.

As a natural extension we consider following themes for
further research; efficient implementation of the tagged archi-
tecture and development of a Lisp system based on the associa-

tive descriptor scheme.

- 16 -
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Table 1 Basic operations on AM

SerAM|[b]

searches a descriptor with base b.
If the descriptor (b u) is found then
upper limit u is returned else -1 is returned.

DelAaM[b]

removes a descriptor with base b from AM,
it exists in AM.

CreAM[b,u]

creates a new descriptor (b u) in AM.
When base b already exists, the descriptor is not
created.

RepAM([b,ul

creates a descriptor (b u) in AM. When base b
already exists the associated upper limit is
replaced with u.
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Figuré 3. Descriptors for Lists in the Associative Descriptor Scheme

Tag *1 - *4 respectively denote the kind of tags 1 - 4 described

at the beginning of section 3.
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ASSOCIATIVE

DESCRIPTOR
TABLE
r 3
1 1
| 1
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random access by address r+3
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Figure 4. Process of Execution of VECTL[r]

This figure shows the case of k=7 and u=3 in the description
of VECTL[r]. The value of i in step 6 gets.4, anq after the
execution of VECTL[r] the 1imit of the descriptor is chaged to 7.
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Representation of a vector using a descriptor
Representation of a vector using a header
Associative descriptor scheme

Descriptors for lists in the associative descriptor
scheme

Process of execution of VECTL{r]

Note to the figure 3
Tags *1 - *4 respectively denote the kind of tags 1 - 4
described at the beginning of section 3.

Note to the figure 4

This figure shows the case of k=7 and n=3 in the description
of VECTLI[r].

The value of i in step 4 becomes 4, and after the execution
of VECTL[r] the size of the descriptor is changed to 7.
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