ISE-TR-80-18

A COLLISION RESOLUTION TECHNIQUE

BY USING PREDICTORS

by

Seiichi Nishihara

August 15, 1980

~ INSTITUTE
| L bF L
INFORMATION SCIENCES AND ELECTRONICS

 UNIVERSITY OF TSUKUBA

ISE-TR-80-18

A COLLISION RESOLUTION TECHNIQUE BY USING PREDICTORS

Seiichi Nishihara

August 15, 1980

Institute of Information Sciences and Electronics
University of Tsukuba
Sakura-mura, Niihari-gun, Ibaraki 305 Japan

1. Introduction

The most remarkable feature of hash addressing is that
the average number of probes depends just on the fraction o
of the table that 1is occupied; it is not affected by the
total number of keys. Since any key=-to-address
transformation generally makes a many-to-one mapping, it
will probably happen that more than one distinct keys are
hashed to the same address. Those keys having the same
home address are called synonyms. Such an occurrence,
called a collision, causes many kinds of clustering
phenomenall].

Many techniques of resolving collisions have been
proposed. They are classified mainly into two categories:
open addressing and chaining[3,4]. In open a&dressing, in
addition to the hash function H, which determines the home
address H(k) of a key k to be stored, a collision~resolution
function h is necessary for tracing through the table until
an empty cell is encountered. The probe-sequence generated
by the function h for a key Kk is expressed as h(i,k),
i=0,1,...,M-1, where M is the table size. ‘Here, h(0,k)=H(k)
and 0£h(i,k)sM-1, for 1i=1,2,.... The other approach to
collision resolution is the direct chaining method[4], in
which all the keys transformed to the same address are kept

in a chain using simple list processing techniques.

Both hashing techniques - and many variations are
surveyed in references [3] and [4], and details are omitted
here. Assuming equal wusage of cells, the theoretical
approximation of the average number of probes necessary to.
retrieve a key in a hash table has been given for éach
method[3,4]: |
-(1/d)1n(1l-dl), for open addressing eliminating primary and

secondary clusterings(ll],

1+0/2, for direct chaining, (1)
where ol is the 1load factor of the table. In general, the
average number of probes needed.in open addressing cannot
be less than that needed in chaining. In a recent
paper[2], a method named pseudochaining which combines
characteristics of open addressing and chaining was
proposed. The performance of pseudochaining lies between
those of the other two methods.

In this paper, another combined method is proposed,
whose performance in terms of the average number of probes
is essentially equal to that of chaining. In the following
sections, a new method using a predictor, a several bit
field assigned to each cell, and an extension of this method
are described. Then the retrieval efficiencies of the
predictor method and its extension, called the multiple
predictor method, are estimated theoretically and verified

by experiments. In conclusion, it 1is proved that a

predictor of more than four or five bit length is always
preferable to chaining from the viewpoint of efficient use
of memory, and furthermore that the multiple predictor
breaks through the limitation 1+o¢//2 of diredt chaining

without expending extra space.
2. Description of the methods

2.1. The single predictor method
| Our technique is applied to the open addressing method
in which secondary élustering may occur. A hash table of
size M 1is a set of M successive cells addressed from 0 to
M-1. Each cell contains not only an item space(key field)
but also a p bit field as a predictor. It holds a
nonnegative integer ¢, which 1is used for the purpose of
tracing only synonyms, i.e. Kkeys in the same cluster, where
0<g<(2P-1). |
Assume that the search for key k is now being performed
at the address h(i,k), i.e. none of the cells
h(0,k),.../h(i,k) contains the key k. In the usual open
addressing method, the next search address is h(i+l,k).
However, if the key in the h(i+l,k)-th location is not a
syhonym of Kk, there is no need to check this location. In
this case, the predictor value q is used to indicate the

number of probes to be skipped until the next address

containing a synonym is encountered. In other words, the
next synonym is fodnd in the h(i+q,k)-th location. Note that
the function h(i,k) is assumed to be directly computable; it
takes a key value, k, and a nonnegative integer, i, as
arguments and returns an address in the table. The predictor
of the last cell of a cluster is set to zero. It means that
no more synonyms exist in the table, which is the natural
extension of the interpretation of predictors and is very
effective for reducing reject time. In some cases the number
of probes that should be skipped in the search for another
synonym is greater than the maximum predictor value
max(=2p—1). When this occurs, after checking the
h(i+max,k)-th location, we must repeat probing operations
one by one until a synonym is encountered following the
probe sequence. This phenomenon is the only factor that
‘makes the‘average number of probes greater than that of the
direct chaining method. The additional cost is estimated in
the following section.

The 'algorithms for storing and retrieving keys may
easily be derived and so are not formulated here. The
detailed algorithm givén later for the multiple predictor

method includes the above algorithm as a special case.

2.2. The multiple predictor method

The multiple predictor method employs more than one

predictor and a predictor-selecting function g in addition
to the collision-resolution function h. The difference from
the single predictor method is the number N of predictors
reserved in each cell. The function g is used to determine
which predictor should maintain the synonym cluster. Synonym
here means keys having the same value of g as well as of the
hash function H. Assume that the predictor number g(k) for a
key k is determined independently of H(k), and 1<€g(k)SN
holds. The basic idea of the algorithm is much the same as
that wusing a single predictor, except that the multiple
predictor algorithm uses the g(k)-th predictor of each cell
rather than the single one. Let us introduce a function h'
using the collision-resolution function h as

h(0,k) (=H(k)), for i=0,

h'(i,k)={
h(i+A,k), for i2l,

where A is the bias determined by g(k) as
A=M-(g(k)-1)/N.

First the home address h'(0,k) (=H(k)) of the key k to
be searched for is computed. If h'(0,k) does not contain the
key ky then the second address to be checked 1is
h*'(L(h'(0,k),g(k)),k), where L(a,n) indicates the value of
the n-th predictor in the a-th cell. In general, the next

candidate address containing a synonym after checking‘the

h'(i,k)-th cell is given as h'(i+L(h'(i,k),g(k)),k). It may"
occasionally happen that even the maximum predictor value
cannot represent the number of probes to be skipped to reach
the next candidate address, in which case the search must
continue with on-by-one probing.

Now we give algorithms to store or search for key k by
using PASCAL-like expressions. In the following, T, L, M, N
and max are non-local variables denoting the hash table, the
table for multiple predictors, the table size, the number of
predictors reserved per <cell and the maximum value of a
predictor, respectively. T[a] and L[a,n] mean the key and

the n-th predictor corresponding to the a-th cell.

2.2.1. The storing algorithm

Initially tﬁe elements of T and L are all empty. The
function h' and g, assumed to be defined outside the
procedure, give the probe sequence and the predictor
identifier for a given key k to be stored. The algorithm is
as follows, where the variables a, kw, aw, i, n, b, g and qw
mean the home address of Kk, the key occupying the home
address of Kk, the home address of kw, the position in the
probe sequence, the predictor identifier(SN) for k, a
candidate address of an empty cell, a predictor value and
the temporary record of a predictor‘ value used by

'updatepredictor' procedure, respectively.

procedure store(k:integer);
label 1,2;
const empty=0 {means empty};
a,kw,aw,i,n,b,q,qw:integef;
procedure updatepredictor;

w:integer;

begin if g>max then w:=max glse w:=q;
if w<>gw then L[a,n]:=w
end;
begin {main procedure}
a:=h'(0,k);
if T[a]=empty then storeitem(a,k) {completed}

else

begin kw:=T[a]; aw:=h'(0,kw);
~if aw<>a then {displace the non-synonym key kw} -
Eggig Lla,g(kw)]:=0; storeitem(a,k):
K:=kw; a:=aw
end;
{hereafter, k:the key to be stored, a:the home address of k}

n:»=g(k) ; br=a; i:=0;

l:g:=L[b,n]; gw:=q;-

if g=0

then {search empty cell}

repeat q:=g+l; i:=i+l;
if i>M then table-full else b:=h'(i,k)

until T[b]=empty
else {trace the cluster}
2:if i+g>M then table-full
else begin b:=h'(i+q,k);
if h'(0,T[bl)=a and g(T[bl)=n

then begin i:=i+q; updatepredictor; goto 1

end
else begin qi=qt+l;
if T[bl<>empty then goto 2
end
end;
storeitem(b,k); updatepredictor {completed}

end

As the basic rule, starting from the home address the
cluster for the key k to be stored is traced through by
using the g(k)-th predictor till an empty cell is
encountered. If the home address is occupied by some key
whose home address is different, then that key is moved to
another 1location(item displacement), and the predictor that
pointed to the item displaced must be corrected. The
procedure ‘'updatepredictor' is used to chaﬁge the incorrect

predictor.

2.2.2. The search algorithm
procedure search(k:integér);
a,b,n,isinteger;
begin
a:=h'(0,k); b:=a; n:=g(k); 1i:=0;
while T[bl<>k and L[b,n]<>0
{i.e. not equal to k, but synonyms are not exhausted}
do begin q:=L[b,n]; 1i:=i+q; b:=h'(i,k);
_i_f go>=max
then while h'(0,T[b])<>a or g(T[bl)<>n
{search a synonym one-by-one}
do begin i:=i+l; b:=h'(i,k) end;
end;
if T[bl=k then found else not-found

end.

Searching 1s much simpler than storing. The program
includes two while-statements. The second one is executed’
only if g>max holds. However, if the length of the predictor
field is chosen to be more than 4 or 5 bits, such cases will
be very rare. Probing is caused in evaluating the logical
expression in the first of these while-statements. As noted
earlier, the absence of the key to be retrieved is

effectively treated by the final statement.

3. Searching efficiency of the algorithms

In this section, the searching efficiency of the two
methods proposed in the preceding section is analyzed in
terms of the mean number of probes.

First we consider the basic method wusing just one
predictor. Let p and x be the bit length of a predictor and
the 1load factor respectively. Then the maximum value r of a
predictor, denoted 'max' in the procedures, is 2P-1. Assume
that each <cell 1in the table is hit as frequently as any
other. Then, the probability that i keys are hashed to any
one cell may be given by the Poisson approximation éﬂExt/i!.

Figure 1 shows the storing process for key k when the
number of synonyms already stored is i, i.e. the hash
addresses of k‘,...,k@ and k are all identical. First the
tracing process of the cluster takes place, as shown by .
solid arrows. Then the scanning process to find an empty
cell follows, as indicated by dashed arrows.

Let us estimate the excess cost caused by those two
processes shown in Figure 1 over the direct chaining method.
Starting from the 1last cell of a cluster, the probability
that j probes are needed to find an empty cell is x*”-(l—x).
Whenever the number j does not exceed the maximum value r,
the number of probes needed to access this key on searching

is reduced to one by using the predictor. But if j>r, then

-10-

the home address of k reduces to l+e (x)

1+t (x) l+t (%) -~ on searchlng \\.

.iii;/—iiilié> //—‘;?if; /—~é§§>
process to trace process to find an
the cluster empty cell

. (a) the predictor methoq

the home address of k reduces to 1 on__ ~
' searchlng
process to trace process to find an
the chain empty cell "‘“4ﬂ

(b) the chaining method

CEE): ﬁﬂl <::>:empty

Fig.l. Storing process when the load factor is x.

-11-

the number of probes becomes l+j-r. Therefore, the average

probe number is estimated as

ixi (1-x)+ Z.(l’rj—r) -xj + (1-x)

=0 J=r+l
r

— X
= 1+ i—x °

Let er(x) be the excess cost needed to traverse the gap
between the two keys k; and k, as compared with the cost

using the chaining method. Then we have:

r
X

e, (x)= 1= . (2)

Next, let l+t,.(x) be the average number of probes neéded to
traverse between two synonym cells adjoining each other in é
cluster. Since the excess cost of traversing between two
keys 1is equal to e,(y), where y is the load factor when the
second key was stored, the average excess cost te(x)is given

by integrating and averaging e,(y) as

1
tr(x)— 3 Soer(y)dy

i-1

1 Loy _
= - 3 In(l-x)- Z% T . (3)
A=

The average traversing cost for keys placed earlier in a
cluster is usually less than that for Kkeys placed later; we
do not, however, take this into consideration. The average

excess cost to trace a cluster is (i-1)t, (x), where i is the

-12-

length of a cluster. Let s-{(x) be the total excess cost to
search a key which 1is stored when the load factor is x.
Then, from the results (2) and (3), and by the assumptioh of

Poisson approximation, it follows that

s, (x)= e _(x)+ 3 (i-1)+t_(x) *P(i,x)

=1

r 'xi «F '
= - In(l-x)-) F+ X - t o (x)+ (1-e™%). (4)
=1

Note that we do not consider the effect of key displacement
for simplicity. Instead, the excess cost e,(x) is taken into
account even if the key to be stored is the first key of a
cluster, to compensate for the primary effect of key
displacement. Let E(p,d) denote the average number of probes
needed to retrieve a Key in the table when the load factor

is od. Then, from (1) and (4),

oL

E(p,oc)—l+—-2 + 5 Sosr(x)dx
a 1 (% 1 . SdP(i x) S::
=]4+— 4+ = = - s
1 5 5 goer(x)dx+ 2 éﬂ(l 1) 0 X Oer(Y)dydx

i-1
_ g _ _ _ i (¢} . o
=2+% ~1n(1-a) - (l+i+l>

=1

A
-1 So t_(x)+ (1-e) ax, (5)

-13-

where r=2P-1.

Now we turn to the case of multiple predictors. Before
estimating the efficiency of multiple predictors, let us
consider an extended <chaining method, called the multiple
chaining method, which wuses more than one link field per
cell.

Let N indicate the number of link fields associated
with each cell. Each link field is used as a pointer to the
next synonym. Consider the case of storing a key into the
home cell, into which the storing algorithm has already
attempted to store i(21) keys(i.e. synonyms). Those
synonyms, except for the one stored in the home cell, have
been scattered again to the N lists by using another hashing
function 1like g used in the multiple predictor method. The
average length of each list is (i-1)/N. Since a new key is
stored after visiting the home address and all elements in a
proper 1list selected by the secondary hashing function, the
number of probes needed to retrieve this key later is
1+(i-1)/N+1 for i2l. Assuming that keys are scattered to
random locations of the table, the average search length for

a key stored when the load factor is x is given as

Nx)=)_ (1+i§i +1) P (i,x)+P (0,x)

i=1

~-14-

=2-L 4 (L _1).e7® 41X

Therefore, the average number of probes EN(d) for a

successful search is

A
EN () = %- ocN(x)dx
PO S S S s T«
_2N+u(N l) (le)+ N ! (6)

where o 1is the 1load factor. Note that when N=i, EN(d) is

reduced to (1), which is as expected. Note further that

o

lim EN(a)= 2—%(1-e-), (7)

N-oo

which gives the boundary of improvement by multiple
chaining.,.

The efficiency of the multiple predictor method will be
proved by estimating the excess cost over the multiple
chaining method, similar to the method used for estimating
the performance of the single predictor method in cdmparison
with the direct chaining method. Assume each cell has N
associated predictors. The excess cost of finding an empty
cell is wequal to (2). By using the results of (3) and the
discussion of multiple chaining, the averaged extra cost of
scanning the final key in a cluster is approximated as
ty(x)(i-1)/N, where x is the load factor. Thus the total

excess cost sﬂ(x) to search a key which was stbred when the

-15-

load factor was x is given as

N = i-1 , .
s, (x) =e (x)+ ;—N——-tr (%) *P(i,x)
i r

X 1 -
i T Tox (¥

X

|><

1. o1&
= ﬁln(l x) N%;i). (8)

Let EN(p,d) be the average number of probes needed for a
successful search when the load factor is . Then, from (6)

and (8),

o
EN (p,o) =EN (o) +§ go sl;] (x)dx

oL
B S N O N R PO R 3 -
=2 N +a 5) (L-e)+2N Na Soln(l x) dx
141 (P il S"‘ x* 1 -x
Na:;\i X axty 01_—deﬁ-&—_gotr(x)~(l-e) dx

=2+l-(l-1>.(1—e_“)+ii +%(l§9 -1)-ln(l-a)

d —
N&I(EFD) ia__ '1% Sotr(x) < (1-e"F)ax, (9)

where r=2P-1. If we let N approach infinity, EN(p,d) gives
the boundary of improvement by multiple predictors whose
.size is p, as:

=a

l-e
o

i-1

lim EN(p,a)=2- .

N+ co

1 r
Lin(-a) -0 %— . (10)
o O

When N=1, EN(p,o) naturally reduces to (5).

The integral in the last term of (5) or (9) is easily

-16-

3.0 r
E(p,d) , . .
open addre551ng(doubli hashing)
- —1In(1-d)
a
2.0
1.5
direct chaining l+=
1.0 irect chaining 5
p =
0.0 " ! 1 A 1 !) \ '
0.0 0.5 1.0

load factor O

Fig.2 E(p,0) of the single predictor method.

-17-

0.04

I
L |
direct chaining !
advantage :
[I
I
Excess {
cost 0 0.5 I .0 o
, i
multiple predictor H
- advantage /i
I
— B2 (4,0)
E? (5,0) |
L —E? (4’0")
-0,05¢ - E*(4,0)
\E‘e (430")
—-0.10r
non-reachable area Av//////z
" multiple chaining(N-c)
(giving lower boundary)
—-0,15*

chaining method, i.e. EN(p,a)——(l+a/2).

-18~

Fig.3 The excess cost of the multiple predictor method over the direct

evaluated by a standard numerical integration method. Figure
.2 and 3 show the estimated average probe numbers for
successful searching by the single predictor method and the

multiple predictor method, respectively.

4, Experimental verification

Applying our methods to the quadratic search method,
which is a typical open addressing method eliminating
primary clustering, we made the following set of
experiments.

Many cases of the size of a predictor field and the
number of predictors were tested. Each simulation run was
repeated 10 times and averaged for a table of length 2048
using pseudorandom keys. The results obtained for each case
are compared with the theoretical values i.e. E(p,X) or
EN(p,sl) in Table 1. Estimated efficiencies EN(?) of the
multiple chaining method and the ultimate values when N
approaches infinity are also listed in Table 1. It is seen
that the experiments give results very close to the expected
values.

The greater the bit length p of each predictor field is
chosen, the closer the value of EN(p,d) becomes to that of

chaining, i.e. EN(d). In the chaining method, the length of

-19-

Table 1 Sumary of results of simulations and theoretical values E(p,a) or EN(p,a).
predictor
methods

=3 p=4 p=5 chain

N: o N
n;}ggs.loiict. EN(S,u) observed EN(4,u) observed EN(S,a) observed E' (o)
0.1 1,050 1.049 1.050 1,049 1.050 1.049 1,050
0.2 1.100 1.099 1,100 1.099 1.100 1.099 1.100
0.3 1,150 1,154 1,150 1.154 1,150 1.154 1.150
0.4 1.200 1.203 1.200 1.203 1.200 1.203 1.200
=1 0.5 1,252 1.253 1.250 1.252 1.250 1,252 1.250
single 0.6 1.308 1,312 1.300 1.304 1.300 1.303 1.300
0.7 1.379 1.389 1.351 1,354 1.350 1.351 1.350
0.8 1.498 1.521 1.409 1.412 1.400 1,398 1.400
0.9 1.809 1.832 1.543 1.545 1.460 1.457 1.450
0.5 1,233 1.235 1.232 1.234 1.232 1.234 1.232
0.6 1.282 1.282 1.274 1.275 1.274 1,275 1.274
=2 0.7 1.344 1.346 1.316 1.315 1.315 1.314 1.315
0.8 1,453 1.462 1.365 1,365 1.356 1.351 1,356
0.9 1.750 1.785 1.487 1.504 1.405 1.409 1.395
0,5 1.227 1.229 1.225 1.228 1.225 1.228 1.225
0.6 1,273 1.274 1.265 1.267 1.265 1.267 1.265
=3 0.7 1.332 1.329 1.305 1.303 1.304 1.303 1,304
0.8 1.438 1.434 1.350 1.384 1.341 1.336 1.341
0.9 1.730 1.760 1.469 1.489 1,387 1.387 1.377
0.5 1.224 1.226 1,222 1.225 1.222 1.225 1.222
0.6 1.269 1.271 1.261 1.263 1.261 1,263 1.261
=4 0.7 1.326 1.330 1.299 1.299 1,298 1.297 1.298
0.8 1.431 1.446 1.343 1,345 1.334 1.331 1,334
0.9 1.721 1.744 1.460 1.474 1.378 1.377 1.368
0.5 1.221 1,223 1.219 1.221 1,219 1.221 1.219
0.6 1,264 1.266 1.257 1,259 1.257 1.259 1.257
=6 0.7 1,320 1.321 1.293 1.292 1.292 1,201 1.287
0.8 1.423 1.425 1.336 1,335 1,327 1,322 1.326
0.9 1.711 1,745 1.450 1.477 1.369 1.375 1.359
0.5 1.219 1.221 1.218 1.220 1,218 1,220 1,218
0.6 1.262 1.263 1.255 1.257 1.255 1.256 1.255
=8 0.7 1.318 1.319 1.290 1,290 1.289 1.289 1.289
0.8 1.419 1.417 1.332 1,330 1.323 1.319 1,323
0.9 1.706 1.716 1,446 1.455 1.364 1.366 1.354
0.1 1.048 1.048 1,048 1.048
0.2 1.094 1,094 1.094 1.094
0.3 1,136 1.136 1.136 1.136
0.4 1.176 1.176 1,176 1.176
N 0.5 1.215 1.213 1.213 1.213
0.6 1,256 1.248 1.248 1,248
0.7 1.309 1.282 1,281 1.281
0.8 1.408 1.321 1.312 1,312
0.9 1,691 1.432 1.350 1,341
1.0 o o o 1.368

-20-

Note: E*(p,a)=E(p,a)

a link field must be at least log,M bits, where M is the
table size. In general, the size of a cell of the predictor
method is 1less than that of the chaining method. 1In
practical wusage, with respect to the space/time trade-offs,
the predictor method is always preferable to the other as
long as the size of each predictor field is chosen to be
more than 4 or 5 bits.

In particular, when the table size is very large and
the entire required bit 1length of the link field is used
instead for multiple predictors, the expected number of
probes to look up a key of the multiple predictor method
becomes less than that of the direct chaining method, i.e.

1+/2,

5. Conclusion

We have proposed two methods, the single predictor
method and the multiple predictor method, which use several
bit fields as predictors, to reduce the average number of
probes necessary to search a key 1in a hash table. The
efficiency of each method was analyzed theoretically and
verified experimentally. |

The single predictor method whose predictor size is

‘more than 4 or 5 bits 1is in practice preferable to the

-21-

chaining method with ' respect to space/time trade-offs.
Further, when the table size 1is great, the multiple
predictor method gives a smaller average number of probes
than that of the chaining method, i.e. 1+°%/2. The multiple
predictor method is 1in a sense an extension of the single
predictor method, similar to the double hashing method[1,3]
which is an improved open addressing methodkthat eliminates
secondary clusterings.

Finally, note that the two proposed methods are also
effective to reduce the reject time when the key to be
retrieved does not exist in the table.

Acknowledgment: The author would like to thank Professors
K. Ikeda, M. Mori and J. W, Higgins for their many

suggestions and review of the manuscript.

-22=

[l1] J.R.Bell, The quadratic quotient method: A hash code
eliminating secondary clustering, Comm.ACM,13,2(1970),
pp.107-109.

[2] C.Halatsis and G.Philokyprou, Pseudochaining in hash
tables, Comm.ACM,21,7(1978), pp.554-557.

[3] D.E.Knuth, The Art of Computer Programming, Vol.3:
Sorting and Searching, Addison-Weésley, Reading, Mass.,1973.
[4] R.Morris, Scatter storage techniques, Comm.ACH,

11,1(1968), pp.38-44.

-23-

APPENDIX A: Evaluation of theoretical values EN(p,u).

COMPUTATION OF THEQRETICAL VALUES» JUNE 11> 1980
C MULTIPLE PREDICTURS METHUU.
C NK=NU0. OF PREDICTORS»
C 1J=PREDICTOR FIELD SIZE»s laEe. IR=MAX OF PREDa
C 1A= AL= LOAD FACTOR.
COMMON IR
COMMON/COMDEF/NsX0sW0sX1(160)9X2(160)»w(160)
DOUBLE PRECISION FsEPSsVsAsAL
EXTERNAL F
DO 1 NK=1s8
WRITE(691000) NK
1000 FORMAT(LIH 330X 22H330000000380000000R N9 l296H st333t3)
FN=NK
D0 10 1J=2195
[R=2Z2#3%1J-1
ARITE(6921001) IR
1001 FORMAT(4H IR=s14)
A=0.000
EPS=1.00-10

DO 20 JA=1s6G :
AL=041D0%DFLOATC(IA)
CALL FOMULACASAL)
CALL DEFINT(F sEPSsV)
VWs=V/ (ALXFN)
C WRITE(A21002) VaVW
1002 FORMAT(1H 220Xs2HV=9022+1596Hs Vw=9F15410)
WRK=0+0
DO 30 Iw=1»sIR
WA= W
WRKEWRK+ALM#IWH(1le+AL/ (FNH(WW+1e)))/ (WWAL)
320 CONTINUE
AN:I.O-AL
BW=2e=1a/FN+{(1e/FN=1e)%(1e=DEXP(=AL))/AL+AL/(24%FN)
AV=BW+ALOG(AW) ZAL¥ (AW/FN=1a)+1e/FN=WRK+VW
WRITE(6921003) ALsAVsAVBW
1003 FORMAT (8H AL=9F4429F10033F10a595Xs9HMME BW=9F7e4)
20 CONTINUE
10 CONTINUE
1 CONTINUE
STOP
END

-24-

qugaaaadaddaaaddadadadddqaddddqdddddddddddadddddddddddddddaddadde

C

2000

2001

10
100

200

20
999

SUBROUTINE FOMULA(ASR)

s POINTS AND WEIGHTS OF 3 3¢

#% DOUBLE EXPONENTIAL FORMULA %3

COMMON IR

COMMON/COMDEF/NsX0swW0sX1(160)sX2(160)sw(160)

DOUBLE PRECISIGN X0sW0asX1aX2sWsAasB

DOUBLE PRECISIUN EPsHPsTMAXsHIEHI sEN] sENsS19ClsELsEL]C2
DOUBLE PRECISION PsQ

K=6

EP=]1.00=-18

HP=DATAN(1.0D0)3%2.0D0
TMAX=DLOG(=DLOG(EP) /HP)
H=10D0/DFLOAT (23#38(K=1))
Nz TMAX/H

WRITE(6352000) AsBsTMAXsHsN
FORMAT(27HODOUBLE EXPONENTIAL FORMULAS
1 3X92HA=3D13,593X92HB=9013.5/

2 3X35HTMAX=90114392X92HH=9D13e592Xs2HN=13)

X0=0.0D0

wO=HP

EHI=DEXP (=H)

ENI=0.500

DO 10 I=1»N

ENI=EHI®EN]
EN=0.2500/EN]
S1=HP#(EN-ENT)
Cl=EN+EN]

E1=DEXP(S1)
E1I=1.0D0/E1
C2=2.000/(E1+E11)
X2(1)=05D0%(EL1=E11)%C2
X1{(1)==X2(1) '
W(T)=Cls#C2%#C23HP
IF(X2(1)eLTw1.000) GO TO 10
N=]-1

WRITE(692001) N

FORMAT (4H X2(512923H) IS NOT LESS THAN le0e)
GO TO 100

CONTINUE

CONT INUE

IF(A«NEe=10D0) GO TO 200
IF(BeEQe 140D0) GO TO 999
CONTINUE

Pz0e50D03#(8=A)
QA=05003%(B+A)

X0=PiX0+Q

WO=PWD

DO 20 J=s1lseN
X1(J)=P#X1(J)+@
X2(J)=PxX2(J)+Q
W(J)=PstwWw(J)

CONTINUE

RETURN

END

-25-

CCCCCCCCCCCCCCCCCCCCCCCCCCCEQCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
SUBROUTINE DEFINT(FUNCSEPSsV)

C #3 INTEGRATION BY 3 3%
C %% DOUBLE EXPONENTIAL FORMULA ##
COMMON IR

COMMON/COMDEF/NsX0sW0sX1(160)9X2(160)sW(160)
DOUBLE PRECISION XO0sWOsX1aX29W
DOUBLE PRECISION FUNCHEPSV
DOUBLE PRECISION HsU
K=6
H=1.000
M=2%3(K=-1)
UsWORFUNC(XO0)
DO 10 I=MsNsM
UsU+W(T)#(FUNC(X1CI))+FUNCIX2(I)))
10 CONTINUE -
C WRITE(6s7000)
7000 FORMAT(13HO3%3¢t DEFINT 3#3¢)
UsUstH
DO 20 J=29K
H=0e50D0%H
V=O|ODO
Ml=2¥%(K=J)
M2=23#M1
DO 30 [=M1sNsM2
VEV+W (1) ¥ (FUNCIX1(I)) +FUNC(X2(1)))
30 CONTINUE
V=0e5D0%U+HMY
C WRITE(697001) JaHsV
7001 FORMAT(3H J=11393H H=FB8s593H V=D22. 15)
IF(DABS(V-U)W«LESEPS) GO TO 999
U=v
20 CONTINUE
WRITE(622001)
2001 FORMAT(16H CONVERGENCE BAD)
999 RETURN
END

CCC

DOUBLE PRECISION FUNCTION F(X)
COMMON IR
COMMON/COMDEF/NsX0sW0sX1(160)sX2(160)sW(160)
DOUBLE PRECISION XsG
[F(X «EQe 040D0) GO TO 1
Fz(1le0DO=DEXP(=X))/X3%DLOG(140D0=X)
G=0000
DO 10 I=1sIR
G=G+X¥#3%(1-1)/DFLOAT(I)

10 CONTINUE
G=G*(1+0D0=-DEXP(=X))
F=F+G
RETURN

1 F=0.000
RETURN
END

-26-

APPENDIX B: The:simulation program of the single predictor method,

C OPEN HASH METHOD USING A PREDICTOR.
C MAY 30s 1980.
COMMON KY(4096)sIPR(4096)9IRsJPRBsITAR
DIMENSION FAV(9912)
ITAB=2048
DO 1 L=295
IR=2%3%L -1
INIT=584287
DO 10 KURI=1ls12
MEMO=INIT
WRITE(691000) IRsKURI
1000 FORMAT (10H 363636363 JR=91493Xy5HKURI =914 91 0H 3333633 3%3¢3)
CC CLEAR (CcCCCCcecececce
DO 20 KW=1sITAB
KY(KW)=0
IPR(KW)=0
20 CONT INUE
CC STORE AND SEARCH (CCCcCCcCCcCceeeeceecece
INIT=MEMD
JONT=1
D0 30 JJ=199
CC STORE
JIL=FLOAT(ITAR)IRFLOAT(JJ) /10404045
DO 40 JJ2=JCNTeJJ1
CALL KEY(INITsNEXT)
CALL STORE(NEXT)

INIT=NEXT
40 CONTINUE
CC SEARCH
INIT=MEMO
JPRB=0

DO 50 JJ3=1yJJ1
CALL KEY(INITINEXT)
CALL SEARCH(NEXT)
INIT=NEXT
50 CONTINUE
AV=FLOAT (JPRB)/FLLOAT(JJ1)
WRITE(691001) JJsJJlesJPRBsAY
1001 FORMAT(1H 92169]110sF1043)
FAV({JJaKURI) =AY
JCNT=JJl+1
30 CONT INUE
INIT=NEXT
10 CONTINUE
CCCC MATOME CCCCCCCCCCCCCCCCCCCCCCCCleeCCeCCCClCCCCCCCLeCCeeeceececcc
WRITE(691002) L»IR
1002 FORMAT(22H AVERAGEX#% PREDICTOR=s11s5H BITS»3Xs6HIRMAX=13)
DO 2 LL=1+9
FMAX=0,0
FMIN=3000.0
FTOTAL=0.0
DO 3 LwW=1s12
FW=zFAV(LLsLW)

-27-

FTOTAL=FTOTAL+FW
IF(FW oGTe FMAX) FMAXZFW
IF(FW oLTe FMIN) FMIN=ZFW
3 CONTINUE
FTOTAL=(FTOTAL-FMAX=FMIN) /1040
WRITE(691003) LLsFTOTAL
1003 FORMAT(1H »155FB844)
2 CONTINUE
WRITE(621004)
 WRITE(621004) N
1004 FORMAT(40H 3686350003000800:30:30003:30:0000::08030830:30383¢t)
1 CONTINUE
STOP
END

.

~,
5

deddddddddaeddddddddddddddadddddddddddaddadddaaads
SUBRROUTINE STORE(K)
COMMDN KY(4096)9IPR(4096)9IRsJPRBLITAB
Kiw=K
CALL HASH{(KsQ0sI1A)
IF(KY(IA) +EGQ. 0) GOTO 3
K1=KY(]A)
CALL HASH(K1s0s1A1)
IF(IAl «EQe TA) GOTO B
KY(IA)=K
IPR(IA)=0
K=K1
IA=]Al

8 I=0
9 IP=IPR(IAL)
IP1=1IP
IF(1P1 +EQe 0) GOTO 19
11 lw=1+1P1
CALL HASH(KsIWs1A2)
[W=KY(IAZ)
IF(IW «EGe 0) GOTO 22
CALL HASH(IWsOsIWw2)
IF(IW2 «EGe TA) GOTO 15
IP1=1P1+1
GOTO 11

15 1=1+1P1
IF(IR +LTe IP1) IPL1=IR
IF(IPL «EQe IP) GOTO 18
IPR(IAL)=IPL

18 TAL=1A2
GO TO0 9

-28-

19 IP1=1P1+1
I=]+1
CALL HASH(KsIsIA2)
[W=KY(TA2)
IF(IW «EQs 0) GOTO 22
GO T0 19

22 TF(IR +LTa IP1) IP1=IR
IF(IP1 +EQe IP) GOTO 25
IPR(IAL)=IP1

25 KY(IA2)=K
[IPR(IA2)=0
K=K
RETURN

3 KY(lIA)=K
IPR(TA)=0
RETURN
END

daddadasde

SUBROUTINE SEARCH(K)
COMMON KY(4096)s1PR(4096)sIRsJPRByITAB
CALL HASH(Ks0sIA)
TAl1=1A
I=0

2 JPRB=JPRB+1 '
IF(KY(IALl) «EQs K) RETURN
IF(IPR(IALl) +EQ. 0) STOP 9999
IP=IPR(IA]L)
I=]+1P
CALL HASH(KsIsIAl)
IF(IP +LTs IR) GO TO 2

7 lWw=KY(IAL)
CALL HASH(IW»0sIWl) ,
IF(IWl «EGe. IA) GO TO 2
JPRB=JPRB+1
[=]+1
CALL HASH(Ks15IAl)
GO 70 7
END

-29~

[dddddddddage
SUBROUTINE HASH(KsIBANsIX)
COMMON KY(4096)9IPR(4096)sIR»JJPRBITARB
W=z K/3+K/7+K/11+K/23+K/119
IW=MOD(IWs ITAB)
[Q@=]W¥2+1
IX=IW+1Q3#IBANX(IBAN+1)/2
IX=MOD(IXs ITAB)+1
RETURN
END

Nddddddddadage
SUBROUTINE KEY(K1sK2)
K2=K1%48828125
IF(K2 oLTe 0) K2=K2+2147483647+1
RETURN
END

-30-

APPENDIX C: The simulation program of the multiple predictor method,

C OPEN HASH METHOD USING MULTIPLE=-PREDICTORS.

C MAY

1005

C
1000

30s 1980,
COMMON KY(2048)9IPR(2048s8)91RsJPRBITAB
COMMON NPRs ISMAX
DIMENSION FAVI(9912)
ITAB=2048
DO 4 NPR=z2.8
WRITE(651005) NPR
FORMAT (15H 36336303030303630303636363t 0 L OX 9 L OH3E363¢3¢ NPR=9 [29 15H 363636365436 36 363836 3¢ 38 3¢)
DO 1 L=295
IR=z2%#%L=1
INIT=584287

$0 10 KURI=1.12

MEMO=INIT

WRITE(691000) IRSKURI
FORMAT (10H 363036343 IR=91493XsBMKURI = T4 910H 36343636543833¢3)

CC CLEAR CCCCCccccce

DO 20 KW=1sITAB
KY(KW)=0

DO 21 KWl=1sNPR
IPR(KWsKW1)=0

21 CONTINUE
20 CONTINUE
CC STORE AND SEARCH CCCCCCCCLcceeecececece
INIT=MEMO :
JCNT=]
D0 30 JJd=1s9%
[SMAX=0
CC STORE

40

JIL=FLOAT (ITAB)#FLOAT(JJ) /10404045
D0 40 JJ2=JCNT»JJl

CALL KEYC(INITsNEXT)

CALL STORE (NEXT)

INIT=NEXT

CONTINUE

CC SEARCH

50

1001

30

10
cccc

INIT=MEMO

JPRB=0

DO 50 JJ3=1,JJ1

CALL KEY(INITsNEXT)

CALL SEARCH(NEXT)

INIT=NEXT

CONTINUE

AV=FLOAT (JPRB)/FLOAT(JJ1)

WRITE(691001) JJsJJ1sJPRBsAVsISMAX

FORMAT(1H 921691105F104395Xs13HMAX S-LENGTH=515)

FAV(JJsKURI) =AV

JONT=JJ1+1

CONTINUE

INIT=NEXT

CONTINUE
AR Cddddddddddadddadddddadaqdaddaddadadadddadddaddddadddd o oe
WRITE(691002) LoIR

-31-

1002 FORMAT(22H AVERAGEX% PREDICTOR=21195H BITS23Xs6HIRMAX=913)
DG-2 LL=199
FMAX=040
FMIN=300040
FTOTAL=GW0
DO 3 Lw=lslZ
FazFAV(LLILW)
FTUGTAL=FTOTAL+FW
IF(FW «GTa FMAX) FMAX=FW
[F(FW oLTe FMIN) FMIN=FW
2 CONTINUE '
FTOTAL=(FTOTAL-FMAX=FMIN)/10a0
CWRITE(691003) LLSFTOTAL
1003 FORMAT(1H 9159F8Bae4)
2 CONTINUE
C WRITE(621004)
1004 FORMAT(40H %%***%%*%*%**%%x%%*%%%%%%*%******%%***%)'
1 CONTINUE
4 CONTINUE
STOP
END

cceeecceccec
SUBROUTINE STORE(K)
COMMON KY(2048)9]PRI204898)9IRsJPRBeITAR
COMMON NPRsISMAX
K=K
CALL HASH(Ks0slAsNPS)
IF(KY(IA) +EQ. Q) GOTO 3
K1=KY(IA)
CALL HASH(K1s0s1A1sNPS1)
IF(1Al «EQ. TA) GOTO 8
KY(TA)=K
IPR(IASNPRS)=0
IPRITASNPS1)=0
K=Kl
IA=1Al
NPS=NPS1

8 I=0
9 IP=1PR(IALsNPS)
IP1=1P
IF(IP1 «EQs 0) GOTO 19
11 TwWw=I+IP1
CALL HASH(KsIWsIAZ2sNPS2)
TW=KY(1AZ)
IF(IW oEQs 0) GOTO 22
CALL HASH(IWs0sIWAsIWB)
IF (1WA +EQe IA o+ANDs IWB JEQe NPS) GOTO 15
IP1=1P1+1
GOTO 11

-32-

15 I=[+IP1
IF(IR oLTs IP1) IP1=IR
IF(IP1 oEGe IP) GOTO 18
IPR{TALsNPS)=]P1

18 lAl1=1A2
GO T0 9

19 IP1=]IP1+1
I=1+1
CALL HASH(K»IsI1A2sNPS2)
[Ww=KY(1A2)
IF(IW «EQse 0) GOTO 22
GO TO 19

22 IF(IR «LTs IP1) [PL=]R
IF(IP1 «EGs IP) GOTO 25
IPROIALISNPS)=]P]

25 KY(1A2)=K
[IPR(TAZ2sNPS) =0
K=Kw
RETURN

3 KY(lA)=K
IPR{TAsNPS) =0
RETURN
END

cceeecccecec
SUBROUTINE SEARCH(K)
COMMON KY(2048)sIPR(2048+8)»IRsJPRBL[TAB
COMMON NPRs ISMAX
CALL HASH(Ks0sIAsNPS)

[Al=1A
MAXW=0
I=0

2 JPRB=JPRB+]
MAXW=MAXW+1
IF(KY(IAl) «EQs K) GOTO 1
IF(IPR(IALINPS) +EGe 0) STOP 99G9
IP=IPR(IA1NPS)
=]+]P
CALL HASH{(KsIsIAlasNPW)
IF(IP «LTs IR) GO TO 2
7 IW=KY(]Al)
CALL HASH(IWs0sIW1aNPS1)
IF(IWD «EQe 1A JANDS NPS1 JEGQ. NPS)Y GRTO 2
JPRB=JPRB+1
MAXW=MAXW+]
I[=1+1
CALL HASH(KsIsIAlsHNPAW)
GO T0 7
1 IF(MAXW «GTe [ISMAX) [SMAX=MAXW
RETURN
END

-33-

cceecccccecce

SUBROUTINE HASH(Ks IBANsIXsNPS)
COMMON KY(2048)91PR(204828)sIRsJPRBs ITAB
COMMON NPRs ISMAX '
IWz K/3+K/7+K/11+K/23+K/119
NPS=MOD(IW/31+K/13+K/29+K/1373NPR)+1
[W=MOD(IWs ITAB)
[F(IBAN +EQe 0) GO TO 1
IBAN1=IBAN+]ITAB®(NPS=1)/NPR
IWW=]BAN1#(IBAN1+1)/2
IWW=MOD(IWWs ITAB)
[Q=IWk*2+1
IX=IW+]Q%TWW
IX=MOD(IX»ITAB)+1
RETURN

1 IXsIW+1
RETURN
END

cceeecceccccc
SUBROUTINE KEY(K1sK2)
K2=K13%48828125
IF(K2 «LTe 0) K2=K2+2147483647+1
RETURN
END

-34-

INSTITUTE OF INFORMATION SCIENCES AND ELECTRONICS
UNIVERSITY OF TSUKUBA
SAKURA-MURA, NIIHARI-GUN, IBARAKI 305 JAPAN

REPORT DOCUMENTATION PAGE

REPORT NUMBER
ISE-TR-80-18

TITLE

A COLLISION RESOLUTION TECHNIQUE BY USING PREDICTORS

AUTHOR (s)

Seiichi Nishihara

REPORT DATE
August 15, 1980

NUMBER OF PAGES
34

MAIN CATEGORY
Information Retrieval

CR CATEGORIES
3.72, 3.74, 4,34

KEY WORDS

hashing, scatter storage, open addressing, chaining,

collision, clustering, predictor

ABSTRACT

In hashing techniques,
collisions have been proposed.

many methods of resolving
Those are classified into

two main categories, i.e. open addressing and chaining. In

this paper, other

methods are presented which

are

intermediate between those two categories. The basic idea of
our methods 1is the use of one or more predictors reserved
per cell instead of a link field as in the chaining method.
The predictors are used to maintain loose synonym chains,

After describing the methods, the efficiencies are estimated
theoretically and verified experimentally. In comparison
with the chaining method, it is proved that our methods
significantly reduce the average number of probes nécessary
to retrieve a key without expending extra space.

SUPPLEMENTARY NOTES

