ISE-TR-77-7

PERFORMING SET OPERATIONS
BY USING HASHING TECHNIQUES

by

Seiichi Nishihara

Hiroshi Hagiwara

September 12, 1977

INSTITUTE
OF |
INFORMATION SCIENCES AND ELECTRONICS

UNIVERSITY OF TSUKUBA

ISE~TR-T77~7

PERFORMING SET OPERATIONS BY USING HASHING TECHNIQUES

Seiichi Nishihara

Institute of Information
Sciences and Electronics
University of Tsukuba
Niihari-gun,
“Japan

Ibaraki 300-31

Hiroshi Hagiwara

Department of Information
Science

Kyoto University
Sakyo-ku, Kyoto 606

Japan

September 12, 1977

Abstract
Performing set operations

is one of the basic techniques 1n

the fields of information retrieval, data structure and data

base management.
In this paper, it is
effectively be applied to

each set is a set of keys.

Each entry of a hash tabl

shown that hashing technlques can
performing set operations,

where
e con-

tains a key field, a pointer field and a match level indi-

cator field.

the key satisfies the set formula under consideration.
Some algorithms to process set formulas containing no
complementary set are given and the efficiency is proved by

some experiments.

The last field is used to indicate how well

1. Introduction

One of the purposes of recent data management is the
centralized contrpl of many files, so that the redundancy
and inconsistency in the stored data may be avoided. Further,
queries concerning more than one files can be accepted by
unifying files. Most of such operations basically contain set
operations especially in information retrieval systems. For
instance, when two sets of records satisfy different conditions,
the intersection of the two sets is the set of reéords satis-
fying the both conditions.

In this paper, a method to perform set operations by using
hashing techniques is proposed. First a method fof set for-
mulas in disjunctive normal form is described, and then the
‘method is extended to general set formulas. Simpie‘experiments

are also executed to estimate the efficiency of the method.

2. Performing Set Operations
2.1 Definition of Terms

Before describing the method, we shall introduce the’terms
necessary for the algorithms. The sets appearing in expres-

sion of set operations (shortly set formula) are expressed as

S or Si (i=1,2,°+"*). Each set is a finite set of keys. We
assume the operation to get each key in a set one after another
without repetition i1s available. Let card(S) be the cardinal
number of set S. Intersection or union of two sets Si and Sj

are written as Si-Sj or Si+sj’ respectively. Further, elemen-

(1)

tary intersection or elementary union is defined as

m A m
;Q(Sizsl'sf"usm or g1si_sl+82+.”+sm R
respectively. Then a set formula is calléd to be invdisjunc—

tive normal form if it is a union of elementary intersections,

il.e.
m ﬁ‘-)‘
S..=S 'S o""os - IR
51 e ij 11 12 In(1)
+Smlosm2-cn-osm(n). (l)

In the formula (1), the first set of each elementary intersec-

tion (i.e. S S ., Sml) is called a candidate set.

11° "21° "7
Conversely, the last one (i.e. Sln(l)’ SZn(Z)""’ S

mn(m)) 18

called a determinating set. The keys in the resulting set of

a given set formula are called the matched keys.

Up to now, several kinds of hash method have been proposed
[1], whose detailed explanation is entirely omitted here.
However, we Jjust claim that the hash method adopted in our
algorithms works correctly even if a given query key is not in
the table. Thus a hash method such as the separate chaining
method[1], the conflict flag method[2] or the predictor method
[3] is preferable.

Each entry of the hash table contains at least three

fields, as 1s shown in Fig.l. A key i1s hold in the key field.

match level key pointer

Fig.l Structure of an entry.

(2)

The match level field(ML-field) is used to indicate how well
the key in the key field agrees with the given set formula.
The pointer field, holding a pointer of the chaining method,
is of course replaced by the oonflictvflag or the predictor
field in the case other method is adopted.

Now our problem is to get the matched keys of a given set
formula by using a hash table.
[Example] |

We give here a simple example. Assuming each entry to
be initially empty, the algorithm to perform the set formula
S,+*S,*S, 1is described as follows:

1 72 73

'Step 1. Store each element Kl of set Sl into the hash table,

setting the ML-field to 1.

Step 2. For each element K, of set S execute the following

2 27
operation: Search the element K2 in the table. If

K2 is found and its ML-field is equal to 1, then

change the ML-field to 2.

Step 3. For each element K, of set S execute the following

3 3?
operation: Search the element’K3 in the table. If
K3 is found and its ML-field is equal to 2, then

change the ML-field to 3.
As the conclusion of the algorithm, the key in the entry
whose ML-field is equal to 3 is a matched key of the set
formula 81‘82'53' In this example the necessary and suffi-
cient length of the ML-field is 2 bits.

(3)

2.2 Method for Disjunctive Normal Form
In this section we give a method to process set formulas
in disjunctive normal form. The method»consists of tWo
phases as follbws.
Phase 1 (Preprocessing- assigning a match value to each set)
Assign serial numbers to all the sets in the set formula
from left to right except the determinating sets. The number

assigned to each set is called the match value of the set.

Then assign to each determinating set a same value called the

final match value, which is the least integer greater than any

match value.
For example,

Sl'Sz‘Sa'Sq+Ss’Se+S7'Sa’Sg
1 2 3 7 4 7 5 6 7

whereythe final match value is 7.
Phase 2 (Execution)

Before giving the algorithm of phase 2, we define some
wordings used throughout the paper.

First, "storing set S" means "to store each element of
set S into the hash table while initializing the ML-field with
the match value assigned to the set. But notice that the
entry whose ML-field is not equal to the final match value is
treated as empty." In this operation, if the key to be stored
already exists in the table and its ML-field is equal to the
final match value, then there is no need to store the key
again.

Next, "filtering x-valued keys according to set S" means

(4)

the following operation: "For each element key of set S, if
the key exists in the hash table and the ML—field’is'greater
than or equal to x and less than the match value (say y) of S,
then update the ML-field by y. Otherwise, leave as it is."

Here we give the phase 2 algorithm to process the set
formula (1):
Step 1. Set i=1;
Step 2. Store the i-th candidate set Sil;
Step 3. Set Jj=2;
Step 4. Set x equal to the match value of set Sij—l;
Step 5. Filter x-valued keys according to set Sij;
Step 6. Set j=j+1; Is j>n(i)? If so go to step 7, if not go

back to step 4;
Step 7. Set i=i+l; Is i>m? If not go back fo step 2, if so
we are done. |

As the result of the algorithm, the key in the entry whose
ML-field is equal to the final match value is a mathcéd key
of (1). | |

In short, the algorithm first stores the keys belonging
to a candidate set as candidates bf matched keys (step 2),
and then reduces them gradually by checking with the sets
following after the candidate set (step 5). |

The ifreducible minimum size of the hash téblé does not
exceed card(gzsil).

Under the situation that the table size is fixed,ithe
sevéral ways to reduce the processing time are ponsidered as,

i) When a set is stored in step 2, choose a set whose cardi-

(5)

nality is as small as possible. In other words, place
the smallest set at the first position of each elementary
intersection in formula (1).

ii) Arrange the sets in each elementary intersection in set
formula (1) in such a way that the number of remaining
keys which passed the filtering process of step 5 1is
feduced as fast as possible.

iii) Arrange the elementary intersections of formula (1) in
an ascending order of the size card(‘?%g

7=
Ingeneral, requirement ii) and i1ii) are hard to insight

ij)’ (1<izn).

in advance. On the other hand, requirement 1) is relatively
easy to satisfy by modifying the algorithm, Further, the
effect of requirement 1) is greater than thatvof the rest, as

is proved by experiments in the following section.

3. Some Experiments
3.1 Simulations of a Simple Intersection Operation

In the experiment, a basic set operation to get the inter-
It SB and SC is simulated and evaluated
by employing the separate chaining method with overflow area

section of three sets S

[1]. The table size 1s 2000. Varying not only the cardi-
nality of each set (, which influences the load factor[1l])
but also set formula (, which influences the filtering
sequence of sets), six cases(casel.l — case2.3) shown in
Tablé 1l are executed. Computer generated pseudorandom numbers
are used as keys. Before using them, we made x%*-test for

Poisson distribution at the 5% significance level.

(6)

(L)

Table 1 The cases executed by simulations.

cardinal number of each set set formula case no.
card(SA)=1000, card(SB)=500, card(SC)=200, Sp*Sg*Se case 1.1
card(S,-S,)=200, card(Sg-S,)=100, S S S, case 1.2
card(SC-SA)=40, card(SA-SB'SC)=3O SC°SA'SB case 1.3
card(S,)=1800, card(Sy)=900, card(s,)=360, Sp*Sg* S case 2.1
card(SA°SB)=36O, Card(sB.gC)=18Q, SC.SB.SA case 2.2
card(sc.sA)é72, card(SA'SB-SC)=54 SC‘SA'SB case 2.3

The efficiency of the algorithm may be expressed in terms
of the average number of table access operations (i.e. probes)
that occur in hashing processes included in step 2 and step 5.
Simulations were programmed and run ten times for each case.
The results of the simulations are listed in Table 2, where
'average' columns indicate the values averaged by dividing by

the total number of keys, 1.e. card(SA)+card(SB)+card(SC).

3.2 Analysis of the Experiments

It is easy to estimate analytically the average number
of probes needed to get the intersection of three sets. Here
we estimate the number of probes needed to process the set
formula S;*S;°S3. Assume that the adopted hash method 1is the
separate chaining method, and each entry in the table is hit
as frequehtly as any other. Then, using Poisson approxima-
tion, we can expect that the probability P(i,x) of a cluster
of length 1 is e_x-xi/i!, where x i1s the load factor[3].

Let M be the table size, and let

card(S;)=k;, card(S;)=k,, card(Ss)=ks,

card(S;+S,)=ks;, card(S;+S;)=ks, (2)

card(S;+S,+S3)=k,
see Fig.2, where k is the number of matched keys. Let oa=k;/M.

First estimate the number of probes to store set Sy.
For an empty entry, probing occurs two times, i1.e. to check
and to store. Similarly for a chain of length &, probing
occurs &+2 times where £ indicates the number of probings to

trace the chain. As described above, the probability of a

(8)

Table 2 Summary of results of simulations and analysis.

observed value theoretical value

total average ~total average
case 1.1 3331 ‘ 1.96 3289 1.94
case 1.2 2086 1.23 2054 | 1.21
case 1.3 2026 1.19 19914 1,17
case 2.1 6612 2.16 6532 2.14
case 2.2 - 3807 1.24 3746 1.22
case 2.3 3699 1.21 3638 1.19

S

card(S;)=k;

Sz SS

card(S,)=k, card(S;)=ks

Fig.2 Venn diagram of S;+S,°+S3.

(9)

chain of length % is P(%,x), where x is the load factor.
Thus the average number of probes needed to store a key when

the load factor is x 1s given as
_ ,
2+P(0,x) + 9, (2+2)+P(L,x) = 2+x.
2=

Let T; be the average number of probes needed to store each

key of set S;. Then, by integrating and averaging:
; _ _]; S“ _ o '
Ty = 3 0(2+x)dx = 2+5 | (3)

where o 1s the load factor after storing process of set S;.

Next consilider the keys belonging to set S,. For each
key belonging to the intersection of Sa and S1, the average
number of probes to search is 1+a/2, and further one more
probing occurs to update the ML-field. Thus/average number
of probes is as

T, = 1l+a/2+1 = 2+a/2 . (4)
On the other hamd, the average number of probes T3 for the
keys belonging to S,-S; is equal to the average number for
the reject operation (i.e. unsuccessful search)[2]:

Ty = P(O,a)+ E;Q-P(l,u) - e %+a . (5)

Finally, consider the keys belonging to set Sia. For
the keys in S; and in S;°S, (i.e. matched keys), the average
number of probes is equal to T,. For the keys in S;-S;,
however, the update operation is not necessary. Thus,
average number of probes is as

Ty, = l+a/2 , (6)

which is given in [3]. For the keys in S3-8;, the average

(10)

number of probes is equal to Tgj.
From the definition (2) and the results (3), (4), (5)
and (6), the total number of probing operations T is given

as follows:

T = Tl'k1+T2’(k£+k)+T3?(kz—k£+k3—k§)+T4'(ké-k)
= kye(2+0/2)+(kaotks) s (ate™)
+(k3+ki) - (2-a/2-e" %) +k-k} . (7)

Then the average number of probes E for each key is given as
E = T/(ki+katks) . ; ‘ : (8)
The results of theoretical evaluation (7) and (8) are pre-
sented in Table 2.
Comparing case 1.1 or case 2.1 with case 1.2 or case 2.2
respectively, the effect of requirement i) is proved. The
difference between case 1.2 and 1.3 or between case 2.2 and.

2.3 indicates the effect of requirement 1ii).

4, Extending to General Set Formula
4,1 Necessity of Extension

Every set formula can be rewritten in an equivalent.
disjunctive normal form. Thus the algorithm given in
section 2 is theoreticaliy applicable to any set formula.
Consider, however, an example set formula S;+(S,+S3;), which
may be transformed to S;+S,+S1°5S3. Then the processing
speed will be considerably slowed down, since set S; should
be stored twice. Therefore, it i1s desirable that there is

an algorithm to execute any set formula in the form as it is,

(11)

which we call direct execution.

In the following section, we give a direct execution
algorithm for general set formula containing no complementary
set. The fundamental idea 1s similar to that of section 2.

Here we extend and redefine the term determinating set.

When a given set formula contains parenthesized subformulas,
assume each of them to be a single set. Then the original
set formula can be regarded as a disjunctive normal form.
Therefore, the determinating sets are determined by using the
definition given in section 2.1. If theAdeterminating set
is a parenthesized subformula, then apply the above rule
again recursively.

Similarly the term candidate set can also be extended

and redefined, but the manner i1s omitted here.
For example, consider the set formula: -

(8148,+83) +(Sy+S5+(Se+S7))+Ss (9)
where the determinating sets are S,, Sg, S; and Sy, and the
candidate sets are SI, S, and Sj. Especially paying
attention to subformula (S;+S,+S3), the determinating sets

are S; and Sj3, and the candidate sets are S; and S,.

4,2 Preprocessing of Set Formula (Phase 1)

The rule for assigning a match value to each set 1is
similar to that given in section 2. Roughly speaking,
assign serial number from left to right -under the restriction

"that the determinating sets in each parenthesized subformula

(12)

should be assigned the same value.
For example, the match values assigned to'set'formula (9)

-are as:

(S14S5°S3)*(Sy+Ss+(Se+S,))+S, '(9,)
2 1 2 4 3 TRl il

where the final match value is 4.

In section 2, the match value of S, (1<i<m, 2<j<n(i))

1j—1
is used to filter candidate keys according to Sij in step 5.
In the case of general set formula, howevef, this does not

hold. Therefore newly a value, called check value, is

introduced, which 1s assigned to each set so that the fil-
tering process may work correctly.,‘ The basic rule .of
assigning check values 1s as follows: with respect to each
intersection operator (i.e. '+'), the final match value of
the left-hand subformula of the operator becomes the check
value of the candidate sets of the right-hand subformula.
The set that cannot be assigned a check value by the basic
rule must be a candidate set of the original set formula. and
is assigned zero.

For example, the match values and the check values of
the set formula (9) are as:

(S1+S2+83)+(Sy+3S5°(Se+S7))+Sg
match value 2 1 2 y 3 T Y (9"
check value 0 0 1 2 2 3 3 0

In conclusion, what phase 1 should do is to assign a
check value and a match value to each set of the given set'
formula. A concrete algorithm of>phase‘1 is presented in

Appendix.

(13)

4,3 Execution by Using a Hash Table (Phase 2)

After the completion of phase 1, the main execution
process performed on a hash table is started. Let Si be the
i-th set from left in the set formula and let check(S,) be the
check value assigned to set Si' Let m be the number of sets
appears in thé set formula. Then the algorithm of phase 2
takes a simple form as follows: |
[Algorithm of Phase 2]

Step 1. Set i=1;
Step 2. Set x=check(Si);
Step 3. If x#0, then go to step b, Otherwise, store Si and
go to step 5;
Step U4. Filter x-valued keys according to set Si;
Step 5. Set i=i+1l; If is<m, then go back to step 2. Otherwise,
we are done.
As the result of the algorithm, the key in the entry whose ML-
field is equal to fhe final mateh value is a matched key of
the given set formula.

Now let k be the number of intersection operator
appearing in a set formula. Then, notice that the final match
value is equal to k+l. Thus rlog2(k+l)1 bits are needed for

the ML-field to process the set formula.

5. Conclusion
We have proposed methods to perform set operations by

using a hash table. Two algorithms for disjunctive normal

(14)

form and general set formulas are presented.
In this note, the influence of complementary set to the
algorithm has not been considered at all, which is the future

problem.

References

1) Knuth,D.E. The Art of Computer Programming, Vol.3: Sorting
and Searching, Addison-Wesley(1973).

2) Furukawa,K. Hash addressing with conflict flag, Information
Processing in Japan, Vol.l3(l973),pp.13;18.

3) Nishihara,S. & Hagiwara,H. An open hash method using

predictors, ibid.,Vol.15(1975),pp.6-10.

(15)

APPENDIX. An Algorithm of Phase 1.
A stack is used as the work area. Fig.A shows the

structure of each entry of the stack, where the fields of set

id., match and check are used to hold a set identifier, a

match or final match value and a check value, respectively.
The handling of perentheses is performed by using delimiter
fields. |

Let p indicate the position in the set formula where the
pfocess is in prbgress, and let a‘indicate the address of the
stack. The position of the first V is 0. The initial
values of p, a and v are 0, 1 and 1, respectively;

The algorithm of phase 1 i1s shown in Table A. In the
algorithm, ifithe symbols placed at the p-th and (p+l)-th
positions agree with the symbols in the columns of 'present'
and 'next' of Table A, then the corresponding operations in
'operation' column are applied.

As an example, the results of the processing of set

formula (9) is shown in Fig.B, which coincide with (9'').

address set id. match check delimiter

Fig.A Structure of an entry of the stack.

(16)

Table A

An algorithm of Phase 1.

next

present

operation

free

delimiter(a):=delimiter(a)+1;
p:=p+l;

SET

free

setid(a):=SET; a:=a+l;
p:=p+1; '

SET

match(a-1):=v; check(a):=v;

vi=v+l; p:=ptl;

L1

w:=a;

wi=w-1;

if match(w)=0 then match(w):=v;
if delimiter(w)=0 then go to L1;
delimiter (w) :=delimiter (w)-1;
check(a) :=match(a-1);

v:i=v+l; p:i=p+l;

L2

SET

w:=a;

Wi=w-1;
LL:

if w=1 then L3:begin
check(a) :=check (w) ;
p:=p+1l;
end
else
if delimiter (w)=0

then go to LZ else go to L3;

L4

w:=a;

wi=w-1;

if delimiter(w)=0 then go to L4;

'delimiter(w);=delimiter(w)-l;

go to LL;

(continued)

(17)

SET p:=p+l;
w:=a;
L5:w:=w-1;
) if delimiter(w)=0 then go to L5;
delimiter (w) :=delimiter(w)-1;
p:=p+l;
w:=a;
L6:w:=w-1;
if match(w)#0 then go to L7;
free ‘match(w) :=v;
L7:if w=1 then go to END
else go to L6;
(51#82783)* (S4#85° (S¢+5,))+8¢
p= 0 3 5 6 20 21 22
v +|S S3 Y| (S4 + S5 | (S6 + S7 + 88 v

(18)

_—/4
10 :
9
8 58 4 0
7 S7 4 3
6 86 4 3 10
5 85 3 | 2
4 S4 4 2 10
3 S3 2 1
2 S 1 0
ax Z
1 5 2 0 10
n o S S o
g b 2 har
g b a © g
[4+] [%2] e
(0]
o

Fig.B An example of preprocessing (Phase’l).

(19)

47
48
49
50
51
52
53
54
55

The simulation program to estimate the efficiency.

EXECUTING SET FUNCTIONS BY USING HASHING TECHNIQUES
FEBRUARY 1976 By S. NI SHIHARA ‘
COMMON ITAB(3,2000),I0VF(3,1000),151(1800),152(900),I153(360)
DIMENSION ICOUNT(21) ‘
PHASE 0 XXXXXXXXXXXXXXKRXXKKXXXXXX XKERKXKXXXKXKX XK KKK XXXKKX KX KKK XXXX
INPUT PARAMETERS, CARDINAL NUMBER OF EACH SET
AND INCREMENT SIZES.
READ(5,1000) N1 N2 N3,N12,N23,N31,N123
READ(5,1000) INC1,INC2,INC3
1000 FORMAT(7I5)
C PHASE 1 XXXXXXXXKXKXKXXXXXKXKKKKKKXXKKKKXKKXEKKX KXKKKKK KKK XXX KX KKKXX
C GENERATE RANDOM NUMBERS USED AS KEYS.
IPOSSN=0
1Y=1471541918
KURI=1
602 CONTINUE
DO 100 Iw=1,N1
CALL RANDOM2(YFL,IY)
IS1(Iw)=1Y ‘
100 CONTINUE
I1=N12+N123
DO 101 Iw=1,IN
IS2(IwW)=IS1(IW)
101 CONTINUE
I2=11+1
DO 102 Iw=I2,N2 :
CALL RANDOM2(YFL,IY)
IS2(IwW)=1Y
102 CONTINUE
DO 103 IwW=1,N123
IS3(IW)I=IS2(IW)
103 CONTINUE
DO 104 IW=1,N23
[3=N123+1W
I4=11+1W
IS3(I3)=1S2(I14)
104 CONTINUE
I5=N123+N23
DO 105 ITW=1,N31
I6=15+1W
I7=I1+1W
1S3(16)=1S51(17)
105 CONTINUE
I8=15+N31+1
DO 106 IW=I8,N3 :
CALL RANDOM2(YFL,IY)
IS3(Iw)=1Y
106 CONTINUE
CC ;
C PHASE 2 XXXXXXEXXXXXXXXKXXXKXKKKEKKRXAEXXXKXXXKKKRXXKXXKEXXKX XXXXXXXKXK XXX
C CALCULATE THE STARTING ADDRESS OF EACH SET IS1, IS2 AND IS3.
CALL RANDOM2(YFL,IY)
IP1=IY-CIY/N1)xNI1
CALL RANDOMZ(YFL,IY)
I1P2=IY-(IY/N2)xN?

(20)

56 550 CALL RANDOM2(YFL,IY)
57 IP3=IY-CIY/N3)xN3
58 WRITE(6,1010) IY

59 1010 FORMAT(1H ,25HCURRENT RANDOM NUMBERxxxx,I15)
60C PHASE 3 xx

61C STORE ALL ELEMENTS IN SET IS1, AND COUNT
62C THE COLLISIONS FOR Xxx2 TEST.
63CHAINING METHOD

64 CALL CLEAR(IPOVF)

65 IPROB=0

66 DO 200 I=1,N1

67 KP=IP1+1

68 KEY=IS1(KP)

69C STORE THE KEY

70 I1=KEY/3

71 IAD=11~-(11/2000)x2000+1

72Cxx PROBING xx ACCESS THE FIRST KEY
73 IPROB=IPROB+1

74 IFCITAB(3,IAD) .NE., 0) GO TO 201
75Cxx PROBING xx STORE

76 IPROB=IPROB+1

77 ITAB(1,IAD)=1

78 ITAB(3,IAD)=KEY

79 GO TO 202

80C

81 201 IFCITAB(2,IAD) .NE. 0) GO TO 203
82Cxx PROBING xx POINTER SET

83 IPROB=IPROB+1

84 ITAB(2,IAD)=IPOVF
85Cxx PROBING xx STORE
86 IPROB=IPROB+1

87 IOVF(1,IPOVF)=1
88 IOVF(3,IPOVF)=KEY
89 GO TO 204

90C

91 203 I2=ITAB(2,IAD)

92Cxx PROBING xx ACCESS NEXT KEY

93 206 IPROB=IPROB+1 '
94 IFCIOVF(2,I2) .EQ. 0) GO TO 205

925 12=IOVF(2,IZ)
96 GO TO 206
97C

98Cxx PROBING xx POINTER SET
99 205 IPROB=IPROB+1

100 IOVF(2,1I2)=IPOVF

101Cxx PROBING xx STORE

102 IPROB=IPROB+1

103 IOVF(1,IPOVF)=1

104 IOVF(3,IPOVF)=KEY

105C

106 204 IPOVF=IPOVF+1

107 IFCIPOVF .GT. 1000) STOP 9999
108C ' ’
109 202 IP1=IP1+INCI

110 IFCIPT .GE. N1) IP1=IP1-NI

(21)

111 200 CONTINUE

112 WRITE(6,1001) IPROB

113 1001 FORMAT(1H ,//35HxxNUMBER OF PROBES TO STORE SET S1=,18)
114C '

115C PHASE 7 XXX XEXE XX KKK AKX KK E N A KX KKK EX KX KK E XXX XX XXX XK XX XX KKK XXX X XX
116 DO 500 I=1,21

117 ICOUNT(I)=0

118 500 CONTINUE

119C

120 DO 501 I=1,2000

121 LEN=1

122 IF(CITAB(3,I) .EQ. 0) GO TO 502
123 LEN=LEN+]

124 IF(ITAB(2,1) .EQ. 0) GO TO 502
125 LEN=LEN+1 .

126 J=ITAB(2,I)

127 503 IF(IQVF(2,J) .EQ. 0) GO TO 502
128 LEN=LEN+] .

129 J=10VF(2,J)

130 GO TO 503

131C

132 502 IF(LEN .GT. 21) LEN=21

133 ICOUNTCLEN)=ICOUNT(LEN)+]

134 501 CONTINUE

135C

136 XX=N]1

137 XX=XX/2000.0

138 WRITE(6,1500) XX,Nl ,
139 1500 FORMAT(IH ,12H Xxx2-TEST,5X,12HLOAD FACTOR=,
140 1F6.3,5X,3HN1=,16)

141 WRITE(6,1501) ICOUNT(1)

142 WRITE(6,1502) (ICOUNT(I),I=2,11)
143 WRITE(6,1502) (ICOUNT(I),I=12,21)
144 1501 FORMAT(IH ,5X,17,7H(BLANK))

145 1502 FORMAT(IH ,5X,10I7)

TA6CXX XXXXXXXXXX XXXKKKKKXK KXXXKXKKX KKK XX XX KKK XK XXKXXKXXK KX XXX XXXXXK XXX XX
147C PHASE 4 XX XXXXXXKXXKXXXXKXXXKX XKXXXXKXXXX XXKXXXXXXXK X RX XX XKXKXX XXX XX

148 600 CONTINUE

149 00 300 I=1,N2

150 KP=IP2+1

151 KEY=IS2(KP)

152C SEARCH THE KEY

153 I1=KEY/3

154 IAD=I1-(I1/2000)x2000+1

155Cxx PROBING xx ACCESS THE FIRST KEY
156 IPROB=IPROB+1

157 IF(ITAB(3,IAD) .EQ. KEY) GO TO 301
158 IF(ITAB(2,IAD) .EQ. 0) GO TO 302
159 IAD=ITAB(2,IAD)

160Cxx PROBING xx ACCESS NEXT KEY
161 304 IPROB=IPROB+I

162 IFCIOVF(3,IAD) .EQ. KEY) GO TO 303
163 IFCIOVF(2,IAD) .EQ. 0) GO TO 302
164 IAD=I0OVF(2,IAD)

165 GO TO 304

(22)

166C
167Cxx PROBING xx SET FLAG 2
168 303 IPROB=IPROB+1

169 I0OVF(1,IAD)=2
170 GO TO 302
171C

172Cxx PROBING xx SET FLAG 2
173 301 IPROB=IPROB+1

174 ITAB(1,IAD)=2

175C

176 302 IP2=1P2+INC2

177 IF(IP2 .GE. N2) IP2=IP2-N2

178 300 CONTINUE
179C SET IS2 PROCESSING COMPLETED

180C

181C PHASE 5 XXXXXXXXXXKXXXXXXKXXKXKKX XEXXKXXKXKKXXXKKXXXKXK XXXKXKKXXK X XXX XX
182 KOSU=0

183 DO 400 I=1,N3

184 KP=IP3+1

185 KEY=IS3(KP)

1846C SEARCH THE KEY

187 I1=KEY/3

188 IAD=I1-(I1/2000)%x2000+1

189Cxx PROBING xx ACCESS THE FIRST KEY

190 IPROB=IPROB+1

121 IFCITAB(3,IAD) .EQ. KEY) GO TO 401
192 IF(ITAB(2,IAD) .EQ. 0) GO TO 402
193 IAD=ITAB(2,IAD)

194Cxx PROBING xx ACCESS NEXT KEY
195 404 TPROB=IPROB+1

196 IFCIOVF(3,IAD) .EQ. KEY) GO TO 403
197 IFCIOVF(2,IAD) .EQ. 0) GO TO 402
198 IAD=I0VF(2,IAD)

199 GO TO 404

200C

201 403 IF(IOVF(1,IAD) . NE. 2) GO TO 402
202Cxx PROBING xx UPDATE FLAG TO 3

203 IPROB=IPROB+1
204 IOVF(1,IAD)=3
205 KOSU=KOSU+1
206 GO TO 402
207C

208 401 IF(ITAB(1,IAD) .NE. 2) GO TO 402
209Cxx PROBING xx UPDATE FLAG TO 3

210 IPROB=IPROB+1

211 ITAB(1,IAD)=3

212 KOSU=KOSU+1

213C

214 402 1P3=I1P3+INC3

215 IF(IP3 .GE. N3) IP3=IP3-N3

216 400 CONTINUE
217C SET IS3 PROCESSING COMPLETED

218C PHASE 6 XXXKXXEX KKK EX KKK XXKXKEEKEX XXXX KK KKK XX XX KRKEKKK XXX XK KX KX K
219 WRITE(4,1002) IPROB,KOSU
220 1002 FORMAT(1H .,//24H TOTAL NUMBER OF PROBES=,

(23)

221 118,13H xRESULT=,18)
222 601 WRITE(4,1003) KURI
223 1003 FORMAT(1H ,10Hxxxxxxxxxx,I2,10Hxxxxxxxxxx, //)

224 IF(IPOSSN .EQ. 0) KURI=KURI+I1
225 IF(KURI .LT. 31) GO TO 602
226 STOP

227 END

10 SUBROUTINE CLEAR(CIPQOVF)

20 COMMON ITAB(3,2000),I0VF(3,1000)
30 0O 10 I=1,2000 ‘

40 ITAB(1,1)=0

50 ITAB(2,1)=0

60 ITAB(3,I)=0

70 10 CONTINUE

80 DO 11 I=1,1000

20 IOVF(1,1)=0

100 I0VF(2,1)=0

110 IOVF(3,1)=0

120 11 CONTINUE

130 IPOVF=0

140 RETURN

150 END

(21)

INSTETUTE OF INFORMATION SCIENCES AND ELECTRONICS
UNIVERSITY OF TSUKUBA
- SAKURA-MURA, NITHARI-GUN, IBARAKI 300-31 JAPAN

REPORT NUMBER

REPORT DOCUMERTATION PAGE ISE-TR-77-7

TITLE

PERFORMING SET OPERATIONS BY USING HASHING TECHNIQUES

AUTHOR(s)
Seiichi Nishihara (Institute of Information Scilences
and Electronics, University of
Tsukuba)
Hiroshi Hagiwara (Department of Information Science,
Kyoto University)
"~ REPORT DATE NUMBER OF PAGES
September 12, 1977 24
MAIN CATEGORY CR CATEGORIES
Data Management 4,33, 4.34, 3.73
KEY WORDS

set processing, hashing, scatter storage, database,
data manipulation, information retrieval

ABSTRACT

Performing set operations is one of the basic techniques in
the fields of information retrieval, data structure and data
base management.

In this paper, it is shown that hashing techniques can
effectively be applied to performing set operations, where
each set is a set of keys. Each entry of a hash table con-
tains a key field, a pointer field and a match level field.
The last field 1s wused to indicate how well the key
satlsfies the set formula under consideration.

Some algorithms to process set formulas containing no
complementary set are given and the efficiency is proved
by some experiments.

SUPPLEMENTARY NOTES

