- ' ISE-TR-80-15
/IREKREN | . |

181,1,19

A MONITORING MECHANISM OF PROGRAMS DURING EXECUTION

IN A PRACTICAL ENVIRONMENT
by

Kozo ltano

April 15, 1980

'"55-5 fIDUVERSHY OF TSUKUBA'w;;%f@;é@é

A Monitoring Mechanism of Programs during Execution

in a Practical Environment

Kozo Itano

April 15, 1980

A part of this work is submitted to the Journal of
Information Processing as "Can we use a slow computer

comfortably?"

"Abstract

In order to establish a more comfortable user interface, a
system should inform the user the behavior of his program during
execution. For this purpose, a mechanism of monitoring a
program during execution is implemented, and examples of monitor

are disclosed for several practical cases in an experimental

system.

1. Introduction

Interactive use of time sharing systems has been widespread
among contemporary users, and rapid response of the system is
indispensble for establishing a good user interface, For
ekample, if the system responses within 0.1 seconds,‘ the user
cannot recognize the response time. However, when the response
time exceeds several seconds, the user would be irritated
against the "slow" computer, even if he knows that the execution
of the program needs huge computation time. The essential
reason why the user is irritated is that he is forced to be kept
waiting for indefinite time and he is never given any
information about when the execution of the program is finished.
When the turn around time exceeds several seconds, the user have
to keep his nerve at high tension until the system responses to
him. 1In this envirnment, if the system could inform the user of
the current state of his programs, a more comfortable user
interface would be established. Also, it would be a useful
debugging tool while his program might contain some bugs.

There are two kinds of turn around times: waiting time and
execution time. A successful example of reporting system of the
waiting time is Cambridge 370 system [1] which reports the user
when his job will be executed. 1In cases of the execution time,
" however, there is no attémpt to predict the whole execution time
in advance, except that only the used cpu time is informed by
the user's request [2].

The new idea devised can monitor the behavior of the
program during executibn and can predict when it is finished.

In this paper the author gives the detailed mechanism, ,

2

implementation of the system, and examples of observation of the

actual execution of programs.

2. How an interactive system should be designed

In this section, we would analyze a mechanism of
interaction between a user and a computer. A typical example is
a time sharing operating system, where as shown in figure 1 a
user usually types a command through a terminal and a response
is printed or displayed to his terminal. In the case of a
program which needs strong interaction such as a text editor, a
rather rapid response 1is desiarable to make a good user
interface. However, we cannot expect such a short response time
in the all cases which may need considerably big computation
time. In most cases, the computation power of the machine is
limited and the system cannot execute all jobs in an instant.
In these situation, a user as a human beeing is forced to wait
for innegligibly small time, and he usually cannot accept it.

One of the successful solutions to these situations is
given in the UNIX operating system [14], which supports the two
major capabilities: full duplex terminal input/output and
multi-tasking. 1In this system, a user can input his commands
and data independently of the message outputs or responses. He
may not wait the response of the system unless necessary.
Further, multi-tasking capability permits the user to execute
several programs in parallel as an interactive mode. For
example, he can uée an editor during compilation of other
programs interactively. This means that a user <can start the

next work and may not wait for the completion of the programs

which need big compuatation time.

In many cases, however, we must wait for the completion of
the currently executed program. For example, we cannot execute
or test the program until the compilation and 1likage are
finished. Hence, "how to Kknow the current state of the
programs" becomes an imbortant problem in order to use a

computer comfortably!

3. Basic Algorithm

A basic strategy to know the behavior of the programs
during execution 1is to monitor periodically an execution probe
(E-probe is used here after) which indicates how the execution
of programs is proceeding [3]. Usually, an E-probe is a
function of several variables in the program or data to be
monitored. In order to eliminate the overhead due to
observation of programs, we evaluate the E-probe only when it is
observed, for example, each one second. The E—probé is 0 when
the execution begins, and 1 when the execution is finished. If
this E-probe 1is completely proportional to the time from the
execution begins, we can know precisely how the execution of the
program is proceeding by monitoring the E-probe. Further, we
can know how much time is necessary to finish the execution of
the program. For example, when the E-probe is observed as 0.3,
it indicates that 30 percents of tatal execution has been
finished.

However, since an ideal E-probe which 1is completely
proportional to the time cannot be implemented 1in practical

programs, we have to use some approximation. As approximation

of the E-probes, we present two mechanisms below.

(1) Mechanism 1

In this mechanism, as an E-probe we use the size of
data which are used during input or output. For example,
let Q be the size of total data input to be processed, and
q be the size of data input which is processed already.
Then, the E-probe E is defined as:

E = qg/Q.

Q and g are commonly used in most read routines, and thé
use of these variables would not produce any overhead
during execution.

This mechanism can be used in the case of translators
such as compilers and assemblers. In the <case of a
multi-pass compiler, the E-probe becomes somewhat complex,

because the relation between passes should be considered.

(2) Mechanism 2

| In this mechanism, we should analyze the behavior of
the program during execution and define the E-probe. As a
simple example of this case, a matrix multiplication

program Pl is shown below.

DO 10 J=1,N
DO 10 I=1,N
c(1,J)=0

DO 10 K=1,N

10 C(1,J)=C(I,J)+A(I,K)*B(K,J)
Pl. Matrix multiplication

In this program Pl, the statement 10 is executed N**3

times, then the E-probe E is defined as shown below.

2 3
E=((J-1)N +(I-1)N+K-1)/N .
As an E-probe, also we can use E0 and El1 as an

approximation of this E.

P0=(J-1) /N
2
Pl1=((J-1)N+I-1)/N .
By the use of this E-probe, we can predict the total
execution time. Let t be the time from the execution begins,
E(t) be the E-probe, and T be the total .execution time to be

predicted, then T is estimated as follows:
T = t/E(t).

And how much the execution has been proceeding is indicated by

the E-probe E(t) itself. Though actually given T is not so

precise in the beginning of the program execution, it becomes

more precise according as the execution is proceeding.

4. Implementation

An experimental system to monitor the execution of programs
is‘implemented on the small computer TOSBAC40C which is equipped
with 64K bytes of main memory, 5M bytes of magnetic disks, 2
magnetic tape drives, a character display console, a real time
clock, and a printer. For easiness of the modification of the
operating system, we have used MINIOS [4] which has been
developed by the author.

For the implementation of the mechanism 1, wé used a BCPL
compiler [5] and runoff program [6] written in BCPL. In order
to implement an E-probe, the data size of the file should be
definite 1in advance the execution begins. For this purpose, we
have installed the byte size of files in the file system of
MINIOS. For the implementation of the mechanism 2, a Gaussian
elimination program [7] was chosen. The results of the
monitoring of the -execution is displayed on the character
display console in real time. This console is connected to the
computer through a high speed communication line interface which
allows quick update of the screen. An example of display format
is shown in figure 2. 1In order to avoid a noisy message, the
message is updated in the same position of the screen in each

one second.

5. Precision of the Monitoring of Execution

Measurement of program behavior are made for the BCPL

compiler, the ruanf program, and the Gaussian elimination
program. The BCPL compiler has three phases: (1) AE tree
generation, (2) OCODE generation, and INTCODE generation.
Although the first and third phases of the compiler gave good
results, the second phase gave rather poor one. This is because
the input of the second phase is AE tree whose data structure is
not a linear one. We show the relation of the E-probe and
actual execution time as in figure 3, and the relation between
execution time and size of input data as <figure 4-7. The
results measured for the Gaussian elimination is also shown in
figure 8.

The quality of the monitoring is mostly dependent upon the
E-probe. Therefore, it is most important problem to make a good
E-probe in the program to be observed. There have been done
many works of the analysis about the behavior of programs during
execution [8-13] and there is much possibility to make up a good

E-probe by the use of this kind of analysis.

6. Concluding Remarks

The hardware performance of the computer has been much
improved, and the analysis of the software for speed up also
made in the contemporary computer systems. However, the
execution time of all programs cannot be reduced into negligibly
small as we cannot feel. Therefore, the mechanism to monitor
the behavior of programs during execution is useful for us ¢to
make "big" computation comfortably on a "slow" computer. This
monitoring mechanism would be valid also in <case of batch

processing.

Acknowledgement

The author would like to express his thanks to Dr. Tetsuo
Ida at Institute .of Physical and Chemical Research and Mr.
Kiyoshi Ishihata at University of Tokyo for their helpful

discussions.

References:

[1]

[2]
[31]

[4]

[5]

(6]

[71]

[8]

(9]

[10]

Steward, P. and Stibbs, R.J. Cambridge 370/165 user's
reference manual, University of Cambrodge Computing
Service (1976).

DEC SYSTEM-20 User's guide, DEC (1976).

Itano, K. Prediction of the actual execution time

of programs and its application (in Japanese),
Programming Symposium, Hakone Japan, 21(January 1980),
185-194.

MINIOS Referene Manual (in Japanese),

University of Tokyo (1974).

Richard, M. BCPL: A tool for compiler writing and system
programming, SJCC (1976), 557-566.

Ida, T., Itano, K. and Ishihata, K. Implementation of the
alphanumeric text formatter: ROFF (in Japanese),

Annual Report of Computer Centre, University of Tokyo,
7(1977).

Forsythe, G. and Moler, C.B. Computer solution of linear
algebraic systems, Prentice-Hall (1976).

Usijima, K. and Harada, K. Tools for analysis and
evaluation of software (in Japanese), Johoshori,

20, 8(1979), 703-711.

Ingalls, D. The execution time profile as a programming
tool, Invdesign and optimization of compilers edited by
Rustin, R., Prentice-Hall (1972), 107-128.

Knuth, D.E. An empirical study of FORTRAN programs,

Software Practice and Experience, 1(1971), 105-1433.

10

[11]

[12]

[13]

[14]

Knuth, D.E. and Stevenson, F.R. Optimal measurement points
for program frequency counts, BIT, 13(1973), 313-322.
Ramamoorsey, C.V., Kim, K.H. and Chen, W.T. Optimal
placement of software monitoring aiding systematic
testing,

IEEE Trans. SE., SE-1, 4(1975), 403-411.

Fosdick, L.D. and Osterweil, L.J. Data flow analysis
in software reliability, Computing Surveys, ACM, 8,
3(1976),

305-330.

Ritchie, D.M. and Thompson, K. The UNIX time sharing

system, CACM, 17, 7(1974), 365-375.

11

Figure Captions

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

l.
2.
3.

Scheme of interactive system.

Example of display format.

Relation between the E-probe and execution time
in case of BCPL compiler.

Relation between execution time and size of input
data in case of BCPL compiler (pahse 1).

Relation between execution time and size.of input
data in case of BCPL compiler (phase 2).

Relation between execution time and size of input
data in case of BCPL compiler (phase 3).

Relation between execution time and size of input
data in case of BCPL compiler (total).

Relation between the E-probe and execution time
in case of the BCPL compiler, the runoff, and the

Gaussian elimination.

12

action
»- COMPUTER

"computing"

-€
response

Figure 1. Scheme of interactive system

13

VT

qeuxoy AetdsTp 7o o7dwexy °z 2anbTa

/,- MINIOS-BCPL

$BCPL
FILE=COMPIL
64% DONE

MINIOS-BCPL
$SBCPL
FILE=COMPIL
COMPILING
53% DONE

Iy

MINIOS-BCPL
$BCPL
FILE=COMPIL
COMPILING
OCD. GEN.
INTCODE GEN.
END
MINIOS-BCPL
$

MINIOS-BCPL
$SBCPL
FILE=COMPIL
COMPILING
OCD. GEN.
33% DONE

‘¢ aanbrtg

ST
T9TTdwod TdDg JO 9Sed UT Swr3l

UOTINO9Xd pue 9qoid-g oYl uUS9M3IDq UOTILTY

mesured processing rate

(%)
- _ O
100 A—2x—4\ .
-0 O
90 A / (J -
' ®
n []
O
80 A O
u ‘ o
70 7 O
A] O O
4 of
60 a O
50 a o'.
[]
[]] (J
O
40 7 a - O O : The 1lst phase (AE tree generator)
] O
30 om O : The 2nd phase (OCODE generator)
u O
O
O A : The 3rd phase (INTCODE generator)
20 O O
O
O
10 J
0 | | | T | I I | T
0 4 8 12 16 20 24 28 32 36

time (sec)

input data size

(bytes) o

10000 —

9000 T

8000 — ©

7000 T Y

6000 —

5000
4000 —

3000 — o}

2000 — O

1000

I I I I I I]
0 10 20 30 40 50 60 70

time (sec)

Figure 4. Relation between execution time and size of input.
data in the case of BCPL compiler (phase 1)

16

AE tree size

300 —
u]
O
u]
200 —
a]
o B
o o
u] o o
Ogpo O
100 - o O
. u]
O
o o” o
a]
8
Op
O
u]
o
0 | | [|
0 10 20 30 40

time (sec)

F'Zgure 5. Relation between execution time and size of input
data in case of BCPL compiler (phase 2).

17

OCODE size
(words)

6000

5000 —

4000 -

3000 R

2000

1000 1 &

0 I I I
0 10 20 30

time (sec)

Figure 6. Relation between execution time and size of input
data in the case of BCPL compiler (phase 3)

input data size
(bytes - a

10000

9000 —

8000

7000 7] . =

6000

5000 —

4000 T

3000 — O

2000 — O

1000 —

0 | | T T T T I
0 20 40 60 80 100 120 140

time (sec)

Figure 7. Relation between execution time and size of input
data in the case of BCPL compiler (total).

19

o
o
(o))
IO
o
0
-
i) @
© N
o o
-
=]
-
—
o
~
o IR
I o H
-
n
T B
H o 3 0
O LU ®© IS
x M O © A
|
LX) 0
5
® -
Ke}
=
1N 0
Ilve
o M
i
<r
(e}
(98]
[en]
(@M
— o
—
- O
B
~
)
Q
o) o
m T T T T T T T T
i O Tg] (@) N O N o n
|2 QN [a\] — — o O (o)) o oo}
— — — — — (o] (e ﬁu.

Figure 8. Relation between the E-probe and execution
time in the case of the BCPL compiler,
the runoff, and the Gaussian elimination.

20

INSTITUTE OF INFORMATION SCIENCES AND ELECTRONICS
UNIVERSITY OF TSUKUBA -
SAKURA-MURA, NIIHARI-GUN, IBARAKI 305 JAPAN

REPORT NUMBER

REPORT DOCUMENTATION PAGE ISE-TR-80-15

TITLE
A Monitoring Mechanism of Programs during Execution

in a Practical Environment

AUTHOR (s)

Kozo Itano

REPORT DATE NUMBER OF PAGES
April 15, 1980. 20

MAIN CATEGORY CR CATEGORIES
Processors, Supervisory systems 4.1, 4.3

KEY WORDS

interactive systems, user interface design, monitors,
operating systems, time sharing systems, programming systems,
language processors, debugging techniques,

software tools and prediction of execution time.

ABSTRACT

In order to establish a more comfortable user interface,
a system should inform a user the behavior of his program
during execution. For this purpose, a mechanism of monitoring
a program during execution is implémented, and examples of
monitoring are disclosed for several practical cases in an

experimental system.

SUPPLEMENTARY NOTES

