ISE-TR-80-16

HARDWARE ARRAY BOUND CHECKER ON TAGGED ARCHITECTURE

by

Kozo ltano

Tetsuo Ida

July 1, 1980

 INSTITUTE
SCIENCES AND ELECTRONICS

UNIVERSITY OF TSUKUBA

Hardware Array Bound Checker on Tagged Architecture

by

* * %
K.Itano and T.Ida

* Institute of Information Sciences and Electronics,

University of Tsukuba,
Sakura-mura, Niihari-gun, Ibaraki 305, Japan.
** Institute of Physical and Chemical Research,

Hirosawa, Wako-shi, Saitama 351, Japan.

Index terms

Array bound checker, tagged architecture, probabilistic

checking.

ABSTRACT

A hardware scheme to check the correctness of array
accesses in high speed is presented. The new scheme is based on
a tagged architecture. A chéck is made whether the protection
code of an array matches with the tag of the memory Word. In
order to check a large number of arrays efficiently by limited
number of bits for the tag, a probabilistic check algorithm is

introduced.

1. Introduction

~Use of arrays 1is one of the most essential part of
programming. in scientific computations. Since arrays form a
large percenage of variables used in the actual programming [1],
arrays must be referenced correctly and with high efficiency.

Despite of the progress in hardware and software
engineering, little effort has been made to systematically
approach, especially from architectural view point, the troubles
with address range viclation during the access of arrays. We
often encounter with an error message such as "memory protection
fault!" or "instruction invalid!" as the result of an illegal
access to the non-existent area or to the instruction area. Or
even worse, no error is reported even if incorrect results are
obtained due to erroneous accesses to unintended memory areas.
This type of errors are difficult to locate. With commonly
existing software, we are forced to resort to methods such as
debug mode compilation sacrificing run-time speed or examination
of linkage maps for finding the 1location where the error
occurred.

Axiomatic approach to verifying the correctness of programs
in array referencing can cope with 1limited class of programs
[2]. Hence, the hardware checking scheme would contribute more
easily and directly to the detection of the range viclation
during referencing arrays.

In this note, we propose a hardware array access checking
scheme [3] to facilitate debugging process without sacrificing

run-time speed. Our scheme is based on tagged architecture,

which was originally advocated to check data types at run time

efficiently [4,5].

2. Basic scheme for array bound checker

2.1 Hardware error detection principle

Let M[0:n] be a memory space, and V[0:n] be a
one~dimensional array mapped on M. Associated with V, we
introduce t, proteétion code of V stored in each memory word
onto which V is mapped as shown in Figure 1. In making access
to the element of V by the address of M, a check is made whether
the protection code of vector matches with the protection code
t' of the memory word to which an access was made. If t=t', we
conjecture that the access is legal. This conjecture is correct

as long as:

(1) no two vectors are mapped to the same memory location, and

(2) unique protection code is assigned to each vector.

Validity of condition (1) lies on the programming language
design. We assume that with a suitable language translation
technique condition (1) holds true. OQur goal 1is to provide

hardware basis for condition (2).

2.2 Tagged architecture

Our idea is to encode protection code in the tag associated
with each memory word. The protection code is checked at each
memory access. In Figure 2 we give the design of a hardware
array bound checker for a general register machine model. The
essential part of the hardware is the tag handling mechanism.
The processor contains tag registers which hold protection codes
associate with the arrays. The memory system is equipped with
tag memory which holds protection code associate with the array
stored there. A hardware comparison mechanism is provided to
check the equality of the protection codes.

In the traditional error detection scheme the indices of
the arrays are usually compared with the upper and lower limits
before making access to the element of arrays. On the other
hand, our method is to defer the error detection to the time of
the read-out of the physical memory. Comparison of the tag with
protection code can be overlapped with the instruction
execution, hence no overhead is incurred from the check of
protection - codes. In the <case of write operation, the tég
should be read out preceding the write operation of the data of
the array element.

In our scheme, all the elements of an array need not be
allocated in a single consecutive area of the physical memory.
Partitioning of a single array, in case that storage management
policy requires it, poses no efficiency problem to our boundary
checking scheme, as opposed to the traditional scheme performed

by inserting upper and lower bound checking instruction codes.

2.3 Probabilistic error detection

The scheme completely detects the address range violation,
k
when the number of tag bits is k and N(<2) vectors are

processed. When number of vectors active at one time, N exceeds
k k

2 , complete detection is not possible since N/(2) vectors

are assigned to the same protection code. Hence, we can detect

the range violation with the following probability q:

q = where N>2 , — (a)

N

k

and where N £ 2 .

Q
i
'—I

With four bits assigned to a tag (k=4) in handling 32 arrays,
the probability g is about 0.97, for example.

Suppose that we make p debug runs and that for reach debug
run different protection code 1is randomly assigned, the

probability of the detection, r gets as:

P
r = 1-(1-q9) .

The operating systems of large computers usually provides

memory protection schemes incorporated in paging or
segmentation. By the use of the combination of these protection
techniques, the probability of the detection of the range

violation will further be improved.

3. Design of instructions for a high speed check

In this section, let us explain how the run-time check 1is
performed. As a simple example, we shall use a program to find
the maximum element of an array. 1In the subsequent description,
we shall use FORTRAN and IBM system 360/370 assembly language.
First, let 1IX(10) be an array to be processed, and all the
elements of array IX has the value 5 as the tag. Program Pl is

straightforward coding of the algorithm,

DIMENSION IX(10)
MAX=0
DO 10 I=1,10
10 IF (MAX.LT.IX(I)) MAX=IX(I)

Program Pl. Find a maximum number in an array

Program Pl is compiled to program P2 to take advantage of the
hardware mechanism as explained in section 2.2. Here, we
introduce an instruction LTAG. The function of this instruction
is to load a tag value into a specified tag register. When we
use a general register for index modification for array

referencing, the same numbered tag register as the general

register is used to check the protection code. The tag check
mechanism is activated when this tag register holds a non-zero
value. 1In the following example, the access to an array is

checked in the two statements: *1 and *2.

MAX EQU 5
TEMP EQU 6
I EQU 7
TAG DC F's!
X DS 10F'0"
L MAX,=F'0"'
L I,=F'1"
LTAG TEMP, TAG
LOP10O LR TEMP,I
SLA TEMP, 2
*
* Tag register 6 is used for bound checking in parallel
* with the following execution of instructions *1 and *2.
*
C MAX,X~-4 (TEMP) *1
BL TEST
L MAX,X-4 (TEMP) *2
TEST A I,=F'1"
C I,=F'10"'
BL LOP1O0

® 0 0 0 0000000006000

Program P2. An example using tag register in assembly language

4. Multi-dimensional arrays

In order to check each index of multi-dimensional array, we
divide the array into single dimensional arrays (columns), and
assign different protection code to the tags associated with
those single dimensional arrays. In the case of two dimensional
array, the head addresses of all the single dimensional arrays
are Kkept as a dope vector [6] with row and column tags in each

entry of the table as shown in Figure 3.

Suppose we want to reference element A(i,j) of
two-dimensional array A(n, m) = (A , A , vveeeeeeesy; A) where
A. is a vector of length n. We assign ;rotection codesmto m row
véctors and a dope vector. Given two protection codes s and t,
the algorithm to check the array bound check is as follows (cf.

Figure 3):

(i) Load tag s and make access to the j-th element of the dope
vector.

(ii) If the row-tag of the dope vector does not match with s,
array Bound‘error is detected.

(iii) Load tag t and address of the j-th vector,

(iv) Make access to the i-th element of this vector.

(v) If the tag of the element does not match with t, array

bound error is detected.

We can expand this address table scheme for higher dimensional

arrays.
5. Concluding remarks

In designing the hardware scheme for array bound checking,
we started from the following observations:
* Correct programs should run with no overhead of the array
bound check.
* One can not tell wehther "correct" programs are really

correct except for simple (provable) programs.

"Correct" programs may suffer from round-offs, unintended

coercions and array range violation in actual runs, although
they are seemingly correct. The proposed scheme can reduce the
possibility of hidden errors incurred from array bound violation
at run time, and to detect at debug time the array bound
violation almost completely.

We showed that with small number of bits for a tag
incorporated to existing framework of architecture, array bound
violation can be detected with high probability.

Probabilistic check would be a matter for further
discussion. However, we believe that our standpoint is
justified from the viewpoint that our hardware érray bound
checker scheme 1is meant to enhance the "reliability of
software." At the current 1level of the art of software
engineering technology, we cannot expect the complete
reliability of the software and we have to use programs which
might contain bugs; most of them might appear at small
probability. 1In these environment, the probabilistic error
detection scheme would contribute to develop the total

reliability of the software.

10

References:

[1]

[2]

[3]

[4]

[5]

(6]

D.E. Knuth, "An empirical study of FORTRAN programs,"
Software Practice and Experience, Vol.l, pp. 105-133, 1971.
N. Suzuki and K. Ishihata, "Implementation of array bound
checker," Proc. 4th ACM symposium on princiles of
programming languages, 1977.

K. Itano and T. Ida, "A high speed array bound checking
scheme using a tag (in Japanese),"

Proc. 21th annual conference of Information

Processing Society of Japan, l§80.

E.A. Feustel, "The Rice Research Computer - a tagged
architecture,”

SJCcC, pp. 369-377, 1972.

E.A. Feustel, "On the advantgae of tagged architecture,"
IEEE trans. Comput., Vol. C-22, pp. 644-656, 1973.

D. Gries, Compiler construction for digital computers,

Wiley, 1971.

11

Appendix Proof of probability (a)
We assume that erroneous accesses to N-1 arrays are equally
likely. Out of N-1 arrays, the number of arrays that have the

same protection code is:

N

Detection fails when access is made to those arrays.
Hence, the probability of detecting the array bound violation

is:

12

Figure

Figure
Figure

Figure

Captions

l.
2.
3.

Array mapped on a memory space.
Array bound checker on tagged architecture.

Data structure for multi-dimensional array.

13

ARY : t M[0]
t M[1]
V[0:n] M[0:n]

t M[n]

Vin] /

data cell

protection code

MEMORY SPACE

logical view : physical view

Figure 1. Array mapped on a memory space.

14

INSTRUCTION

o P R 1 R 2 ADDRESS

Y Y \
10 effective

2 address

13 v
generél tag ! physical
registers registers address
A
Y
o TT——

10 A[O]

10 All]

10 Al2]

2 B[0]

2 B[1]

processing 2 B(2]

> 2 B[3]

unit 13 cl[5]

13 cl6]

13 Cc[7]

13 Cc[8]

13 C[9]

tég data

MEMORY UNIT

Figure 2. Array bound checker on tagged architecture.

15

row tag
__ ———— column tag

TAG DATA . , TAG , DATA _
11 address of 15 A(1,1)
address vectorT
: 15 A(2,1)
15 A(3,1)
10 A(1,2)
' |address of 10 A(2,2)
" b
111 15 A(1,1)
address of 10 A(3,2)
11 | 10 A(L,2) L
address of .1 18 A(1,3)
11 |18 A(1,3) [S —>-
address of 18 A(2,3)
11 6 A(L,4) [.
18 A(3,3)
DOPE VECTOR 6 AL, 4)
6 A(2,4)
6 A(3,4)

ARRAY ELEMENTS

Figure 3. Data structure for multi-dimensional array.

16

INSTITUTE OF INFORMATION SCIENCES AND ELECTRONICS
UNIVERSITY OF TSUKUBA
SAKURA-MURA, NITHARI-GUN, IBARAKI 305 JAPAN

REPORT NUMBER

REPORT DOCUMENTATION PAGE ISE-TR-80-16

TITLE

Hardware array bound checker on tagged architecture

AUTHOR (s)

Kozo Itano

Tetsuo Ida

REPORT DATE NUMBER OF PAGES
July 1, 1980 16
MAIN CATEGORY CR CATEGORIES
Computer systems 6.2, 6.3
KEY WORDS

Array bound checker, tagged architecture,

probabilistic checking.

ABSTRACT

A hardware scheme to check the éorrectness of array
‘accesses in high speed is presented. The new scheme is based
on a tagged architecture. A check is made whether the
protection code of an array matches with the tag of the memory
word. 1In order to check a large number of arrays efficiently
by limited number of bits for the tag, a probabilistic check

algorithm is introduced.

SUPPLEMENTARY NOTES

