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ABSTRACT

A program system SALS is developed for statistical data

analysis with nonlinear least-squares fitting, featuring:

a)

b)

)
d)

e)

)

g)

a general-purpose full system containing input/output
routines and accessing a user-coded theoretical model
subroutine,

reliable and fast convergence in nonlinear least-squares
algorithms,

high precision in five linear least-squares algorithms,
robust estimation techniques including Tukey's biweight
method,

various statistical diagnoses including Akaike's information
criterion,

easy-to-use commands for input and control, and

dynamic allocation of arrays.

The system consists of about 10000 steps of standard

Fortran.

Keywords: SALS system, program design, program package,

data analvsis. model fitting. leést squares,

nonlinear least squares. singular value decomposition,
Marquardt method,

Statistical analysis,

parameter binding, model selection, AIC,

robust estimation,
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1. INTRODUCTION

In various fields of science and applications, statistical
data analyses like least-sauares fittings are reauired to
handle with elaborate theoretical models worked out for each
problem. Thus., a great number of people have made much
efforts to make least-squares programs to solve their own
problems. However, they often meet difficulties in getting
reliable solutions, in selecting the best models, and in
extracting statistical information. These difficulties are
mostly originated in

(a) near singularity of normal equations,

(b) instability in the nonlinear refinement algorithms,

(c) contamination of unreliable observations, and

(d) poor guideline to construct and select the models.
Since all these are mainly concerned with numerical analysis
and statistics, they should be solved in a way universal to
various applieation fields [13, 28,47-49]. Thus, in the
present study, we have developed a program system SALS‘for
nonlinear least-squares analysis, of high quality both in
numerical and statistical features, and suitably designed
for general use in natural sciences.

Even though many preceding works cover one portion or
another of the present objectives, none of them have built’
a general system like the present one:

Subroutines for linear least-squares algorithms are how

widely available in various program libraries [17, 23, 40],
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mostly for solving the normal equations and some for getting
the solutions directly without setting up the normal equations.
Subroutines for nonlinear algorithms were also developed by
a.number of people [23, 40]; some of them take the advantage
of minimizing the sum of squares of residuals while others aim
to minimize a general nonlinear function. The advantages and
disadvantages of these algorithm subroutines depend on the
scale and nature of the problems to be solved; hence, it is
desirable, but left to be done, to select them and build
them up into a unified system of easy control.

Examples of program systems of nonlinear fitting
algorithms are MLAB [27], MINUIT [26], and FIT [12]. MLAB
is a curve fitting program with interactive operation and
is not intended for large-scale data ahalyses with complex
theoretical models. MINUIT is a package of nonlinear
minimization algorithms instead of least squares. FIT is a
system for statistical model fitting with algorithms for
data manipulation, linear least-squares, and nonlinear
optimization; the present SALS system has similar objective
with FIT and is newly designed with much stress on linear
and nonlinear least-squares algorithms, robust estimation,
and easy control.

Another class of preceding works are general-purpose
'statistical program packages' [3, 16, 45], such as BMD-BMDP
[14, 15], SPSS [39], OMNITAB [24], and SAS [5], which are

designed mainly for the fields of social, behavioral, and
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biological sciences. Their 'regression', or even 'nonlinear
regression', programs expect simple models like polynomials,
and do not accept nonlinear models.

The SALS system developed in the present study is a full
system for nonlinear least-squares analysis, containing
input/output routines and accessing a user-coded subroutine
for calculating the theoretical model specific to the user's
problem. Selected}and reliable algorithms are available for
nonlinear as well as linear least-squares calculations.
Robust estimation methods in addition to the ordinary least-
squares method can be applied to the observed data. After
fitting, various statistical diagnoses are output such as
error matrix of the estimated parameters, Akaike's information
criterion AIC for model selection, and plots of residuals.
All these algorithms and statistical options can be easily
controlled by the user with a simple set-up of input data.

Table I summarizes the basic specifications of the

present system.



2. GENERAL STRUCTURE OF SALS SYSTEM

A. Structure of SALS System as a Black Box

Figure 1 schematically shows the structure of a data
fitting program using the present system. In this figure
SALS system is shown as a black box accompanying»inpﬁt/output
routines. Thebuser‘s main program simply calls SALS which
handles with everything for input/output, data fitting, and
statistical treatment. Standard I/O routines are installed
in the system, and yet user's own I/0 routines are acceptable
as options. SALS system also calls a user-coded subroutine
for the theoretical model calculation; since the theoretical
model depends on the user's problem, the user must supply
this subroutine. It is desirable to calculate the Jacobian
matrix of the model in this subroutine, but its calculation
may be omitted if the analytical form of the derivatives 1s
not obtainable.

One may notice that the subroutines drawn on the right
half of Fig. 1 are the essentials of a program for theoretical
model calculation, as illustrated in Fig. 2. In general,
data analysis usually proceeds in the cycles of (a) theoretical
model calculation, (b) data fitting, and (c) diagnosis of
the fit and the model; hence, it is a good practice for the
user to do theoretical model calculation before the fitting,
in order to understand the behavior of the model and get

rough estimates of the model parameters.
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B. Structure of SALS System

SALS is written in a standard Fortran (JIS 7000
corresponding to ANSI 66) and constructed as a system of
about 130 subroutines. It has hiererchical calling structure
as illustrated in Fig. 3. Each block in the figure is
actually made of one to twenty subroutines. These subroutines
are classified into 10 groups, six of them directly related
To the fitting algorithms while the rest playing auxilliary
roles:

Group 1, SALS: SALS control routine (a) handles several
sets of algorithms, parameters, and observations by use of
the input routines (b).

Group 2, SALSEX: Execution of a fitting task is
prepared: for one set of algorithms, parameters and
observations, default values are set for unspecified controls
and working areas are dynamically allocated.

Group 3, LSF: For a robust estimation effective weights
are adjusted according to the residuals, .and then a nonlinear
least-squares algorithm is called.

Group 4, NONLIN: ©Nonlinear least-squares calculation
is executed; there are three methods, i.e. (a) Gauss-Newton
method with a damping option, (b) Levenberg-Marquardt method
with Fletcher's algorithm, and (c¢) Powell's hybrid method,
even though (c¢) is still under way of development.

Group 5, LINLS: This group of subroutines control the

linear least-squares algorithms either (a) without using the
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normal equation or (b) with using it. Rank deficiency
treatmeht, iterative improvement of the sblution, and
switcﬁing of linear algorithms are managed.

Group 6, LINEAR: Parameter corrections are calculated
with either one of the five selected algorithms for linear
least-squares calculation: (a) Modified Gram-Schmidt method,
(b) Householder orthogonal transformation method, (c)
singlar-value decomposition method, (d) Cholesky decomposition
method, and (e) eigenvalue decomposition method. Among
these, (a)-(c) obtain the solution directly from the Jacobian
matrix without using the normal equation, while (d) and (e)
solve the normal equation.

Group 7, STAT: All the statistical information are
calculated and outputted: including standard deviation, AIC,
error matrix of parameters, and plots of residuals.

Group 8, OUT: Intermediate and final fesults are outputted.

Group 9, MODL: This group of subroutines are called to
get the calculated values and the Jacobian matrix of the
user's theoretical model. The user must supply a theoretical
model subroutine (b) in either one of the following three
forms:

(i) MODELF subroutine for calculating the theoretical

values alone, |

(ii) MODELD subroutine for calculating_the theoretical

values and the Jacobian matrix, and
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(iii) MODELN subroutine for giving the theoretical values
together with the normal-equation matrix.
The control routine (a) of this group serves as an interface
between the algorithm and the user-coded subroutine; for
instance, if the user supplies a MODELF subroutine, the
Jacobian matrix is numerically calculated in this interface
by calling MODELF repeatedly.

Group 10, DFCHEK: This is a utility to check the
Jacobian matrix calculated by the user's MODELD subroutine.
Another Jacobian matrix 1s obtaihed'by numerically
differentiating the theoretical model values supplied by the
MODELD subroutine. The two Jacobian matrices are compared
and numbers of matching digits are printed out. This checking
is done as a separate, preliminary job before fitting.

C. Dynamic Allocation of Arrays

In the SALS system, the arrays of working area are
dynamically allocated in a large one-dimensional array WK
in the unlabelled COMMON block, and yet they can be used
just like the original one- or two-dimensional arrays in the
scheme of variable dimensions. The sizes of the working
arrays are adjusted according to the number of observations
n, the number of variable parameters m, and the algorithms
to be used. The arrays are usually allocated separately in
WK, but for a smaller size of WK, some of them are overwritten.
If WK is too small to store the necessary arrays even with

the atmost overwriting, the system prints out an error message
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and the necessary size of WK. The size of WK can easily be
adjusted by the user declaring the unlabelled COMMON block
in his main program (see Fig. 5).

D. Implementation

The present system has been developed on a HITAC 8800/
8700 computer at the Computer Centre of the University of
Tokyo, which is operated under an operating system 0S7 in a virtual
memory system. The unlinked object codes of the whole SALS
system occupy the memory as large as 180KW, while ordinary
runs of them in a dynamic linkage mode need about 150 KW.
This memory requirement is much reduced to 60 KW by taking
linkage of the object modules in a logical overlay structure
without change in the computation time. The longest path
in this overlay structure contains only one of the alternative
algorithm sets; 1t essentially consists of the subroutines
of groups U4b, 5a, 6c, 7, 8, 9a, and 9b shown in Fig. 3.

SALS program system has been successfully transferred
to a number of university computer centers in Japan, where
the machines such as HITAC M-170, FACOM M-200, FACOM 230/75,

and NEAC ACOS 900 are in operation.
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3. ALGORITHMS

A. Fundamental Formulation [10, 21, 35]

Least-squares problems may be expressed symbolically as

y = f(x) with uncertainty o, (1)
where y, ¥, and o are the n-vectors of observed values,
theoretical model functions,‘and uncertainties, respectively,
and x is the m-vector of the model parameters to be determined.
The least-squares condition is invoked to determine the

best-fit parameters ¥ as

_T - ANN2 s .
S = vWy = Ziwi(yi - fi(x)) = minimum, (2)
where
v =y - £(%): residuals, (3)
w; = diag{W} = 002/012 : weights, (4)
Og : standard error.

In case of a linear model, namely
f(x) = Ax (5)
where

Aij = afi/SXj : Jacobian matrix, (6)

the parameters ¥ can be obtained by solving the normal equat

A

awr)x = (ATwy) or BX = b, (7)
where

B = A:WA and b = ATWy.

Setting up the normal equation (7), however, is not always

necessary to get the solution. For instance, if the weighte
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1
Jacobian matrix A' = W?A is decomposed into a product of @

and R, say with the modified Gram-Schmidt method,
win = a' = R, | (8)
where @ is an orthogonal matrix while R is an upper triangular

matrix, then the parameters are directly solved as

2 = @)ty = RNy = Ty, (9)
1
where y' = W2y is the weighted observables.

In case of a nonlinear model, iterative refinement

methods are used: Around some I1nitial guess of parameters

Q(O), the model functions f are expanded into the Taylor
series to get the expression
Ay = BAx with uncertainty o (10)

in the first-order approximation, where
Ay =y - f(Q(O))' and Ax = x - Q(O). (11)
Then the linear least-squares algorithms are used to obtain

the parameter corrections Aﬁ, and the corrected parameters
g =29 4% (12)
are now used as the basis for the further refinement.

B. Linear Least-Squares Algorithms [13, 19, 28, 49, 50]

As shown in Fig. 3, SALS system uses the following five
selected algorithms for the linear least—squares calculation:

(a) Modified Gram-Schmidt method [6-8],

(b) Householder orthogonal transformation method [9, 11],

(¢) Singular-value decomposition method [20, 28],
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(d) Cholesky decomposition method, and

(e) Eigenvalue decomposition method [46].
Table II summarizes the outlines of thése algorithms in the
form of three steps: decomposition, solution, and calculation
of the error matrix.

The algorithms (a)-(c) do not set up the normal equation
(7) but directly transform the Jacobian matrix A' to get the
solution x. They are relatively new and known to have higher
precision even in ill-conditioned cases than the traditional
algorithms (d) and (e) which solve the normal equation.
Furthermore, their computation times are of the same order
as those of the traditional ones. Thus, in SALS system, the
modified Gram-Schmidt and the Householder algorithms are
used as the standard procedures for ordinary problems. They
both contain algorithms for pivoting and for rank deficiency;
the rank is judged with a threshold of 16 times the computer
precision €, and for the underterminable variables zeroes
are returned. The singular-value decomposition method (c),
on the other hand, chooses a proper number of linear
combinations of variables to give minimum-norm solution in
case of rank deficiency. This feature is useful to obtain
reasonable models for linear least-squares problems and to
achieve more stable convergence in nonlinear problems.
Lawson and Hanson's subroutines [28] are adapted for (c);
they use Householder transformation to get a bidiagonal
matrix and a QR algorithm to diagonalize it [20].

-13-



On the other hand, the algorithms using the normal
equation have merits of smaller memory requirement: The
normal equation matrix can usually be calculated by accumulating
the contributions of each observed datum without storing the
whole Jacobian matrix. Thus, SALS includes the options of
solving the normal equations for larger-scale problems. In
this case, Cholesky method is ordinarily used by virtue of
its speed, precision, and small memory reduirement. For the
purpose of getting a minimum-norm solution in case of rank
deficiency, the eigenvalue decomposition method (or
diagonalization method) is used. The subroutines developed
in the EISPACK system [46] have been adapted after remodeling;
they use the Householder tridiagonalization and a QR algorithm
with an implicit origin-shift technique.

In order to keep high precision in the linear algorithms,
some calculations like vector products are carried out in
double precision, even though the whole calculations in SALS
are done in single precision. Optional iterative improvement
of the solution 1s also usefull in the linear algorithms (a),
(b), and (d).

C. DNonliner Least-Squares Algorithms [13, 44]

For nonlinear least-squares problems, the following two
methods are available in SALS system:

(a) Gauss-Newton method with a damping option [22], and

(b) Levenberg-Marquardt method with Fletcher's algorithm

[18, 29, 311].
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In addition to these, a third method

(c¢) Powell's hybrid method [42, 43]
is under way of development.

Gauss-Newton method (a) carries out an iterative
refinement on the basis of the locally-linearized model
approximation (10). This method is useful, in nature, in
case of weak nonlinearity and of good initial guess of
parameters. In order to extend its applicability to the
cases of stronger nonlinearity or of poorer guess of initial
parameters, SALS has adapted a damping option: If the residual
sum of squares S does not decrease at the refined parameter
values of Eq. (12), the parameter corrections AX are reduced
into halves stepwise getting a smaller 3. The iteration of
nonlinear least-squares fitting is terminated either when
the refinement has converged, when the number of cycles
exceeds the limit, when S fails to decrease more than the
specified times, or when S gets smaller than a lower threshold.
0

The convergence of the refinement is approved when S and S

of the preceding cycle satisfies the following relation
0 0
S7+(1-n) £ 8 ¢ 87 +(1+n), (13)

where n stands for the tolerance of order evé, and at the

same time when the parameter corrections Ax are small enough.
Levenberg-Marquardt method (b) [29, 31] is similar to

the Gauss-Newton method except the way of avoiding the increase

in 8. It artificially adds some extra terms AD to the diagonal
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elements of the normal-equation coefficient matrix ATWA:

(ATwa + AD)AR = ATway, (14)
where D is taken to be either a unit matrix [, a diagonal
matrix diag{ATWA}, or I + diag{AWA}. If D = L[ and the scale
factor A is large enough, the above solution essentially
odrresponds to that o \Fhe steepest descent method. Hence,
by adjusting the A consﬁant properly, the iterative refinement
is expected to converge.K‘Among various empirical ways so far
proposed to adjust A, Fletcher's algorithm [18] is adapted
in SALS system. Even though the Levenberg-Marquardt method
is usually described iﬁ terms of the normal equation as above,
the same treatment can be formulated by attaching extra terms
to the Jacobian matrix itself [28]; hence, in our SALS program,
the Levenberg-Marquardt method may call either one of the
five linear least-squares algorithms described in Section 4B.
The criteria for terminating the iteration and for checking
the convergence are similar to those for (a).

Powell's hybrid method (c¢) [42, 43] is under way of
adaptation in SALS. According to some preliminary tests, it
is expected to be faster and more stable iﬁ heavily nonlinear
cases without requiring the user to set up the Jacobian

mtrix.
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L, STATISTICAL FEATURES [10, 21, 35,47]

A. Weighted Least-Squares Method

Uncertainties in the observed data may or may not be
uniform. Therefore, weighted least-squares analysis 1s one
of the basic functions in SALS. The weights W, are set as
in Eq.(4) by using the input data of experimental uncertainties
Oi and the standard error of observation o, which corresponds
to the experimental uncertainty for the unit weight.

B. Binding the Parameters

User's theoretical model often includes a number of
variable parameters which are not4negligible but difficult
to determine from his observations alone. Sometimes such
parameters were previously estimated and may be found, say,
in literature. In such a case, the parameters may be fixed
at the pre-estimated values by inputing the flags in SALS
system. It is more reasonable, however, to introduce such
pre-estimated values as additional observations accompanying
their own uncertainties: by inputingbthe pre-estimated values

A (O) (O)),

X, , their uncertainties o(ij

these parameters are loosely bound around their input values

and control flags,

with the weights given by Eq. (4).

C. Standard Deviation

The standard deviation of observation is estimated as

oy = WTWV/(H - m). (16)

According to statistics, the expectation value of 80 is %

17~



in Eq. (4). There are two cases concerning the standard
deviation:
(a) The experimental uncertainties oi are known: In this
case, 0g is a known arbitrary constant, and 30 can be used
to check the goodness of the fit, e.g. by use of the chi-square
test. If the model passes the test, then we take
e
o)

o' = max{og, 30} ' | (17)

as a safer guess of the standard error 0q-
(b) The experimental uncertainties oy are only relatively
known: In thils case, oolis introduced as an unknown scaling

factor in Eq. (4), and the standard deviation 60 gives the

estimate of OO'

D. Uncertainties in Parameters and in Calculated Values
The error matrix, or the variance-covariance matrix, of

the parameters are obtained as

Ta = ooz(ATWA)—l. : (18)

N
X
The actual ways for calculating Eg in various linear least-
squares algorithms are summarized in Table II. The 30' in

Eq. (17) is safely used in Xg in place of Tge The uncertalnties

of the parameters

on = (5n .7 (19)

2 2oy
3 Jd

and correlation coefficients

pjj; = (Eﬁ)jj‘/cﬁjcﬁj' (20)

are also outputted. The estimation errors in the calculated
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values @ = (%) are also evaluated on the basis of the

propagation law of errors as

0, = gty 7 (21)

E. Diagnostic Plots of Residuals

For the purpose of diagnosis of the fit, three types of
graphs of the residuals are output on the line printer: (a)
a histogram, (b) a graph of residuals against the input data
number, and (c) a normal probability plot. In these graphs,
the normalized residuals vi/oi are plotted after scaling with
s in Eq. (24), so as to show the graphs clearly and without
scaling out. Histogram (a) is useful to check the existence
of outliers. On the graph (b), one can see any systematic
pattern of residuals which reveals the incompleteness of the
model; if the fitting is good, this graph should appear quite
random. This kind of graph can be more powerful if the user
plots the residuals against more meaningful abscissa for his
problem; such a user subroutine can easily be attached to
SALS system. Normal probability plot (c¢) is useful at the
final stages of data analysis to examine the distribution of
the residuals in comparison with the normal distribution.

F. Model Selection with AIC [1, 2]

Another statistical feature of SALS system is the
introduction of Akaike's information criterion AIC for the
purpose of model selection. AIC is defined as

AIC = =2 1oge (maximum likelihood) + 2m + const; (22)
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hence, in case of normal distribution of errors, it is reduced
as |

AIC = n log, S + 2m (23)
where S is the residual sum of squares and n and m are the
numbers of observations and parameters, respectively. In
order to select a proper model, several possible models with
different degrees of freedom or of different types should
be tested one by one in the least-squares fit.  Then the
model which gives the minimum AIC is Supposed to be the best.
It should be noted that AIC is a relative criterion and works
well only if the true model is included among the tested
models and if n >> m.

G. Robust Estimation [4, 25, 4T7]

In order to protect against erroneous input of observables,
several options of robust estimation methods are introduced
in SALS system in addition to the ordinary least-squares
method. One of the M-estimation methods, namely Tukey's
biweight method [47], is chosen as the default procedure in
SALS, which proceeds in the following way:

(i) By uée of the initial parameter values, the
residuals v, are calculated: for the observed values.
(ii) A scale s of the residuals is evaluated by

s = median{|vi/oi|}, (24)

since median is known to be most robust in estimating

such a scale.
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(1ii) According to the residuals,vweight adjustment factors

wiadJ are calculated by Tukey's biweight method:

W.adJ

2.2
5 [1-(v;/0;8¢)7]° 1if |v,/0, [<sc,

. (25)
0 if ]Vi/oi|;sc.

The constant ¢ is chosen around 10. The relations (25)
are illustrated in Fig. 4.

(iv) In place of the input weights LA the effective
weights

eff _ ~ad] (26)

are used in the nonlinear least-squares calculation to

get the refined parameters.

(v) With the refined parameter values obtained after

one or more cycles, the residuals and the effective

weights are calculated again.
The above cyclic process (i)-(v) are repeated until the
convergence of the effective weights or until reaching a
limit of the weight adjustment cycles.

In robust estimation, a proper choice of the scale sc
in Eg. (25) is crucial; the above treatment adjusts it flexibly
according to the median of the residuals, so as to prepare
for large residuals in the initial stages of fitting and for
smaller ones in the final stages. The present methods in
SALS have been proved to be effective and robust for several

test problems with nonlinear models. It should be noticed
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that the statistical treatments described in the preceding
sections (U4A-F) are based on the hypothesis of the normal
distribution of errors. Robust estimation methods, on the
other hand, are more practical approaches which prepare
against various non-normal distributions of errors. Since
data analysis always proceeds on a trial-and-error basis,
both the observed data and the models in the initial stages
can hardly be ideal as are assumed in the ordinary least-
squares theory. Even one outlier 1in the observed data may
destroy the whole least-squares fitting; contrarily, robust
estimations are resistant to such outliers, and hence are
useful for diagnosis. For this diagnostic purpose, the
statistical treatments described in the preceding sections
are also abplicable in the robust estimation by replacing

the input welghts Wy with the effective weights wieff. These

statistical information are useful to check the observations

and models before trying a final least-squares fit.
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5. CONTROLS

A. Input Job Stream

In order to illustrate the usage and controls of the
SALS system, a simple example.of an input job stream is shown
in Fig. 5.

Following a job card, a system macro command //LSALS is
used to access the object program library of SALS system.
Then, the user supplies a main program and a model calculation
subroutine MODELD. The main program simply calls SALS system
and allocates a working area of 4000 words in the unlabelled
COMMON block. MODELD calculates the user's model and its
Jacobian matrix. In this example, the model is a sum of
decaying exponential functions

fi(x) = I,a, exp (—bkqi), (27)

where the coefficients a1, bl’ 855 bz, etc. form a vector of
variable parameters x.

Then, input data of SALS system are read. SALS uses a
command method to allow flexible controls and convenient
inputs: every command has a name and six-or-less numerical
control data, and is read in a standardized format of (AlO,
6F10.0). PROBLEM‘command initiates the input of a problem
and is at the top of the hierarchical control of algorithms,
statistics, and outputs. PARAMETER command leads the input
of variable parameters; the name and the initial value are

read for each parameter in the order as expected in MODELD
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subroutine. DATA command leads the input of the observed
data and specifies how to handle them; the name (or the
running number i1 in this example), the coordinate 5 and

the observed value Yy are read for each observation. The
uncertainties oy of these observed data are assumed constant,
0.05, as specified on DATA command. ENDSALS command terminatesv
the SALS input data, while //END terminates the job.

This job works to fit 30 observed values to a nonlinear
exponential-decay model. It uses the biweight method for
robust estimation, the Gauss-Newton method with damping
option for the nonlinear least-squares algorithm, and the
modified Gram-Schmidt method for the linear algorithm. It
outputs the results of fitting at every cycle of weight
adjustment and a complete set of statistical information at
the end of the whole fitting. All these functions of SALS
system are controlled so easily as shown in Fig. 5. This
easy control is achieved by the block structure of inputs
and the hierarchical default setting as described in the
following sections.

B. Block Structure of SALS Inputs

SALS system has about 30 commands for the control of
its inputs, algorithms, statistics, and outputs. Every
command is read in a standard format as a Fortran input card
having the fegistered name and six-or-less numerical control
data. Figure 6 illustrates the rule of arranging these
commands as a set of SALS input data., It should be noticed,
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however, that only the four commands and the two kinds of
data marked with asteriks in Fig. 6 are always necessary
and that all other commands may be omitted as shown in the
example in Fig. 5.

A set of SALS input data is formed by one or more problem
blocks and an ENDSALS command. Then, each problem block
consists of a PROBLEM command, a specification block, one-or-
more method blocks, one-or-more parameter blocks, one-or-more
observed data blocks, and an END command; these blocks must
be arranged in this order.- If two or more blocks of the
same kind are read, the fitting job is done for all the
combinations of such blocks independently.

PROBLEM command initiates the input of a problem block
and also controls the algorithms, statistics, and outputs.

The specification block has four commands which may be
read in any order. OUTPUT command specifies the output files
for the real-time monitoring and for the bulk resulf‘
MODLCHECK command initiates the option to check the Jacobilan
matrix. | |

A method block specifies the details of the fitting
method to be used. It usually has one algorithm block; if
it has two or more algorithm blocks, such fitting algorithms
are executed in sequence to get one final result. At the
top of an algorithm block, one of the algorithm commands
(i.e., SALS, LINEAR, GAUNEW, MARQUARDT, and HYBRID) is
specified; LINEAR command actually uses the Gauss-Newton
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method with only one cycle of iteration, and SALS command
requires the default algorithm. Then, ten more commands for
specifying the details of the treatment are read in a free
order: LLS controls the linear least-squares algorithm,

while TOLERANCE, the convergence and termination criteria

in the nonlinear least-squares method. W-ADJUST command
specifies the robust estimation method. PRINT, MONITOR,

TRACE, and DUMP control various types of outputs in the fitting
process, while STATISTICS the output of statistical information.

In the parameter block, PIO command is optionally placed
at the top to use user-coded subroutines for the input and
output of the parameters. PARAMETER command is always
necessary; it shows the heading of the body of parameter
inputs and gives the upper limit of the number of parameters
to be read. Then, the parameters are read one by one specifying
the names, initial values, and the indices whether to handle
them as either free, loosely-bound, or rigidly-fixed parameters.
ENDPARA command terminates the input of the paremeters.

The data block is similar to the parameter block: DATA
command is always necessary and gives the upper 1limit of the
number of input observations, index whether to read the
uncertainties or weights, and the standard error 94> etc.

Then, the observed data are input one by one: they consist
of the names (or numberings). coordinates a5 observed values
Yy and the uncertainties o, or the weights W, . ENDDATA
command terminates the input of the observed data. The
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observed data are usually read in the standard format as

shown in the example in Fig. 5. Moreover, by use of a DIO
command more flexible wavs are possible in input: For handling
a large number of observed data, it is convenient to set up

a file of observed data separately from the SALS input file

and to use a user subroutine to read in a more suitable format.
INITIATE and FINISH commands in the observed data block allow
users to attach some extraneous processing before and after

the fitting with SALS.

C. Hierarchy in Default Setting

As mentioned above, a large number of commands and their
control data are introduced to control various algorithms,
statistical treatments, and outputs. It can be too much,
however, for a user to remember and specify all these controls.
Thus, in SALS system it is allowed for users to omit
unimportant commands or their control data in the input:

This is achieved by an introduction of a hierarchy for setting
default options.

Figure 7 illustrates the hierarchy. Default options
are set with reference to the upper-rank control data in the
following three cases: (i) when a command is omitted in the
input, (ii) when zero (or blank) is read as a control datum
of a command, or (iii) when an improper value is read as a
control datum. On the other hand, if the lower-rank control
data are explicitly specified by the user, the user's inputs
are effective.
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Six control data of the PROBLEM command are at the top
of the hierarchy, as shown in the left-most column in Fig.

7. LMODEL specifies the type or user's model subroutine,
(i.e. either MODELF, MODELD, or MODELN) and also controls the
MODLCHECK command. LALGO selects the algorithm: 1t chooses

a proper algorithm command and further sets the default options
for the LLS and TOLERANCE commands. The third control datum
LCYCLE sets the 1limiting number of iteration cycles of
nonlinear least-squares refinement in accordance with the
algorithm command. LWADJO controls the W-ADJUST command for
robust estimation. For adjusting the output, LOUTO 1is at

the top of the hierarchy; it controls five output commands,
and each of them has its main control datum and five-or-less
subsiduary control data. The statistical output is controlled
by LSTATO0; but if LSTATO is not specified explicitly, its
default value is set by the output control datum LOUTO.

By virtue of this scheme of default setting, the user
may omit most of the commands in Fig. 6; for ordinary use of
SALS, he should set only the PROBLEM command as shown in the
example in Fig. 5. If he wants some non-standard treatment,
he should specify only the related command and its control
data.

D. Flow of Execution

The flow of execution in the SALS system is schematically
shown in Fig. 8. Main-'structure is expressed by multi-fold

DO loops. As shown in Fig. 6, SALS accept multiple problems,
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each of which may have multiple sets of methods, parameters,
and observed data; thus, the outermost four-fold DO loops

are formed. The observed data set is read at the end of
input, and is executed immediately with multiple sets of
methods and parameters so that multiple sets of observed data
need not be stored in the memory. In each fitting task with
a set of method, parameters, and observed data, there are

DO loops corresponding to fitting algorithms, weight-adjustment
methods, cycles of weight adjustment, and finally cycles of
nonlinear least-squares algorithms. In actual uses, most of
these DO loops shown in Fig. 8 turn only once; but this DO-
loop structure allows flexible use of SALS for wide variety
of user's demands.

E. Outputs and Error Messages

Intermediate results as well as the final ones are readily
outputted according to the directions of five commands: MESSAGE,
PRINT, TRACE, MONITOR, and DUMP. These commands have their
own characteristic features. MESSAGE controls the outputs
outside the least-squares algorithms. PRINT specifies the
outputs of the final results, while TRACE and MONITOR control
the intermediate outputs, in linear algorithms in initial
cycles and in nonlinear algorithms, respectively. DUMP command
dumps out the labelled COMMON blocks and the working area WK.
Statistical information described in Section 4 is output
according to the directions of the STATISTICS command. Thus,

users can tailor the outputs for various purposes: such as
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routine runs, tentative fitting runs, watching the behavior
of nonlinear algorithms, comparing the performance'of linear
algorithms, debugging of the system, and so on.

In addition to the error checks of inputs, abnormal
behaviors in execution are also checked. On detecting an
error, SALS system outputs an error message and either stops
or goes ahead after a default fix-up. Error messages can
not be suppressed even at the lowest level of output.

F. Optional User-Coded Subroutines

Besides the user's main program and the theoretical
model subroutine, the user may optionally attach several
subroutines for his own purposes: Subroutines PAPAIN and
DATAIN may be coded to read the parameters and observations
in suitable formats, on separate files, and/or after some
preliminary treatment. Output subroutines PAROUT, DATOUT,
and CALOUT are also useful to extend the SALS facilities:
Final parameter values and their error matrix may be output
by PAROUT onto a separate file for a succeeding job. By
coding a CALOUT, a table of observed and calculated values
can be printed in a format specialized for the problem, and
illustrative graphs of calculated values and residuals can
be drawn on a line printer or a display. For these input/output
subroutines necessary values are transferred to/from SALS in
the arguments of subroutines.

In addition, SALS allows other extraneous processing by

users before and after the fitting: Four commands INITIATE,
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AINITIATE, AFINISH, and FINISH call user's subroutines at the

moments of execution of (a), (b), (c), and (d) shown in Fig.

8, respectively.
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6. HISTORY OF DEVELOPMENT

The present project was started in 1975 by a group of
volunteer scientists (SALS Group), who are working in the
fields of mathematics, statistics, computer science, physics,
and chemistry, and belonging to various universities and
research institutes in Tokyo area. Basic specifications were
discussed by the whole group [32, 33], and the present system
has been built up by the present authors. Passing through
a pilot system in 1977 and a preliminary version in 1978, the
present system (SALS Standard System, Version 2) has been
completed in 1979 [36, 41].

A flowcharting method FORTFLOW [34], which uses the
flowcharts keeping one-to-one correspondences with Fortran
statements, was introduced in the actual programming for the
sake of easier initial coding and better maintenance at the
same time.

Fortran source programs as well as object modules are
available to public use, and User's Reference Mannuals are
published in Japanese [37, 38] and under preparation in

English.
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7. DISCUSSION

As described so far, the present SALS system has extensive
features in controls, algorithms, and statistics as a general-
purpose program package for the data analysis. The present
version is designed as a standard, core system of the family
of extended SALS systems to be developed in the future. Thus,
several important features are intendedly excluded from the
present version. Such points are:

(a) Large-scale problems: The present SALS system assumes

that all the necessary information for a fitting can be stored
in the maln memory. Inside the fitting algorithms no file
operation is used, even though data files can be used for

the inputs and outputs. For large-scale problems, special
algorithms should be introduced to allow the handling of
temporary data files while keeping high performance.

(b) Constraints: SALS system allows equality constraints

in a few ways: (1) A variable parameter may be fixed at its
initial value or bound loosely around it with given uncertainty.
(ii) Equality relations of parameters, e.g. g(x) = %(O) + @g,
can be introduced in SALS by simply regarding them as additional
observations. (iii) The user's theoretical model subroutines
may be coded so as to eliminate the redundant parameters in

the equality constraints. TInequality constraints, however,

are not acceptable in SALS; introduction of them would require

linear and nonlinear programming algorithms [30].

(c) Double-precision calculation: The present version
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of SALS is coded in single precision with partial double-
precision calculation in critical parts such as calculation
of vector sums. For the problems requiring higher precision,
double-precision version of SALS 1s also available, which is
converted with a preprocessor from the standard version.
Maintenance and further extension will be done principally
on the single-precision version.

(d) General minimization methods: Various methods have

recently been developed for minimizing a general nonlinear
objective function of parameters F(x) [13]. The nonlinear
algorithms installed 1in the present SALS system all take
advantage of the fact that the sum of squares of residuals
is to be minimized, because they are effective and efficient
in wide range of nonlinear problems. Nevertheless, general
minimization methods may be more widely applicable to the
problems with stronger nonlinearity.

(e) Correlated observations: In the usual least-squares

analysis, the observed data are assumed to be independent,

or uncorrelated. There are, however, cases of correlated
observations, e.g. data sampled from a continuous measurement
and indirect data reduced from some other direct observations.
Such correlated observations should be treated with a non-
diagonal weight matrix. The present version of SALS does
not handle it explicitly, but the user can set up the normal
equation with a non-diagonal weight matrix in his model

subroutine MODELN.
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(f) Interactive use: The present version of SALS mostly

expects batch runs, even though it has a feature to monitor
the processing messages and error messages on real time while
writing the bulk results on another file for the line printer.
In order to make a version for interactive use, the following
modifications are planned: (i) Free formats and/or keyword
methods are introduced in the command and data inputs. (ii)
Controls, parameters, and observed data are kept on separate
files, and then they are combined by an execution command

for fitting. (iii) Intermediate as well as final results are
outputted on files in order to prepare for user's quit/restart
operation. Most of these modifications can be achieved by
remodelling only the control/input subroutines of Group 1

mentioned in Section 2B.
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Table I. Basic Specifications of SALS System

Wide Applicability
Data fitting in experimental/observational sciences.

Nonlinear as well as linear models coded by users.

With/without requiring Jacobian matrix.

Dynamic memory allocation for small/large-scale problems.
Reliable Algorithms

Five linear least-squares algorithms with/without using

the normal equation.
Singular value analysis in case of rank deficiency.
Fast and reliable convergence in nonlinear least-squares
algorithms.
Statistics and Diggnosis

Weighted least-squares fitting.

Fixing and loosely binding some parameters.

Error matrix and correlation matrix of the parameters.

Estimation errors in the calculated values.

Diagnostic plots of residuals.

Selection of the best-fit model with AIC.

Robust estimation including Tukey's biweight method.
User-Oriented Input/Output

Standard I/0 routines along with optional user-made I/0.
Handling with multiple sets of data and fitting methods.
Command control of algorithms and outputs.

Error checks, default settings, and error messages.
Checking user-coded Jacobian matrix. '

Maintainabitity

Hierarchical structure of about 130 subroutines.
Readable and portable programming in standard Fortran.

“Full documentation.




Table II. Linear Least-Squares Algorithms in SALS
Stage Decomposition Solution Error matrix
Method A'= or B= % = Eﬁ =
a. Modified A' = QR r1gTy: 0, R T (R™HT
Gram-Schmidt
T T -1 2.-1,.-1,T
1 =
b. Householder A P(l) ..P(m) %]R P(m) P(l)y 9, R (R )
= R = RHQTy
c. Singular A' =T s} ut ues™h, 01ty | o fus™4uT
value decomp. 0
d. Cholesky B = R'R Rt hHT 0023‘1(R”1)T
e. Bigenvalue B = UEUT vE~ 10T o, vE" 0T
decomp.
Q orthogonal matrix (n,m).
R upper triangular matrix (n,m).
P(i) Elementary orthogonal transformation matrix (n,n).
T
Ly = - 2W, . .
T T )Y
T : orthogonal matrix (n,n).
U : orthogonal Matrix (m,m).
S : singular value matrix, diagonal (m,m).
E : eigenvalue matrix, diagonal (m,m), E = Sz.



Figure Captions

Fig. 1. Structure of a Fitting Program with SALS.
Subroutines with double asterisk should be provided by
user. Those with single asterisk can be replaced by user's

subroutines.

Fig. 2. Structure of a Model Calculation Programs.

Fig. 3. Structure of SALS System.
Number in each block specifies the subroutine group

described in the text.

Fig. 4. Weight Adjustment Factor, Eq. (25), in Tukey's

Biweight Method.

Fig. 5. An Example of SALS Input.

Fig. 6. Block Structure of SALS Inpvut.

Fig. 7. Hierarcy for Setting Default Options.

Fig. 8. Flow Diagram of SALS Executilon.



Fig. 1. Structure of a fitting program with SALS
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Fig. 6. Block Structure of SALS Input

¥ PROBLEM

]

block

{TITLE, MESSAGE, OUTPUT, MODLCHECK}

Spec.

METHOD
— one of [SALS, LINEAR, GAUNEW, MARQUARDT, HYBRID]

LLS, W-ADJUST, TOLERANCE,
PRINT, MONITOR, TRACE, DUMP,
STATISTICS, AINITIATE, AFINISH

| ENDALG

-
1

...
ENDMETHOD

Algorithm
block

Method block

- ————-

Lo eone-

— PIO

¥ PARAMETER

* (parameter cards)
ENDPARA

Problem block

Parameter
block

'
'
e o - -

[ INITIATE
DIO

¥ DATA

% (observed data cards)
ENDDATA
FINISH

Observed data
block

llote: x: always necessary (all others may be omitted).

Lot repetition of the preceding block, if necessary.

{ }: free order inside.



Fig. 7. Hierarchy for Setting Default Options

Other commands

PROBLEM

command

Control data Command
name

Role of command

LMODEL —— ) MODLCHECK

SALS
(: LINEAR
v

LALGO ———> | GAUNEW
MARQUARDT
HYBRID
LLS

TOLERANCE

LCYCLE s Y NCYCLE)?®

LWADJO — W-ADJUST

MESSAGE

LOUTO <:::::::::::1MONITOR

TRACE

DUMP

LSTATD > STATISTICS

Check user's Jacobian matrix.
Set default algorithm.

Linear 1. s. method.
Gauss-Newton method.
Levenberg-Marquardt method.
Powell's hybrid method.
Linear 1. s. algorithm.

Convergence criteria in
nonlinear algorithm.

Cycles of iteration.

Weight adjustment for robust
estimation.

Messages outside the fitting
algorithm.

Print of final results.
Monitor in nonlinear algorithm.
Trace in linear 1. s. algorithm.
Dump out for debugging.

Statistical information.

a) The first control datum of the algorithm command (GAUNEW,

MARQURDT, or HYBRID).



Fig. 8. Flow Diagram of SALS Execution.

Subroutine

group

Read methods (NMETH sets) and/ (1)
parameters (NPSET sets)

(————7DO

g

-]

/Read observation data/
IPSET=1,NPSET——%

r——?DO

—DO

IMETH=1,NMETH-—+1
[Set initial parameter values (IPSET-th set)]
IALG=1,NLAG

[Default setting and memory allocation]| _7(2)

¢ - --3[[b]

IWADJ=1,NWADJ —

r—?DO

TWCYCL=1,NWCYCL— T(3)

~D0O

lidjust the weightse—————Calc. the mode]]

yes
: : )
[Select a nonlinear algorithm]
ICYCLE=1,NCYCLE-» 1)

eights converge

Calc. Jacobian matrix 7 Calc. the modell]
(or normal equation)

» v
Solve linearized least-sauares ﬂ

—~
[€29)]
~—

problem

T
Model with new parametersk[Calc. the model]

Parameters convergeds?

Y.

<> (ICYCLE)
<> (IWCYCL)

i (4)

> (IWADJ)

\Output final parameters and obs. & calc. values.\
1

\Statistical calc. and output)

| 4 (3)

(IALG) 1 (2)
(IMETH)

(IPSET)

ves

yes

4 (1)
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