XLearner: A System to Learn XML Queries
from Examples

Atsuyuki Morishima
Akira Matsumoto
Hiroyuki Kitagawa

March 26, 2004

ISE-TR-04-196

Institute of Information Sciences and Electronics
University of Tsukuba
Tennohdai, Tsukuba, Ibaraki 305-8573, Japan

XLearner: A System to Learn XML Queries
from Examples

Atsuyuki Morishima (mori@slis.tsukuba.ac.jp)
Akira Matsumoto (akey @kde.is.tsukuba.ac.jp)
Hiroyuki Kitagawa (kitagawa @is.tsukuba.ac.jp)

Abstract

This paper presents XLearner, a novel tool that helps the rapid development
of XML mapping queries written in XQuery. XLearner is novel in that it learns
XQuery queries consistent with given examples (fragments) of intended query re-
sults. XLearner combines known learning techniques, incorporates mechanisms to
cope with issues specific to the XQuery learning context, and provides a system-
atic way for the semi-automatic development of queries. This paper describes the
XLearner system. It presents algorithms for learning various classes of XQuery,
shows that a minor extension gives the system a practical expressive power, and re-
ports experimental results to demonstrate how XLearner outputs reasonably com-
plicated queries with only a small number of interactions with the user.

1 Introduction

As the amount of XML data grows, the need to integrate and restructure XML data
increases significantly. A major approach is to write XML queries to map one XML
data structure into another, but developing such mapping queries requires tremendous
effort. The effort is inevitable because of XML data characteristics and the nature of
integration/restructuring: (1) XML data is nested, unnormalized, and an instance of
semistructured data. This requires complex navigation and pattern matching of XML
data. (2) Mapping XML data to a given complex schema requires complex construction
of XML query results. -

Since the development requires tremendous effort, tools to assist query develop-
ment are beneficial. A well-known example is the theoretical tools for type checking
[4], which checks if every output from an XML query is consistent with a given DTD.
Another example is rapid development tools for XML mapping queries [16]. The lat-
ter tools are intended to play a similar role to rapid application development tools for
programming languages; i.e., they are designed to help developers make their devel-
opment processes more efficient. In general, such RAD tools provide various ways for
the semi-automatic generation of code.

Our proposed tool, called XLearner, is a rapid query development tool. A key
feature is that it uses machine learning techniques to generate complicated XQuery

queries after a small number of simple interactions with the user. XLearner requires
the user merely to (1) show the system examples (fragments) of the intended query
results and (2) answer simple Yes or No questions posed by the system. In other words,
XLearner learns XQuery queries if the user gives example fragments and answers to
the simple questions posed by XLearner. It is worth noting that the questions do not
involve query language jargon such as joins.

Development of XLearner is challenging for three reasons. First, learning XML
queries through examples is anything but trivial: XML is an instance of semistruc-
tured data, whose data structure is often irregular and implicit. This is a striking dif-
ference from relational databases, where the data structure is completely regular and
explicit. The structure of XML query results is deeply nested and complex in general,
in contrast to relational databases where the result is always a flat table. XLearner
combines known machine learning techniques, incorporates mechanisms to cope with
issues specific to the XQuery context, and provides a non-adhoc framework to achieve
such non-trivial tasks. We believe this is a significant contribution.

Second, naive approaches have problems with computational complexity. Many
XML query languages support path regular expressions or their variations, such as
XPath [21]. The expressive power of regular expressions is equivalent to that of finite
automata’, and Gold has shown that the problem of finding a dfa of a minimum num-
ber of states compatible with a given set of examples is NP-complete [9]. It is known,
however, that active learning [3] gives a polynomial-time algorithm to solve the prob-
lem, where active learning is a framework that allows the system (learner) to ask the
user (teacher) questions. XLearner applies an active learning algorithm to our query
learning context.

Finally, even with a polynomial-time algorithm, a tool is not necessarily practical.
XLearner is based on an active learning framework, and requires interactions with the
user. Keeping the number of interactions between XLearner and the user small is a
critical point. If XIearner required several hundred interactions to learn a simple query,
it would not be a practical system. XLearner reduces the number of interactions in the
following way: (1) It uses constraints specific to XML queries. (2) It requires the input
of explicit query specifications in part. Specifically, the user is required to specify
selection predicates on values. Because users usually know what their predicates are
and teaching such predicates by example is more troublesome than specifying them,
this provides a balanced combination for the efficient development of queries.

Development of XLeamer also presents an interesting problem: “which class of
XQuery query is learnable through examples?” We give algorithms for MAT-learning
various classes of XQuery queries, which means that queries in the classes are learnable
if the user is a minimally adequate teacher [2]. A minimally adequate teacher answers
particular types of questions. In addition, we propose a minor extension that gives
the system a practical expressive power to learn queries, including 19 of 20 queries in
XMark [18] benchmark and 11 of 12 queries in XML Use Case [20] “XMP” (Experi-
ences and Exemplars).

In summary, the contribution of this paper is as follows: (1) We propose XLearner,
an intelligent tool for learning XQuery queries through given examples of query results.

1 The expressive power of XPath is not equal to, but overlaps that of regular expressions.

(2) We explain algorithms for learning various classes of XQuery queries in the active
learning approach. (3) We show that a minor extension of the algorithm has practical
expressive power. (4) We give experimental results to demonstrate that XLearner learns
XQuery queries with a small number of interactions with the user.

Related Work. LSD [8] is a system that uses and extends machine learning tech-
niques to semi-automatically create semantic mappings between a mediated schema
and local schemas of data sources. It takes as input manual mappings between the
mediated schema and a small set of data sources, and uses those mappings and data
instances to propose mappings for subsequent data sources. With that capability, LSD
is useful in a scenario where a data integrator plays a crucial role, who knows (1) how
other data sources are mapped to the mediated schema and (2) what data is stored in the
already-mapped data sources. On the other hand, XLearner requires no such informa-
tion and uses other kinds of inputs. We believe XLearner is useful in another common
scenario where each data provider plays a crucial role, who has to map their data to a
given common schema.

Clio [16] is a well-known tool for the semi-automatic generation of schema-
mapping queries written in SQL and XQuery. While XLearner and Clio look similar,
they have different assumptions and different mechanisms to achieve the same goal.
We believe future query development tools benefit from both approaches. Clio’s code
generation is based on value-correspondences given by the user and semantic con-
straints given by schemas. Clio generates query candidates by taking advantage of the
assumption that the result of the generated query retains semantic constraints given by
the source schema. XLearner uses machine learning techniques to learn queries from
interactions with the user, and there is no default assumption on how to generate XML
instances for the given target schema. Moreover, Clio assumes that the source XML
has a regular structure, in the sense that generated queries contain only simple loca-
tion paths (such as /a/b/c). This is a significant difference; XLearner can generate
xpath expressions corresponding to regular languages, which contributes to the ability
to learn a large class of queries.

There are theoretical studies in the field of computational learning theory. Angluin
[2] introduced the concept of active learning and showed that a dfa having the mini-
mum number of states consistent with given examples is learnable in polynomial time.
Inspired by Angluin’s work, researchers have been developing algorithms to learn a va-
riety of patterns from data instances. Their focus is on learnability in polynomial time.
Target patterns include different classes of formal languages [17][10] and subclasses
of CNF and DNF [7]. Some works are on extracting patterns from trees or semistruc-
tured data [1][11][5]. In general, studies in this area are purely theoretical and cover
only simplified problems; the development of XLearner is not a variation of them. The
reason is two-fold: First, learning XQuery queries implies learning compositions of
various constructs of queries, including path expressions, join/selection conditions, and
nested queries. Second, as mentioned, polynomial-time learning is not a sufficient con-
dition for interactive systems. As far as we know, XLearner is the first system designed
for learning practical XML queries from given examples.

2 XLearner

For an example scenario, we use XML data taken from XMark [18] whose structure
is modeled after a database deployed by an Internet auction site. Figure 1(a) shows
a fragment of its DTD. An item is an object that is for sale or has already been
sold. Each item has a unique identifier and properties like name and description, all
encoded as elements. Each item is assigned a world region represented by the item’s
parent. A category has a unique identifier and a name. The categories are used to
implement the classification of items, with incategory elements having IDREFs to
the category elements. A closed_auction represents an auction that is finished.
Its properties include a reference to the item sold and the price. Figure 4(a) shows a
fragment of the data instance.

Consider the XQuery query g; shown in Figure 2 (ignore the superscripts). The
query outputs an XML instance that conforms to the schema shown in Figure 1(b),
where each category element contains a set of items whose world regions are
africa or europe and that were sold for less than 300 dollars.

i_list

*
refns/ﬂose auctions cafegoties wtegTory
»
{asia,africaeurope,...} closed Yauction cafegory A
| ,i 6/0 \b /w\ Eh K
price Herel name Qid) 3
el &°
Incategory description name @id @hem

@cafegory @ (b)

*

Figure 1: Schemas for an Example Scenario

XLearner. Figure 3 shows the XLearner’s architecture. First, schema information
(such as a DTD) of the query result is given to the template generator. Next, the user
chooses several XML elements and values (We give them a generic name XML node)
in target XML data, and drags and drops them into the generated template to show
the system a fragment of the user’s intended query result. We refer to the XML nodes
dropped in the template as dropped example nodes. A space into which the user can
drop an XML node is called a Drop Box.)

According to the given query result fragment, the learning engine asks the user
questions to infer the intended query. So the user is often called the teacher. Finally,
the learning engine outputs an XQuery query.

“We use the example scenario given earlier to illustrate those steps in more detail.
First, the template generator receives the schema in Figure 1(b) and presents the tem-
plate shown in Figure 4(b). The user then chooses several XML elements from the
XML data shown in the XML browser (Figure 4(a)), and drags and drops them into the
template so that the template and dropped nodes constitute a fragment of the intended
query result. There is no constraint in constructing the fragment, except that the frag-
ment must be consistent with the query result. We assume here that the fragment is
given as shown in Figure 4, where an arrow indicates a drag-and-drop operation. Note

(ND oy 1ist> {

(Nl‘l)for $c in /site/categories/category

return <category><cname>{(Nl‘l'l)sc/name}</> {
(NL1.2) g0 §§ in /site/regions/(europe|africa)/item
where $i/incategory/Qcategory = $c/@id

and some $o in /site/closed.auctions/closed.auction
satisfies $o/itemref/@item = $i/@id and
data ($o/price) <300

return <item><iname>{(N1'1‘2'l)$i/name}</>
{(N1.1.2A2) for $id in $i/description return <desc>$id</>}
</>

}</>

}</>

Figure 2: ¢; (document () and text () are omitted)

Jemplate
<i_list><item>
<inames[—]<iname]
<desc> <desc>
</item><\i_li

Learning

Template
Generator,
Schema)

<IELEMENT i_list(item*)>
<IELEMENT itern (iname,desc)>

XML Data

% Developer query

<item>
<iname> H. Potter </iname>
<desc> Best Seller </desc>
<fiten>

Figure 3: How to use XLearner

that “H. Potter” is an example of an item whose region is europe and was sold for
less than 300 dollars.

XLearner then asks the user questions (called learner’s queries, or just queries if
there is no ambiguity) to identify the intended XQuery query (i.e., g1 in Figure 2).
More specifically, XLearner makes queries to identify the extent of each dropped ex-
ample node e. Intuitively, the extent of e is the set of nodes represented by e. The
most simple example is the extent of book, which is the set of all the category name
nodes. Actually, the extent of e to be identified depends not only on e but also on a
given context, denoted by contezt(e). Intuitively, context(e) is the set of dropped
example nodes that may be influencial in identifying the extent of e. Assume that
context(H.Potter) = {“book™} is given. Then, the extent of “H. Potter” must be the
set of item names represented by the “H. Potter” under the condition that the cname
element contains “book.” If XLearner is used to learn ¢q, the extent should contain
only names of items whose category is “book.” Given e and contexi(e), we write
EXT, conest(e) to denote the extent of e in context(e).

In the learning process, XLearner traverses dropped example nodes to identify
their extents in the order that the user can consider context(e) as the set of other
dropped example nodes whose extents have already been identified. In the scenario,
the extents are identified in the order of “book,” “H. Potter,” and “Best Seller” First,
EXTyook,¢ has an empty context, and has to be identified through the answers to
the learner’s queries as the set of all the category name nodes. The extent of the
second example (EXTypotter,{book}) has to be identified as the set of names of
items, in its context (namely, for the given category name, i.e., “book™), whose re-
gions are africa or europe and that were sold for less than 300 dollars. Finally,
E X Thestsenler, {book,H.Potter) has to be identified as the set of descriptions of an item
having the given item name (i.e., “H. Potter”) in the given category name (i.e., “book’™).
We omit context(e) in discussions unless it is important.

There are two types of learner’s queries: membership queries and equivalence
queries.

Membership Queries. To make a membership query for example e, XLearner chooses
any XML node n and asks the user whether » is included in EXT,. The user answers
Yes (Y) or No (N). Figure 5 (a) shows an example of a membership query, which
asks the user if the “XML book” under the asia element is included in £ X Ty potter-
The answer is N, because its region is neither europe nor africa. If n € EXT,
(n &€ EXT,.),nis called a positive (negative) example. Dropped examples are positive
examples by definition.

Equivalence Queries. The queries use hypotheses, i.e., intermediate results in the
learning process. We use the hat notation Z to differentiate a hypothesis from the cor-
rect answer x to learn. To make an equivalence query, XLearner highlights XML nodes
in a hypothesis extent EX T in the XML browser and asks if EXT. = EXT,. If
true, the user clicks on the [OK] button. If not, the user gives a counterexample ce to
XLearner. A counterexample is an XML node in the symmetric difference between
EXT. and EXT.. If ce € EXT. — EXT, (ce € EXT. — EXT,), ce is called a
positive (negative) counterexample. A positive (negative) counterexample is also a pos-
itive (negative) example by definition. Figure 5 (b) shows an example of an equivalence
query, where EX Ty poster is hi ghlighted in the browser. The user says “Encyclopedia”
(with id “i6”) is a negative counterexample, because the sales price was more than 300
dollars.

A teacher with the ability to give answers to the two types of queries is called a
minimally adequate teacher [2].

Occasionally XLearner presents a dialog box (called a Condition Box) and requires
explicit conditions. In the scenario, XLearner gives a Condition Box in the process
of identifying EX Ty porser- The user drags and drops H. Potter’s price value (that is
under closed_auction element) into the Condition Box and enters the selection
condition <300 (Figure 5)(c).

If unable to find appropriate examples in a context, the user can change the context
by switching to other choices of dropped examples to specify the same query. Details
are explained in Section 4.1.

<categories>
<category id="c1">
<names>computer</names</category>
<category.id="c2">
<name{bookynames</category>

<-/-t-:ategories>
lzclosed_auctions>

kelosed_auction><price>100</price

citemref item="i10"/><closed_auction> N
k/closed_auctions> =
kregions> <africa> ... </africa> <>
europe> <cate >
<item id="i7"><nam&H. PottgrIname> <cnames </cnames.
kincategory cajegoryz > L1
kdescriptiongBe rddescription> em>)
</item></europ€s | | <inam </iname>
<asia> < </desc>
item id="110"><name>XML book</namex> <litems
kincategory category="c2"/>
[<description>how-to book<description> <lcategory>
<fitem></asia></regions> </i_list>
(a) XMI. Browser (b) Template
Figure 4: XML Browser and Template
...<closed_auction>
<Sites <price>700</price><itemref item="16"/5
Zasias </closed_auction><closed_auction> XML Nods from

<price>50</price><itemref item="17"/>
</closed_auctions...
<europe>
<item id="i6">

<item id="i10"> the XML Browser

(

> ondition Box

(c)Condition Box

Figure 5: Interactions with XLearner

3 XQ-Tree

To discuss the learning algorithm, we introduce the XQ-Tree, our representation of
XQuery queries. Figure 6 shows an XQ-Tree ¢, corresponding to ¢; in Figure 2. #;
is essentially the same as g; except that (1) the nesting structure of £1lwr expres-
sions is represented as a tree, and (2) it transforms every expression that returns a se-
quence of nodes (e.g. $c/name) into the equivalent £1wr expression (for $cn in
$c/name return $cn). Eachnode n in an XQ-Tree has the form Ni:-g(Ni) where
Ni is a node identifier (We use Dewey encoding [15] here) and g(N%) is a query frag-
ment (in the form of flwr expression, [for expr; [where expry]] return expr,,
where [.. .]is optional). Tags and node identifiers in expr, are omitted unless they are
important.

The XQ-Tree representation has two important properties: (1) Every expression
that returns a sequence of XML nodes (i.e., £1wr expression) has a variable over the
nodes in the sequence. (2) Edges between nodes suggest query dependencies among
the nodes. For example, evaluation of g(n) depends on that of query fragments of
n’s ancestors (ancestorsi(n)) in general. We write depends¢(n) to denote the set
of all the nodes in ¢ that n may depend on. As explained later, depends¢(n) varies
according to classes of queries. For the class to which the query in Figure 6 belongs,

N1:- return <i_list>{Nl1.1}</i list>
N1l.1l:- for $c in /site/categories/category

return <category><cname>{N1.1.1}</>{N1.1.2}</>
N1.1l.l:- for $cn in $c/name return S$cn
Nl.l.2:- for $i in /site/regions/ (europe|africa)/item
H 7 where some $ic in $i/incategory/Qcategory,
Py $ci in $c/@id satisfies ($ic=5ci)
; 1§11
é N1 N2 and some $o in
! /site/closed.auctions/closed.auction,
LMtzt MB225 Soi in $o/itemref/@item, $op in So/price,

$id in $i/@id
satisfies ($oi=$id and data($op)<300))
return <item>
<iname>{N1.1.2.1}</><desc>{N1.1.2.2}</>
</item>
N1.1.2.1:- for $in in $i/name return $in
N1.1.2.2:- for $id in $i/description return $id

Figure 6: XQ-Trec Representation 1 for g1

dependss(n) = ancestorsy(n). If depends,(n) = ¢ for some class, there is no
possibility that g(r) has references to variables defined in other nodes.

For any XQ-Tree node n in t, cg:(n) denotes the complete query of n. cq,(n)
is complete in the sense that it gives the complete computation of the XML node se-
quence corresponding to . For example, cgy, (N1.1.1) returns elements for all category
names. Before defining cg;(n), we define compose(q, q’) as follows: Given query frag-
ments g and ¢/, the for (where) clause of compose(q, ¢') is the concatenation of for
(where) clauses of g and ¢’. Then, cg:(n) is obtained by recursively applying function
compose(q, ¢') to the query fragments in {g(n)}U{q(m)|m € depends.(n)}. For ex-
ample, cgs, (N1.1.1) = “for $c in /site/ categories/category, $cn
in $c/name return $cn” In the following, given a query fragment g(n) =
“for expry where expr, return v,” we write cg(n) as “for expr'f, expry
where expr., Aexpr, returnv,” where e:vprgr and ezpr!, are results of composing
expressions taken from {g(m)|m € depends:(n)}.

Given a complete query g, we write {|g|} to denote a ser of XML nodes in ¢’s
evaluation result. {|cgs, (N1.1.1)[} is a set of XML elements for category names. The
subscript ¢ is omitted when there is no ambiguity.

4 General Framework

Taking into account that XQuery queries are complicated with various query con-
structs, one of our technical contributions is that we have developed a general frame-
work that includes several concepts (XQ-Trees, contexts, extents) to make possible the
nontrivial task of learning XQuery queries from examples. In this section, we explain
the proposed framework.

The learning process has two phases. First, XLearner creates an XQ-Tree skeleton
ts from a template and dropped examples. 5 gives the tree structure of the XQ-Tree
to learn. Then, it traverses ¢, and learns query fragment ¢(n) for each node n in ¢;.
Intuitively, each ¢(n) in ¢, is associated with one Drop Box in the template, and what

XLearner learns through membership and equivalence queries on a Data Box is a path
expression and selection conditions for the associated g(n).

4.1 Template and XQ-Tree skeleton

As explained in Section 2, XLearner creates a template based on a given target schema,
The template works as a basis for an XQ-Tree skeleton. Figure 7 (a) is the template
for our example. A template is a tree, in which a node is created for each element type
in the target schema. Each node has an element type with it. For example, an element
definition A = (B, C, (D|Ex)) results in a node n 4 with four children ng , nc, np
and n E.

Examples must be consistent with the schema; only one of D or E can take a
dropped example in this case. In general, the template allows only one dropped ex-
ample in each altenation structure, i.c., only one of the Drop Boxes in an alternation
structure can exclusively accept a dropped example. If the user wants to show examples
for different alternatives, there are two options:

Use the split operation. If the selection of alternatives depends on the choices of other
dropped examples, use the split operation. For example, consider the case where
a list of publications is the union of disjoint sets of journal papers and books. Each
publication item in the list has a volume number in its child element if the publication
is a journal paper, while it has a publisher’s name if the publication is a book. In other
words, the selection of child elements depends on other examples (journal papers or
books). If the split operation is applied to a template, it splits a repetition structure into
two consecutive copies of the structure (Figure 8). Then, the user can drop different
examples into the copy of the alternation structure. The same discussion applies to the
case of optional structure because A = (B7) is the same as A = (B|e).

Use the context change operator. The operation is used when the new context is
considered to be the same as the original context, in the sense that the context change
does not affect the query. For example, you may not be able to find any item whose
region is Africa, in the “book” category in the process of trying to show examples of
African items. In this case, if there is an item whose region is Africa in “computer”
category, the user can change the “book” context to “computer” by a mouse operation,
and can use it as an example. Note that if there were an item whose region is Africa in
the “Book” category, the user also wanted the item in the query result. In other words,
the selection of examples in the alternative structure has no dependency on the context
change.

If an element has recursive definitions, a new node is created for each new oc-
currence of the same element type. Because it is possible that the template’s size is
infinite, XL earner incrementally presents the template to the user. At first, only the
first instance of recursively defined element is shown, When the user clicks on a node,
it instantiates its children.

If the target schema guarantees that a node and its parent has one-to-one relation-
ship, the edge connecting them is labeled as “1.” The labels are used in the learning
process. For simplicity, the following discussions assume that each node has ‘at most
one child connected by 1-labeled edge and there are no consecutive 1-labeled edges on

N1 <i_list> N1:return <i_list>=N1.1</>

N1.1 <category> N1.1:-return <category>N1.1.1 N1.1.2</>
1 1
N1.1.1) N11.1- /) NN
<cnames N1.1.2 <item> return return <item>N1.1.2.1
1 <chames>$en</> 1 N1.1.2.2</>.
N1.1.2.1 <iname>N1.1.2.2 <desc> N1.1.2.1-return N1.1.2.2:-return
<iname>$in</> <desc>$d</>

(@) (b)

Figure 7: Template and XQ-Tree skeleton

<publications> <publications>
<item> split <item> <itern>
/ or > / 'or %:r
@tyfe 1 @ype / 1 @bpe \
<vol> <publisher> <vol> <publish <vol> <p

Figure 8: Split operation

any path from the root to a leaf. (The template in Figure 7 satisfies this restriction.) It
is easy to remove the restriction.

An XQ-Tree skeleton is a simple XQ-Tree computed from the template and the
dropped example nodes. Figure 7 (b) illustrates the XQ-Tree skeleton for the example
in Section 2. The tree structure is the minimum subtree of the template including all
the nodes into which examples were dropped. Note that while the size of the template
can be infinite (if the target schema has recursive element definitions), every XQ-Tree
skeleton is a tree with a finite number of nodes. For each XQ-Tree node n, g(n) =
“return expr,.” If an example node e is dropped into XQ-Tree node n, expr,
contains v., which is a variable that corresponds to e. (In Figure 7(b), vpoox =3$cn,
UH.Potter :$iﬂ, and VUBestSeller :$d)

4.2 Learning Each Query Fragment

We write n. to denote an XQ-Tree node in the XQ-Tree skeleton ¢, where e is the ex-
ample node dropped into n.. XLearner learns the whole XQ-Tree by learning g(n.) for
each n. in turn. XLearner assumes that g(n.) has the form “for expr; where ezpr,,
return v..” Itis expr; and expr,, that XLearner needs to learn for g(n.). XLearner
knows in advance the class of queries to learn so that it can compute depends(n.)
using ¢;. We give formal definitions of the context and extent first. ,

Context. We define the context of example e as follows: Let an assignment be a set
of pairs (v, 0) where v is a variable and o is an XML node. Then, given an XQ-Tree
skeleton t,, a dropped example node e, and the other dropped nodes for ¢, we write
context_(e) to be an assignment:

{(ve,, €:)|ne, € depends;, (ne)?}

10

where e; is a dropped example node for XQ-Tree node n.,, and v,, is a variable that
corresponds to e; (in n,’s return clause).

In the example scenario, depends(ny potter) CONLAINS Mpo0x (a Node whose dropped

node is “book”), and contezt(“H.Potter”) = {(vpoox, “b0o0k™)}. As mentioned,
depends(n.) varies according to classes of queries, which will be explained in the
following sections.
Extent. As explained in Section 2, EXT, context(e) (abbreviated EXTe) is a key
concept of XLearner: XLearner tries to learn EXT, and uses it to compute query
fragment g(n.). Intvitively, EXT, is a subset of {|cg(n.)|} that is characterized by
context(e). For example, consider {|cg, (nmpotter)|} (i-€., {|cgs, (N1.1.2.1)|} in Fig-
ure 6 where cq;, (N1.1.2.1) is the composition of ¢, (N1), g4, (N1.1), g, (N1.1.2),
and ¢, (N1.1.2.1)). While {|cg:, (nupotter)|} s the set of names of all the items
whose regions are africa or europe and that were sold for less than 300 dol-
lars, EX Ty potter, {(vsoo,book)} 15 the set of item names only in the context of category
“book.” In other words, o € EXT, means not only o € {|cg(n.)|} but o satisfies a
certain relationship with the dropped example nodes in contezt(e). In this example,
contexts, (“H. Potter”) = {(vpoox, “b00k™)} is used.

The formal definition is as follows: Let cg(n) = “for expr}, expr; where
expr,, Aexpr,, returnv” (See Section 3) and context(e) = {(ve,,€1),-- -, (Ve,,, €m)}.
The extent EX T, conteat(e) is then defined based on cg(n.) and context(e) as:

EXT. conteat(ey = {| for ezpr}, expry where expry, A exproA (ve, is e1) A... A
(Ve,, 1S em) returnw|}>.

Note that in a special case where depends(n.) = ¢, (and so contexi(e) = @),
EXTe,contemt(e) = {|Q(ne)l}
Learning g(n.). The basic flow of learning each g(n.) is as follows: (1) XLearner
makes membership queries to leasm EXT,. Based on the answers given so far,
{q(ne,)|ne, € depends(ne)} and contexi(e), it constructs a hypothesis:

EXTe,c,mtewt(e) = {|for expr},ezprs where expri, Aexpry
A(ve, is ei1),...,(Ve,, is em) return wel},

which is the same as EXT. except that expr; and expr,, are hypotheses of expry
and expr,,, respectively. (2) XLearner makes an equivalence query to ask if EXT, =
EXT. 3)If EXT, = EXT., halt. XLearner can conclude ¢(n.)=“for ezpr,
where expry return ve.” Otherwise, go to (1). Note that in the step (1), expry
and expr,, are modified based on counterexamples that claim EXT, # EXT..

The concepts of contexts and extents are introduced for learning expr,,. Details
are explained in Section 7.2.

2y is vp” holds when v1 and vy have the same identity.

11

5 Class X0 and its family

Given the general framework, challenging issues include how to traverse the XQ-Tree
skeleton and how to combine known learning techniques for learning each query frag-
ment. For explanation, we give an algorithm for a class of simple XQuery queries first
and develop it for more general classes. This section gives algorithms for classes of
XQuery queries without join/selection conditions.

X0, X0*, X0*+ are classes of XQ-Trees where depends(n) = ¢ for every XQ-Tree
node n. No where condition is allowed in queries in the classes.
[X0] This is the simplest class of XQ-Trees with only one XQ-Tree node. An example
XQ-Tree (and the corresponding query) in X0 is as follows:

Query: for $i in /site/regions//item return <result>$i</>

XO-Tree: Nl:- for $i in /site/regions//item retﬁrn $i

Before giving the X0’s definition, we define 0-Learnable(n), a predicate about
learnability of a query fragment. The predicate holds when g(n) is learnable by a
simple algorithm based on the Angluin’s algorithm [2]. Formally, 0-Learnable(n)
holds iff ¢(n) = “for v in p return v” where p is a regular path expression that
starts with a document function (i.e., the root of an XML document). Note that
0-Learnable(n.) guarantees that depends(n.) = ¢ and EXT. = {|q(n.)|}.

Definition An XQ-Tree ¢ is in Class X0 iff ¢ consists of the root node n only and
0-Learnable(n).

Algorithm LEARN-X0. In X0, expry =“v in p.” Therefore, EX Te={|for v.
in p return v.|}, and p is a path regular expression, which is the only thing to
learn to compute EXT.. Because learning regular expressions is equivalent to learning
deterministic finite automata, it is natural to use a learning technique to learn a dfa.

We apply the Angluin’s algorithm [2] to our context for efficiently learning a dfa
from membership queries and equivalence queries. The algorithm first takes an exam-
ple string, makes a number of membership queries on different strings, and constructs
a hypothesis automaton M consistent with the strings. It makes an equivalence query
on M to receive a counterexample (string) to modify M, and repeats the process un-
til it finds the intended automaton. The key idea is to attempt to continually discover
new states. Since a given counterexample suggests that it leads to a wrong state in
the current hypothesis automaton, the algorithm discovers a new state. Figure 9 shows
a step of the learning process where a given positive counterexample (that should be
accepted) is used to find a new state for a dfa.

In our context, a sequence of tags, which represents a path from the XML instance’s
root to an XML node, corresponds to a string in the Angluin’s algorithm. Figure 9 gives
hypothesis automatons generated in a process of learning a dfa that corresponds to
/site/region/asia. The system first receives path(e) for the dropped example e, where
path(e) is the sequence of tags that matches the sequence of XML nodes from the
XML instance’s root to e. It then makes membership queries and equivalence queries so
that it can learn p. Note that the algorithm makes membership queries and equivalence
queries on a sequence s of tags, not an XML node. So XLearner has to choose an XML

12

element m s.t. path(m) = s to issue an membership query. To make an equivalence
query, XLearner highlights XML nodes in EXT..
[X0*] This includes XQ-Trees with more than one node.

Definition: An XQ-Tree t is in X0* iff for every node n in ¢, 0-Learnable(n) holds.

Following is an example:

for $i in /site/regions//item/

return <result>$i
for $c in /site/categories/category/name
return <cname>$c</>

</>
Nl:- for $i in /site/regions//item/
return $i{N1.1} /* result */
N1.1l:- for $c in /site/categories/category/name
return $c /* cname */

Every ¢(n) has a variable in its return clause. Therefore, every node in an XQ-
Tree skeleton requires a dropped example in the learning process. XQ-Trees in the class
correspond to nested queries whose query results are essentially Cartesian products.
~ LEARN-X0*. X0*’s definition says that for every node n,, depends(n.) = ¢ and
EXT. = {|q(ne)|}. This implies that XLearner can traverse the XQ-Tree skeleton in
an arbitrary order and learn each query fragment using LEARN-XO0.

[X0*+] In the previous classes, every g(n) is assumed to have a variable v, in its
return clause, because g(n) is learned using the example e. We get X0*+ when
we relax the assumption and allow query fragments without variables under a certain
condition. Following is an example:
for $c in /site/categories
return <root>

<result> $c

<name-list>
for $n in /site//name return <name>$n</>

</>
</></>
Nl:- for $c in /site/categories return {N1.1[1]} /* root */
Nl.l:- return $c{N1.1.1} /* result */
N1.1l.1l:- return {N1.1.1.1} /* name-list */
N1.1.1.1:~- for $n in /site//name return $n /* name */

where “[1]” after a node identifier means the edge is labeled as 1 according to a given
DTD. ¢(N1) and g(N1.1.1) have no variable in their return clause, but they are (in-
directly) learnable because N1 and N1.1.1 satisfy a certain condition. Informally,
such a node has to satisfy the following conditions (Figure 10): (1) If has a child
comnected by 1-labeled edge (represented as C*(n)), g(n) is learnable by applying
LEARN-X0 to collapse(n, C1(n)). Here, collapse(n, n’) be an XQ-Tree node whose
query fragment, g(collapse(n, n')), is defined by compose(q(n), g(n')). This applies
to N1, because 0-Learnable(collapse(N1,N1.1)) holds. (2) Otherwise g(n) is just a
holder of child XQ-Tree nodes. This applies toN1.1.1.

Formally, we say 0-Learnable’(n) holds when both of the following conditions
hold:

(A1) C(n) exists = 0-Learnable(collapse(n, C*(n)))

13

all Posltlve Counterexample:
A <site><regions><asia>

M: ofher

ali ______) all

Figure 9: Finding a New State for a DFA

. N1l:- return {N1l.1l}
/ Y
Cl (Nl)" 1 LearnXQTO0 (collapse (N1,N1.1))
v
Y

A ONl.1:- return $c (N1.1)

No c'(N1.1.1) N1.1.1 :- return {N1.1.1.1}) unchanged °

N1.1.1.1:- return $n —) LearnXQTO(N1.l.1.1)
Figure 10: LEARN-X0*+

(A2) C*(n) does not exist =
¢(n) = return node id’s of n’s children.

Definition: An XQ-Tree ¢ is in X0*+ iff for every node n in ¢, 0-Learnable(n) V
0-Learnable’(n).

LEARN-X0*+. This is the same as LEARN-X0* except that it collapses nodes or
returns an empty return clause when ¢(n) in the XQ-Tree skeleton has no variable
in the return clause. Figure 10 shows how to learn each query fragment when an
XQ-Tree skeleton is given to learn the query example above.

The result of LEARN-X0*+ applied to the query example would be as follows:

N1’ :- for $c in /site/categories return S$c{N1l.1.1}

N1.1l.1:- return {N1.1.1.1}
N1.1.1.1:- for $n in /site//name return $n

where N1 and N1.1 are collapsed into N1’ . Note that XQuery’s semantics guaran-
tees that collapsing the nodes connected by 1-labeled edges does not change the query
result.

6 Class X1 and its family

Class X1 and its family deal with selection conditions in where clauses. We introduce
the concept of 1-learnability instead of 0-learnability and use it to define the classes.

Notations. When an XQ-Tree node has “for v in p,” we write expr(v) to
denote the binding expression “v in p,” and write expr(v).path to denote the
path expression p (e.g., expry, ($cn).path=$c/name in Figure 6). FExzpr*(v) is
the closure of binding expressions to compute v. (Ezpry ($cn) = {“Sc in

14

;)
$i categoriesO $c

inc%egory category
‘ Relay Nodes

Figure 11: Relay Nodes

/site/categories/category/,” “Scn in $c/name”}) expr*(v) stands
for a binding expression “v in p’,” where p’ is the concatenation of all path expres-
sions appearing in Expr*(v). (expry, (8cn) = “$cn in /site/categories/
category/name.”) associated(v) is the set of variables appearing in Ezpr*(v).
(associatedy, ($cn) = {$cn, $c}.) Let n,, be the XQ-Tree node whose for clause
defines v. Then, associatable(v) is the set of variables that appear in query frag-
ments of ancestors(n,) or n,. The XQuery’s variable scope guarantees that (1)
associated(v) C associatable(v), and (2) if v’ & associatable(v), g(n,) cannot spec-
ify any relationship between v’ and v.

1-Learnability. Intuitively, 1-Learnable(n.) holds when g(n.) has a particular form
of conditions in a where clause. The property guarantees that g(n.) is learnable if
{g(n)|n € ancestors(n)} and context(e) are given. Formally, 1-Learnable(n)
holds iff g(n) = “for v in p where expr,, return v,” where

(1) expr*(v).path is a regular path expression that starts from the document root (Note
that p does not have to start from the document root), and

(2) expry is /\'v’E(assoc'iata,ble(v)—a.ssoc'iated(v)) RS({U7 U/})’ where RS({UL 'Uz}) is
either True or RS’({v1,v2}). Here, RS'({v1,v2}) stands for one of the following
expressions that specifies a relationship between v and vo:

(Rell) data(vi) = data(va)
(Rel2) some w in v1/q satisfies RS'({w,v2})
(Rel3) some w in document () /¢ satisfies RS'({v1,w})ARS ({w,vs2})

where ¢ is a path expression with the child axis and optional position numbers or
last () function (e.g.,a[1l]/b/c[last ()]).

_ The definition says that the condition in a where clause of g(n.) should be a
conjunction of relationships between a variable v. and v' € (associatable(ve) —
associated(v.)). It is also possible that two variables have an indirect as-
sociation. Rel2 and Rel3 represent two patterns of indirect associations via
w. Here, we refer to w as .a relay node of the relationship RS’({v1,v2}).
Figure 11 illustrates indirect association between $c and $: through two re-
lay nodes, where “some $ic in $i/incategory/Qcategory satisfies
(some $ci in $c/Q@id satisfies ($ic=$ci))” holds.

The point here is that, given an XML instance (e.g., Figure 11) and a pair of XML
nodes (“H. Potter” and “book™) in it, we can enumerate all the predicates that can

15

X1*+

X0

Figure 12: Relationship among Classes

appear in the where clause of g(n) if we know that 1-Learnable(n) holds. Note that
1-Learnability’s definition implies that (1) only equality predicates and simple path
expressions are contained in the where clause, both of which can be derived from
the given XML instance in a straightforward way, and that (2) the number of possible
predicates is limited.

Note that 0-Learnable(n) is a special case where expr*(v).path = p and there
is no condition in the where clause, so 0-Learnable(n) = 1-Learnable(n). In
addition, if n is the root, depends(n) = ¢ and expr,, = True. Therefore,
1-Learnable(n)ARoot(n)=> 0-Learnable(n).

[X1] An XQ-Tree t is in Class X1 iff ¢ consists of the root node n only and
1-Learnable(n). Since 1-Learnable(n) A Root(n) = 0-Learnable(n), X1=X0.

[X1*] An XQ-Tree ¢ is in X1* iff for every node n in t, 1- Learnable(n).

[X1*+] An XQ-Tree ¢ is in X1*+ iff for every node n in ¢, 1-Learnable(n) V
1-Learnable'(n), where 1-Learnable’ (n) is defined in a similar way to 0-Learnable’(n).

The relationship among the classes is shown in Figure 12. The XQ-Tree in Figure
6 (ignoring the part in the box) is in X1*+.

7 LEARN-X1*+

1-Learnability’s definition and the XQuery’s semantics say that g(n) may refer to
variables defined in ancestors(n). Therefore, depends(n) = ancestors(n) when
1-Learnable(n) holds. This suggests that algorithms to learn queries have to take care
of traversal order of the XQ-Tree.

LEARN-X1*+ works in the same way as LEARN-X0*+ except that (1) it traverses
the given XQ-Tree skeleton in the depth-first order and (2) it incorporates LEARN-X1
instead of LEARN-XO to learn the query fragment g(n) for each XQ-Tree node n.
LEARN-X1 learns g(n) when 1-Learnable(n) holds. It differs from LEARN-X0
in that (1) it takes as input contezt(n) and (2) its outputs (query fragments) contain
where clauses.

In the following subsections, we explain main components of the LEARN-X1*+
algorithm. Detailed discussions on LEARN-X1*+ are given in Appendix B.

7.1 LEARN-X1

To keep the discussion simple, we represent each query fragment in an equivalent nor-
mal form. Remember that the algorithm LEARN-X0 relies on the fact that expr.path
of a query fragment “for expry ...” is restricted to be a path expression starting from

16

the document root. In X1’s family, it is no longer true. To make it possible to take a
similar approach, we replace each expry with expr*(v), which is guaranteed to start
from the document root by the 1-Learnable(n)’s definition. More precisely, we use a
slight extension of expr*(v) to specify path-sharing constraints among variables. For
example, we represent g, (N1.1.2.1) (in Figure 6) as follows:
for $in in /site{$il}/regions{$i2}/
(europe|africa) {$i3}/item{$i4} /name

where {$i4 is $i}
return $in

where the “/site{$il}/regions{$i2}/ (europe | africa){$i3}/item
{$14}/iname”is anabbreviationof “$il in /site, $i2 in $il/regions,
$i3 in $i2/ (europe | africa), $i4 in $i3/item, $in in $i4
/iname.” Note that $in is defined by expr*(v) that starts from the document root,
and that the path-sharing constraint between $in and $i that they share the same
item element, is specified by the predicate $i4 is $i. In contrast, in the original
notation (in Figure 6), the path-sharing constraint is specified by the fact that the path
expression of binding expression “$in in $i/name” starts with $i. Therefore, we
always assume that each path expression in expr starts from the document root. How
to obtain path expressions in the normal form is discussed in Appendix A.

We use the following notational convention: 7. is the XQ-Tree node whose query
fragment (g(ne)) is to be learned. e is the example object that has been dropped to n..
v, 15 the variable that corresponds to e (which is assigned in a return clause in the
XQ-Tree skeleton). contezt(e) = {(ve,,€1), ..., (Ve,,, €m)}. expry = “ve in p” and
expry = ¢ Then, ¢(n.) = “for v, in p where creturn v, and EXT,
= {|for ezpr},ve in pwhere expr; A cA (ve, is e))A...A(ve, is en)
return vel}.

We represent the condition c in the where clause of g(n.) as a ser of predicates,
and interpret ¢ as the conjunction of the predicates in c.

Note that if ¢ D ¢/, it is guaranteed that c is stronger than ¢ in the sense that {|for
v in p where ¢ return v} is contained in {|for v in p where ¢/ return v|}.
Overview. Figure 13 illustrates the data flow among modules to implement LEARN-
X1. The user has EXT, in mind (Figure 13(a)). The algorithm learns EXT, by
receiving answers to (1) membership queries about EX T, and (2) equivalence queries
about the relationship between EXT, and hypothesis EXT,.. In order to compute
EXT, (Figure 13(b)), the algorithm must compute $ and é. P-Leamer computes p.
C-Learner (Section 7.2) takes as input context(e) and the Interaction History Table
(IHT.) to compute é.

Figure 14 gives more detail on the relationship among LEARN-X1 and related
modules. Here, it takes as input n. to compute g(n.) = for v, in p where ¢
return wv.. P-Learner implements LEARN-XO0 to compute p and records interac-
tions with the user in 1 HT, for learning EXT.. (An abstract algorithm of P-Learner
is given in Figure 15. Details of Angluin’s algorithm are omitted there.) C-Learner
computes ¢. I HT, is used to compute p and é. The basic flow is as follows: First, an
XQ-Tree node n and the dropped example node e (for EXT) is given to the function
LEARN-X1(n.) in Figure 15. The function passes “ (tags(path(e)), positive)”
to P-Learner (line 2, see Section 5). P-Learner raises MQs and EQs to compute 5.

17

S
E;Dccmtext (e)

LEARN-X1 /__,.__E—\ %(ne,’ -
“for ve in

context (e) U wh ~ P
P-Learner , where c
~ ' return ve
c .

Figure 13: Data Flow in Learning g(n.)

Template (tags(path(e), Fositive) P-Learner
LearnXQ-Tree mq b,
Q
NS) ~(tags(path(ce)), Positive
- or Negative
LEARN-X1(ne) -
XMLBrowser £n %
o\ HTe
/) ot < g
A <ty Context(e)
\(\“ C-Learner
W
eq

Figure 14: Relationship among LEARN-X1(n.) and related modules

Each MQ mygq is passed to the user via the XML browser to ask if some XML node
m is in EXT,. The answers (Y or N) are returned to P-Learner (line 14. see Fig-
ure 14 also). P-Learner records the answers in /HT, (line 15-16). How to process
the answers is explained later. EQs are not passed directly to the XML Browser, be-
cause an EQ on EXT, requires condition & to compute EXT,. (P-Learner merely
computes eg(="for v, in p return v.”) (line 2)) Therefore, eq is first passed
to C-Learner (line 3), which is responsible to compute é. C-Learner makes EQ eq’ by
adding “where &’ to eq. Here, ¢ is computed using I HT, and context(e). The coun-
terexample to eq’ is recorded in IHT, by LEARN-X1(n.) and then passed to either
P-Learner or C-Learner, according to an algorithm (Figure 17) explained later. Those
steps are repeated until the user accepts an EQ.

Interaction History Table. IHT.(Node, Ans, P,C) is a relation that records the
user’s answers to learner’s queries for £ X T,. Each tuple t in I HT, records one answer
(interaction) to a learner’s query. Attribute /Node stores an XML node. Attribute Ans
stores the answer to a learner’s query. For example, if Y is given to XLearner as an
answer to an membership query on node m, then t. Node = m and t. Ans = Y. It
also records the reasons for the answer. If t. Ans = N because the path expression p
does not accept t.Node, t.P = N. If t. Ans = N because t.Node does not satisfy
the condition ¢, t.C = N. If t. Ans =Y, both ¢t.P and ¢t.C mustbe Y. T HT, always
includes (e, Y,Y,Y) to record the fact that the dropped example node e is a positive
example of EXT,. '

A Mismatch Problem. Given EXT,, we write PATH, to be {|for v, inp re-
turn wve|}, where p is learned by interactions about EXT,. Note that PATH, =
EXT, for queries in X0 and its family. Therefore, XLearner can directly get an-

18

1. LEARN-X1(n_e) {

2 eg=P-Learner (tags (path{e)) ,positive);
3. eq’=C-Learner{eq, IHT, context(e));

4. ans = equivalenceQuery(eq’);

5 while (ans!=0K) {

6 eq = processCounterExAndRecord(ans) ;
7. eq’= C-Learner(eq, IHT, context(e));
8 ans = equivalenceQuery(eq’);

12. P-Learner(s: sequence of tags,
flag: Positive or Negative) {

13. for each membership query mq
on a sequence s of tags {

14. ans = membershipQuery (m)

where m in {m|tags (path(m))=s};
15. if (ans==Y) insert (o,Y,Y,Y) intoc IHT;
16. else insert (o,N,N, null) into IHT; // ans==
17. y
18. egq= newEquivalenceQuery () ;
19. return eq;
20. }
21
22. C-Learner(eq, IHT, context) {
23. eq’= eq with a where clause having

the strongest condition
consistent with select{Ans=Y} (IHT) and context;
24. return eq’
25. }

Figure 15: Abstract Algorithm to Learn g(n.)

swers about PAT H, when the user gives answers about EXT.. But in the case of
X1 and its family, there is a mismatch between PAT H, and EXT, (Figure 16 (a)).
It always holds that EXT, C PATH., because EXT, is associated with additional
conditions to select XML nodes. The mismatch problem makes naive application of
LEARN-X0 impossible. Consider the case where P-Learner makes an MQ to learn
the intended path expression p. P-Learner selects some sequence s of tags, select some
node m in the XML instance s.t. tags(path(m)) = s, and asks the user whether
m € PATH,, although the user assumes the question is whether m € EXT,. Tt is
okay if the answer is Y, because m € EXT, = m € PATH.. But if the answer is
N, there are two possibilities: (Case M#1) m ¢ PATH,, (Case M#2) m € PATH,
but c A (ve, is e1) A... A(ve, is en) is not satisfied. The case M#2 occurs
for the “Encyclopedia” explained in Section 2. When XLearner asks if “Encyclope-
dia” node is included in EX Tpo11er, the user would give N, because he wants items
whose sales price was less than 300 dollars. Therefore, although “Encyclopedia” is in
PAT Hporrer, itis not in EX Tpottor.

Note that it is impossible to distinguish between the two cases at the time the answer
N is given. Therefore, the algorithm first assumes the case is M#1 (in other words, it
assumes PATH, = EXT, at first), and when it finds an inconsistency in IHT,, it
backtracks and corrects the tuple. The tuple ¢ = (m, N, N, null) is always inserted
when the answer is N, where t.C' = null means that the interaction implies nothing on
C.

19

PATH P, ATH

4@‘93

(aMQ (b)EQ

M

Figure 16: Mismatch between PATH and EXT

P-Leamer copes with the mismatch by recording given answers into 7 HT, and

checking its consistency when receiving answers to EQs.
Equivalence Query (EQ) (EXT. = EXT,7). Making an EQ requires ¢ as well as p to
compute EXT. = {| for v, in p where éreturn ve|}, because XLearner needs
to highlight XML nodes in {|EXT,|} inan EQ to ask the userif EXT, = EXT, (see
Section 2). Again, P-Learner requires answers about whether PATH, = PATH., to
compute 7, but the user gives answers to inform whether EXT, = EXT..

If EXT. = EXT. the learning algorithm stops with success. Otherwise, it re-
ceives a counterexample ce. Due to the mismatch between PAT H, and EXT., the
story is a little complicated; Figure 16 (b) illustrates all the 5 cases that can happen
when a counterexample ce is given. In the following explanations, [HTS represents
the snapshot of I HT, when ce is given.

(1) When ce is a negative counterexample:

Case E#1: ce ¢ PATH,. Because this implies that PATH, # PATH.,, ce serves
as a counterexample for PAT H,.. Note that the case implies nothing on the condition
¢, because there may be XML nodes that satisfy ¢ even outside PAT H,. Therefore,
(ce, N, N, null) has to be inserted into T HT..

Case E#2: ce € PATH,. This implies that the condition ¢ lacks some condition to
exclude ce from EXT,, and that ce cannot serve as a counterexample for PATH,.
Therefore, (ce, N,Y, N) has to be inserted into T HT.

Note that the algorithm actually cannot distinguish E#1 and E#2 when ce is given,
because it is on the way to learn (unknown) PAT H, and cannot directly check if
ce € PAT H,. However, if XQ-Trees are in X1*+, we do not encounter E#2, because
C-Learner is designed to output ¢ as the strongest conditions that is permitted in X1*+.
(We explain it in Section 7.2.) Therefore, the algorithm always insert (ce, N, N, null)
into I HT,. However, we have to take care of the case E#2 when we extend the expres-
sive power, which will be explained in Section 9.

(2) When ce is a positive counterexample: Always (ce,Y,Y,Y") has to be inserted
to THT,, because ce € EXT, implies ce € PAT H, and the condition in the where
clause is satisfied.

Case E#3: ce € PATH,. (Note that the algorithm can identify this case when ce is
given, in contrast to Cases E#1 and E#2.) The case implies that the condition ¢ is too
strong, but does not imply PATH,3 is wrong. The algorithm calls only C-Learner to
make a new (weaker) condition & that is consistent with all examples including ce.
Case E#d: ce ¢ PATH,. A -3t € THTS(tags(path(ce)) = tags(path(t.Node)) A
t.P = N). This implies that PATH, # PATH.,. The ce can be used as a positive
counterexample to recompute P AT H..

20

processCounterExAndRecord (ce) {
if (ce is negative) {
insert (ce, N, N, null) into IHT;
return P-Learner (tags (path(ce)), Negative);
else { // ce is positive
insert (ce, Y, Y, Y) into IHT;
switch (Case) {
E#3: return C-Learner{eq, IHT,context);
E#4: return P-Learner (tags (path(ce)), Positive);
E#5: find the 1lst tuple $t=(m,N,N,null) in IHT
s.t. tags(path(ce))=tags (path (m))
replace $t with (m,N,Y,N);
exit to backtrack to
the state just after $t is inserted.

Figure 17: Algorithm to Process Counterexample ce

Case E#5: This is the case where ce € PAT H, but there exists twrong € THT, s.t.
(tags(path(ce)) = tags(path(twrong- Node)) Atwrong.P = N). This means that the
user have stated before that £,,,0ng. P = IN. This may look strange because the answers
are inconsistent about p, but can happen because P-Learner inserts (m, N, N, null) into
IHT, even in case M#2, instead of (m, NV, Y, N). When the algorithm encounters E#5,
it replaces tyrong With (m, N, Y, N), backtracks to the state and restarts from there.
Note that some of tuples in 7HT, inserted after £,,rong can be reused in the second
execution; The algorithm avoids asking the user for answers to learner’s queries when
it has answers in those tuples.

Figure 17 summarizes the algorithm to process a counterexample ce against equiv-
alence query eq’.

7.2 C-Learner

C-Learner outputs the strongest condition ¢ consistent with all positive example nodes
stored in 7HT,. Because condition ¢ is a conjunction of predicates, we can map ¢ into
a monotone (no negation) k-term 1 A ... A x, where each predicate in ¢ corresponds
to a variable in the term. There is an algorithm to learn a monotone k-term that makes
equivalence queries at most k times (Figure 18). In the algorithm, if 7 is included in A,
x; must be true. The algorithm always makes an equivalence query with the strongest
condition so that every counterexample (an assignment to y1, . . ., yx) is guaranteed to
be a positive counterexample. Note that a counterexample can remove a number of
unnecessary variables at one time.

We apply the algorithm to our context, using predicates instead of variables. The
first issue to consider is how to derive the set of candidate predicates that can be in-
cluded in é. Let an assignment ag be context(e) U {(v,, €)}. Intuitively, ag represents
a situation where e is accepted as a member of EXT,. C-Learner computes the set
of candidate predicates by computing the set of all predicates that hold about relation-
ships between the dropped example e and all the XML nodes in context(e). Predi-
cates used in 1-Learnable(n) are all considered. We use cond(context(e), (ve, €))

21

A={1,..,k}
while (true) {
Let é= NigAZ;-
Make an equivalence query with é.

If the answer of the query is ‘‘0K’’ (ie, é=c¢) {
halt

} else {
let yi1,...,Yr be the counterexample.

A = An {ily; = true}

Figure 18: Algorithm to Learn Monotone k-term from Positive Counterexamples

to denote the set of candidate predicates. (How to compute the set is explained
later.) Note that cond(contexi(e), (ve,€)) is the “strongest” set of predicates for the
first hypothesis (i.e., k = |cond(context(e), (ve,€))| in the algorithm). Therefore,
cond(context(e), (ve, €)) may have unnecessary predicates that happen to hold only
in ag. When this occurs, C-Learner eliminates such predicates using counterexamples.

The second issue is what we should use as counterexamples in Figure 18 to compute

¢. As mentioned, C-Learner uses context(e) and THT, to compute & Each assign-
ment a; € {context(e) U {(ve,t.Node)}|t € o ans=y(IHT.)} represents a situation
where a positive example node for £ X T, is accepted. We use the set of predicates that
hold in each situation as a counterexample. Formally, for each t € o ans—y (IHT,),
cond(context(e), (ve, t.Node)) serves as a counterexample. In the setting, the algo-
rithm outputs the strongest condition consistent with all situations where the positive
examples are chosen.
Computing cond(context(e), (ve, €;)). The computation is done with the aid of a
data graph. It is a graph structure of XML similar to the XQuery and XPath data model
[19], where a tree structure represents an XML instance. In addition, the data graph
has edges between nodes having the same value. We call such an edge a v-equality
edge. Figure 11 is an example fragment of a data graph. C-Learner enumerates all the
predicates that hold about relationships among example nodes. Note that conditions
in where clauses are restricted to be a particular form by 1-Learnable(n)’s definition,
and the number of possible predicates is limited.

The main concern about the algorithm is management of the data graph. First, keep-
ing all of the v-equality edges among nodes requires a large amount of additional data.
Second, enumerating all paths between example nodes has an exponential complexity.

We can use heuristics and known techniques to cope with the issues.

Keeping v-equality edges. In practice, combinations of values used as join conditions
are limited. In relational databases, it is typical that indices are prepared for such
values. So it is natural that we assume there are indices (such as Vindex [14]) for such
values in XML repositories. In XMark and XML Use Cases, 3 out of 27 equi-joins are
based on explicit idref-id references. The rest are based on element contents, but the
contents are something that are intended to serve as foreign keys.

Computing paths between nodes. In typical XQuery queries, the length of paths
between example nodes is not long. The maximum length in the Xmark and XML Use
Cases is 12. So we need to traverse only 6 edges from each examples. In addition,

22

we can use a data structure similar to Graph Schemas [6] to restrict the search space.
Graph Schemas are graphs to describe partial knowledge of a graph structure. If there
is no path between different element types in the graph schema, there is no path at the
instance level either.

8 Reducing the Number of Interactions

We denote by p, and k a regular expression, the number of states in the minimal dfa
representing p, and the number of characters over which the language is defined. In
XLearner, k corresponds to the number of XML element types. Let m be the length
of the longest counterexample received. In our context, the length of a counterexample
ce is the length of a tag sequence from the root to ce. For the Angluin’s algorithm,
the number of learner’s queries is in O(kmn?). This means learning a simple regular
path expression (corresponding to a dfa with a small number of states) could require
hundreds of learner’s queries. The polynomial number of interactions is not sufficient
for XLearner, because it is a real-world interactive system.

XLearner reduces the number of the learner’s queries by using properties specific
to our context. Specifically, it uses the following two rules to automatically give default
answers for the learner’s queries without asking the user for answers. As explained in
Section 10, the rules dramatically reduce the number of learner queries.

R1: If Angluin’s algorithm makes an membership query on sequence s of tags and
there is no m in the XML instance s.t. path(m) = s, N (No) is given to the algorithm.
The current prototype uses the Relax NG for filtering, but other forms of metadata such
as Graph Schema can be used as well.

R2: If a positive example m has been given to P-Learner, and the last tag of
path(m) is t1, N is given to the algorithm as answers to membership queries on s
whose last tag is not t1. If XLearner receives another positive counterexample with
the last tag ¢2(+# t1) for an equivalence query, XLearner backtracks and uses a new
assumption that the last tag matches any kind of node. Finally, if XLearner receives
a negative counterexample under the new assumption, XLearner discards all the as-
sumptions and gives no more default answers. This is based on a heuristic that the last
component of a typical path expression is likely to be a tag.

9 Expressive Power and an Extension

This section relaxes the assumption that the user is a minimally adequate teacher, which
may be too strong for practical use. We extend LEARN-X1*+ by allowing it to receive
the following three types of explicit specifications. '

(1) Functions in Drop Boxes. So far, a Drop Box is assumed to be a place where the
user drops an XML node taken from the XML Browser. In general, however, map-
ping of an XML schema to another sometimes involves functions, such as aggregation
functions. We now introduce the concept of a Nested Drop Box and allow the user
to explicitly specify functions. If the user types the name of functions in a Drop Box,
XI earner opens a new (nested) Drop Box corresponding to each parameter of the func-

23

<amnf,n|> Nz:- for ...
return count (Nz.1l)*10
cuunl(Iy* N@.1l:- for $v in distinet (Nz.1.1)
return Sv
Nz.l.l:- for $w in ... return $w

</amount>

Figure 19: Nested Drop Box

return value\parameter || atomic | collection
atomic inc sum
collection - distinct,union

Figure 20: Classification of functions

tion (Figure 19 (left)). According to the type of return values and parameters of a given
function, XLearner rewrites the structure of the XQ-Tree (Figure 19 (right)), allows the
user to drop example nodes in the Drop Boxes, and learns the query fragments from
simple yes-or-no interactions.

Let n be an XQ-Tree node and f(z1,...,z,) be the function given to the Drop
Box corresponding to g(n)’s return clause. Funcions can be classified according to
the types of their return values and parameters. Figure 20 shows how some of functions
are classified. The rules for rewriting the XQ-Tree are as follows: (1) If the return value
of f(z1,...,zxs) is a set (or sequence) value, the query fragment g(n) becomes for
$v in f(z1,...,Zn) return Sv. The distinct function in Figure 19 is an
example. Otherwise, the function is kept in the return clause (* 10 function in Figure
19). (2) If a parameter z; is a set (or sequence) value, a new XQ-Tree node is created
as a child of the current node (For the count function in Figure 19, the node Nz . 1
is created. For the distinct function, the node Nx . 1.1 is created). Otherwise, the
parameter remains in the original position. XLearner recursively applies the rules and
the same learning process is applied to learn query fragments for the new nodes.

(2) Keys for Sorting. We allow XLearner to receive keys for sorting through a dialog
box called an OrderBy Box. An OrderBy Box appears when the user clicks on an
element to be sorted. After receiving the sort key(s), XLearner inserts an order by
clause into the query fragment.

(3) Explicit Selection/Join Conditions. This is specified in a Condition Box, as ex-
plained in Section 2. Note that in contrast to the other types of explicit specifications,
XL earner automatically learns a certain kind of join condition. The question, then, is
how to integrate the learning schema and the Condition Box.

Interestingly, XLearner can determine when a Condition Box should be used. Re-
member that the algorithm does not encounter the case E#2 as long as queries are in
X1*+. Now the story is different. Because we allow any form of condition other than
those allowed in X1*+, itis no more guaranteed that C-Learner constructs the strongest
conditions, and we have to consider E#2. Remember that XLearner cannot distinguish
E#2 from E#1 when a counterexample is given. Therefore, it always assumes that the
case is E#1 as it does for the case M#1 or M#2 (see Section 7.1). If the assumption

24

is wrong, XLearner will eventually encounter the case E#5 and find an incorrect tuple
in IHT,. The procedure to handle the case E#S can cope with the inconsistency, no
matter whether the incorrect tuple is due to the wrong assumption of E#1 or M#13,

The extended algorithm displays a Condition Box when it finds E#2. The reason is
that C-Learner is designed to output the strongest condition that is expressible in X1*+,
so there should be some other conditions beyond those given by C-Learner in the case
E#2.

There are two types of Condition Boxes: a Positive Condition Box (PCB) and a
Negative Condition Box (NCB). A PCB is used to specify why the dropped positive
example is included in the extent, while an NCB is used to specify why the negative
counter example is not included in the extent. The user can choose either type. The one
used in Section 2 is a PCB. If the user specifies a condition ¢ with an NCB, condition
—cis used as a condition. NCB is especially useful when the user wants to use empty
predicate* in a condition, because there is no positive example node that can be used as
its parameter. The subexpression in the box in Figure 6 can be created by this extension.

With this extension of the basic framework, XLearner has a practical expressive
power. Let X1*+E be a class of XQ-trees learnable by LEARN-X1*+ with the exten-
sion. Then, we define a set XQg of XQuery queries as follows: Given an XML instance
I, an XQuery query Q is in XQj if there exists a query Q' s.t. Q'(I) = Q(I) and the
XQ-tree representation of @ is in X1*+E. The example query in Figure 2 (including
the box part) is in XQg. Note that X Qg is parameterized by instance I; it is natural for
the set to depend on I because we discuss a system that receives real examples from an
XML instance.

Figure 21 shows the percentages of queries in XMark and XML Use Cases that are
included in XQjy. Specifically, they include 19 out of the 20 XMark queries®, and 11
out of 12 XML Query Use Case “XMP” (Experiences and Exemplars) queries. The
main reason for 0% in Use Case “NS” is that the queries contain special matching
patterns that use namespaces. The queries in Use Case “PARTS” contain recursive
user-defined functions. The queries in Use Case “STRONG” exploit information on
strongly typed data.

Name Percentage
XMark 95% (19/20)
UC “XMP” 9L.7%(11/12)
UC “TREE” 83.3%(5/6)
UC “SEC 60%(3/5)
UC“R” 77.8%(14/18)
UC “SGML” 100%(11/11)
UC “STRING” 50%(2/4)
UC “NS” 0%(0/8)
UC “PARTS” 0%(0/1)
UC “STRONG” 0%(0/12)

Figure 21: Expressive Power of XLearner

3 Actually I HT, records which case produced each tuple.

“The empty predicate returns true if the parameter is an empty sequence.

SFor Q18 that uses a user-defined function, XLearner learned an equivalent, but different query without
any user-defined function.

25

10 Experiments

We counted the number of interactions required for learning queries and evaluated the
effect of the mechanisms to reduce the number. We show the results for the 19 queries
in XMark (Figure 22(top)) and the 11 queries in XML Query Use Case “XMP” (Figure
22(bottom)). The experimental results for other queries were similar and omitted. We
chose those sets of queries because they contain a variety of typical query fragments.

XMark

[D&D(#) [MQ | CE [CB(#) [OB| Reduced(R1,R2,Both) |
ol o)) 51 1] 13 |0 2434(2412,486,464)
Q2 1(L) [1 14) 0 2439(2416,486,463)
Q3 PI0) 0 | 1|3 |0 4878(4832,972,926)
Q4 1(1) 0 1 L1(9) 0 1627(1608, 405.386)
Q5 1(2) 0 1 1(3) 0 1627(1612,405,390)
Q7 3(8) 10 [0 0 7449(7382,1458,1391)
Q8 2(3) 0 [O[1] 0 0 2604(2573,729.698)
Q0 | 2D 0 (o] 0 0 4051(4023.881.853)
Ql0| 12(12) 0 |0[3] 0 0 26994(26756.5589,5351)
Qll 2(3) 0 1 1(5) 0 4066(4025,891,850)
Ql2 2(3) 0 2 2(8) 0 4066(4025,891,850)
Q13 2(2) 10 0 0 0 4868(4822,972,926)
Q| 1) 5 (121 1) |0 2426(2404,486,464)
Ql5 1(1) 3 0 0 0 12637(12604,1053,1020)
Ql6 1(1) 1 1 1(2) 0 2438(2422,486,470)
Q17 L(1) 0 L 1(2) 0 1177(1161,405,389)
QI3[I 0] 0 0 0 1627(1608,405,386)
Q19 2(2) 10 0 0 1 4848(4804,972,928)
Q20 4(8) 0 4 414) | O 6508(6420,1620,1532)

XML Query Use Case “XMP”
[P&D#) [MQ [CE [CB(#) [OB| Reduced (RI,R2,Both) |

QL | 20 0 1] 13 |0 750(236,80,66)
Q2 | 22 0] 0 0 |0 250(234,80,64)
Q3 | 20) 0| 0 0 |0 250(234,80,64)
Q4 | 203) 0| 1| 13 |0 250(234,80,64)
Q5 | 303) 0| 1| 13 | 0 356(334,112,90)
Q7 | 22 0| 1| 13 | 1 250(236,80,66)
QR | 2 0| 1| 13 |0 350(234,80,64)
Q0 1) 2 |131] 13 | 0 26(23,8.5)
QIO 205) 0] 0 0 |0 106(98,32,24)
QIL| 4@ 0| 2| 26) | 0 106(98,32.24)
Q2| 202 0 | 1 | 110y | 2 126(112.60.46)

Figure 22: The Number of Interactions for Learning

In Figure 22, D&D is the number of dropped example nodes. Note that the user
is allowed to specify an arbitrary function in each Drop Box. Therefore, we need a
measure of its complexity. We use the number of terminal nodes in the function’s
abstract syntax tree. Terminal nodes include function names, values, and dropped ex-
ample nodes. For example, the number of terminal nodes in multiply(plus(30, 40), 2)
equals 5. #t in the parenthesis is the number of terminal nodes. MQ is the number
of membership queries, and CE is the number of counterexamples given by the user.
CB is the number of Condition Boxes that are invoked to specify explicit selection/join
conditions. We give the numbers of terminal nodes again. OB is the number of re-
quired OrderBy boxes. Reduced is the number of interactions reduced by R1 and R2

26

introduced in Section 8. Numbers of interactions that can be reduced by either rule is
given as both. These measurements depend on static and dynamic factors. By static,
we mean the factors independent of the interactions; they are the number of element
types defined in the DTD (MQ is affected. See Section 8.), the size of XQ-tree (all
measurements), the number of states in the minimum dfa corresponding to each path
regular expression (MQ, CE), the density of the data graph (affecting the number of
predicates enumerated by C-Learner, thus CE), and the regularity of the data struc-
ture (Reduced). Note that the size of the data graph is nor included in the factors.
Dynamic factors mean which XML nodes the user gives as counterexamples against
equivalence queries (MQ, CE, Reduced) and which XML nodes to choose for mem-
bership queries (CE). Measurements shown in the figure are basically the “best-case”
measurements with the XML instances. If the “worst-case” measurement is worse than
the “best-case,” the “worst-case” is shown in square brackets®.

Following is a key observation: Rules R1 and R2 dramatically reduce the num-
ber of interactions, thereby showing that our approach can be practical. R1 sup-
presses membership queries if they are inconsistent with the XML instance. Therefore,
the more regular the structure of the XML instance, the fewer membership queries
XLearner will ask. The structures of data in XMark and XML Use Cases are relatively
regular, so the rule eliminates a great number of interactions. The regularity also ac-
counts for the reason why there is no difference between the best and worst cases in
MQ and Reduced, which are affected by the structure of paths from the document root
to examples.

Another important observation is that, in practice, it does not matter so much which
example is chosen as a counterexample. The reason is that the data graph is relatively
sparse and the performance of C-Learner is little affected by the choice of a coun-
terexample. This also explains why CE is always O or a small number and is not a
function of D&D (the size of the XQ-Tree skeleton) in the results. Theoretically, MQ
scales linearly with the number of D&D. But because experimental results show that
XLearner requires O to only a few interactions for learning each typical query frag-
ment, we can say that XLearner requires a relatively small number of interactions for a
general XQuery query, even if it is larger than the queries used in the experiments. For
example, Figure 22 shows that learning Q10 consisting of 12 XQ-Tree nodes requires
at most three interactions after the user drags and drops example nodes.

11 Discussion and Conclusion

XLearner is more appropriate for restructuring than retrieval. Using real examples is
very intuitive; we developed a Web-site construction tool in a similar approach and
demonstrated that even users with no knowledge of database-related concepts could
specify fairly complex data manipulations [13]. The user, however, must always find
examples. We believe the proposed approach is complementary to other retrieval-
oriented approaches and we can combine other approaches and XLearner in appro-
priate ways. One possible extension is to incorporate known search mechanisms into

6We examined the XML instances and selected appropriate example nodes by hand for those cases.

27

XLearner to find examples that satisfy given conditions. Another direction is to allow -
the user to specify “artificial” examples in the spirit of QBE. Details of such extensions
are beyond the scope of this paper.

In this paper, we explained XLearner, a tool for developing XML mapping queries
using machine learning techniques. Specifically, we presented algorithms for learning
several classes of XQuery queries. We also proposed some extensions and showed that
our most elaborate algorithm has a practical expressive power and can learn a large set
of XQuery queries. Beyond that, we presented experimental results where the number
of required interactions is small. Future work includes development of a mechanism to
reuse past interactive operations.

Acknowledgments

We would like to thank Akiyoshi Nakamizo for participating in the implementation.
The research has been supported in part by the Grant-in-Aid for Scientific Research
from JSPS and MEXT.

References

[1] T. Amoth, P. Cull, P. Tadepalli. Exact Learning of Unordered Tree Patterns from
Queries. Proc. Computational Learning Theory, pp. 323-332, 1999,

[2] D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87-106, 1987

[3]1 D. Angluin. Computational Learning Theory: Survey and Selected Bibliography.
Proc. 24th Annual ACM Symposium on Theory of Computing, pp..351-369, 1992,

[4] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. XML with Data Values:
Typechecking Revisited. Proc. PODS, pp. 138-149, 2001.

[51 H. Arimura, H. Sakamoto, S. Arikawa. Efficient Learning of Semi-structured
Data from Queries. Proc. Algorithmic Learning Theory, pp. 315-331, 2001.

[6] P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. Adding structure to un-
structured data. Proc. ICDT, pp.336-350, 1997.

[7]1 A.Blum, S. Rudich. Fast Learning of k-Term DNF Formulas with Queries. Proc.
ACM Symp. on Theory of Computing, pp. 382-389, 1992.

[81 A. Doan, P. Domingos, A. Halevy. Reconciling Schemas of Disparate Data
Sources: A Machine-Learning Approach. Proc. SIGMOD, pp. 509-520, 2001.

[9]1 E.M. Gold. Complexity of Automaton Identification from Given Data. Informa-
tion and Control, 37, pp.302-320, 1978.

[10] H. Ishizaka. Learning simple deterministic languages. Proc. Computational
Learning Theory, pp. 162-174, 1989.

28

[11] R. Kosala, J. Van den Bussche, M. Bruynooghe and H. Blockeel. Information
Extraction in Structured Documents using Tree Automata Induction. Proc. Prin-
ciples of Data Mining and Knowledge Discovery, 2002.

[12] M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company,
1997.

[13] A. Morishima, S. Koizumi, H. Kitagawa and S. Takano. Enabling End-users to
Construct Data-intensive Web-sites from XML Repositories: An Example-based
Approach. Proc. VLDB, pp. 703-704, 2001.

[14] J. McHugh, J. Widom, S. Abiteboul, Q. Luo, and A. Rajamaran. Indexing
semistructured data. Technical report, Stanford University, Computer Science De-
partment, 1998.

[15] Online Computer Library Center. Introduction to Dewey Decimal Classification.
http://www.oclc.org/oclc/fp/about/ about_the_ddc.htm

[16] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez, R. Fagin. Translating Web
Data. VLDB 2002: 598-609

[17] Yasubumi Sakakibara. Learning Context-Free Grammars from Structural Data in
Polynomial Time. Theoretical Computer Science, 76(2-3), pp. 223-242, 1990.

[18] A. Schmidt, F. Waas, M. Kersten, D. Florescu, M. Carey, I. Manolescu, R. Busse.
Why And How To Benchmark XML Databases. SIGMOD Record 30(3): 27-32
(2001)

[19] W3C. XQuery 1.0 and XPath 2.0 Data Model. http://www.w3.org/TR/query-
datamodel/.

[20] W3C. XML Query Use Cases. http://www.w3.org/TR/xmlquery-use-cases.

[21] W3C. XML Path Language (XPath). http://www.w3.org/TR/xpath.

[22] W3C. XQuery 1.0: An XML Query Language. http://www.w3.org/ TR/xquery/.
[23] W3C. XML Query Requirements. http://www.w3.org/TR/xmlquery-req.

A Translating DFA’s into path expressions

XLearner translates DFA’s into regular expressions in order to generate path expres-
sions. Since the internal form of path expressions has to incorporate path-sharing
constraints as explained in Section 7.1, it is required that outer-most operators of the
obtained regular expressions are concatenations. In other words, given a DFA G, we
need a regular expression in the form of e = e; - e5 . . . €, where - is the concatenation
operator and G recognizes L(e). For that purpose, we preprocess the given DFA before
applying the standard algorithms [12] to our problem.

29

In the preprocessing phase, we decompose the given G into a set of dfa’s
G1, Gy, .. .Gy, as shown in Figure 23 where L(G) = L(G1) - L(Ga) - ... - L(Gy).
Then, e can be obtained as e = re(G1) - re(Gs) - . .. - re(Gy,) in the next phase. Here,
re(G;) is a regular expression corresponding to G;.

Figure 23: Preprocessing Result

We explain how this can be done. Let’s consider the conditions with which we can
decompose a DFA G into G; and G (Figure 24), where L(G) = L(G1) - L(G2). In
other words, the language recognized by G is the Cartesian product of those recognized
by G1 and G,. The following holds: Let s,, s, and s, be the set of states in G s.t.
every paths from the starting state to the accepting states goes through one of the states.
Let G, (or Gy, G,) be the minimum subgraph of G that has all the paths from s, (or
Sk, Sc) to the accepting states (Figure 25 (a)). Then, when L(G,) = L(Gy) = L(G.)
we can divide G. The sq4, sy, and s, become the accepting states of G;. One of
Gq, G, and G, becomes Go. Note that in our settings, G has the minimum number
of states. Therefore, it holds that G, — s4, Gp — sp, and G, — s, are identical and
that the transitions starting from each of s,, sp, and s, to states in Go(= Gp = G,)
are completely the same in terms of the labels and destinations (Figure 25 (b)). The
discussion applies to the cases where we have any number of s;’s.

Figure 25: States in G

There are two cases: (1) Destinations of all of the transitions starting from each of
Sa, Sp and s, are states in G, — s,. Since the given DFA has the minimum number

30

of states, it holds that s, = s, = s, and G, = G, = G.. An important point is that
every path from the starting state to the accepting states should go through the state
sa(= sp = 5.). (2) Some of the transitions starting from each of s,, sp, and s, are the
same but the others are not. In this case, we can devide s, (or sp, s.) into s1, (or slp,
s1.) and s2 like Figure 25 (c). Here, every path from the starting state to the accepting
states goes through the state s2.

Based on that observation, XLearner divides G using as clues the states that every
path from the starting state of G to accepting states goes through. Figure 26 is an
example of the preprocessing phase. First, XLearner identifies and checks off the states
that every path from the starting state of G to accepting states goes through. Next, it
decomposes G according to that information.

XLearner uses the decomposition result to construct a regular path expression. The
result for the example in Figure 26 is (abc) % -a - (€|b) - d - e.

€

i c : «' c
E;i ey ;ﬁ;“- o -
; @}p Z -0 &0

T

Figure 26: DFA Decomposition Example

B Detailed Discussions on LEARN-X1*+

This appendix gives detailed discussions on how LEARN-X1*+ learns any query ¢ €
X1*+. That is, for any interactions consistent with query ¢ € X1*+, LEARN-X1*+
outputs t' € X1*+ s.t. ¢'(I) = ¢(I).
Theorem. LEARN-X1*+ learns any query ¢t € X1*+.

We prove the theorem by induction on the XQ-Tree’s structure.
Basis: If n is the root of the XQ-tree ¢, LEARN-XQTI1*+ learns g(n), because
depends(n) = ¢ and the algorithm simply uses the Angluin’s algorithm to learn regu-
lar path expressions.
Induction step: If n is not the root and ¢(parent(n)) is learned, depends(n) # ¢ and
the algorithm’s traversal order guarantees that we know {g(m)|m € depends(n)}.
Given the assumptions, LEARN-X1*+ learns g(n) = for v in p where c return v,
if the two following conditions hold:

1. P-Learner gets appropriate answers to learn p in each case (M#1, M#2, E#1, E#3,
E#4, E#5). In other words, it is guaranteed that P-Learner can get appropriate
answers to membership and equivalence queries. The cases M#1, E#1 and E#4
cause no problem since counter examples can be directly used as inputs to P-
Learner. Therefore, we have to guarantee the following two conditions hold.

31

(a) If the algorithm makes a wrong assumption that M#2 is M1, the algorithm
eventually encounters the case E#5 to correct it, and

(b) E#3 does not prevent P-Learner receiving appropriate answers later. -
2. C-Learner outputs correct conditions, which is true if:

(a) C-Learner can enumerate all possible predicates included in the strongest
condition, and

(b) if éis stronger than ¢, EXT — EXT # ¢ (trivial).

If all the statements are proved to be true, LEARN-X1*+ learns all query fragments in
t, and the proof is complete.
Proof of 1(a). Consider the case where the algorithm inserted ¢ = (m, N, N, null)
into THT for s = tags(path(m)), although it should have inserted (m, N, Y, N) (i.e.,
it was the case M#2). p is constructed to reject s, based on the answers recorded
in IHT. However, p should accept s, because ¢ = (m,N,Y, N) was the correct
tuple. If there exists an XML node m’ in the instance I s.t. s = tags(path(m’)) and
t' = (m',Y,Y,Y), p rejects s and m’ is not included in EXT, although ' should
be included in EXT. Therefore, m’ serves as a positive counterexample that causes
case E#5. If there exists no such m/ in L, it is ok that remains different from p, since
q(n)(1) = g(n)(T).
Proof of 1(b). LEARN-X1*+ does not give a counterexample ce to P-Learner if ce
“causes E#3. We prove here that giving such a counterexample does not prevent P-
Learner from taking appropriate counterexamples. There are three cases when the
algorithm encounters E#3.

Case 1: = p (on I). The only possible case that the system will encounter after this
E#3 is E#3. The algorithm will eventually receive “ok™ after taking counterex-
amples causing E#3.

Case 2: There exists a counterexample that works as a negative counterexample
for PATH. Thatis, (PATH — PATH)N(EXT - EX T) # ¢ on L When the
algorithm encounters E#3, it computes a weaker condition ¢/ by removing some
predicates from ¢. As as result, the new extent EXT' satisfies the condition
EXT' > EXT, and (PATH — PATH) N (EXT' — EXT) # ¢ on L. There-
fore, there remains a counterexample that works as a negative counterexample
against PATH.

Case 3: There exists a counterexample that works as a positive counterexample
for PATH. Thatis, (PATH — PATH) N (EXT — EX T)# ¢onL Always
EXT C PATH by definition, and in the worst case, the algorithm makes ¢’ so
that EXT' = PATH in handling E#3. Therefore, let’s consider the worst case
where EXT' = PATH. Let Abe (PATH — PATH) N (EXT — EXT) and
A # ¢. Then, n € PATH = n ¢ A, and (PATH — PATH)N (EXT —
EXT') = (PATH-PATH)N(EXT —PATH) = A # ¢. Therefore, there
remains a counterexample that works as a positive counterexample for PATH .

32

Proof of 2(a). First, algorithm LEARN-X1*+ outputs every variable that can be in-
cluded queries in X1*+. Second, the algorithm enumerates all possible predicates that
can be included in RS({v,v'}) for the following reason: The 1-Learnablity’s defi-
nition says that RS({v,v’}) is defined only when v is the variable that appears in
a return clause and v/ € associatable(v) — associated(v). Because the algo-
rithm guarantees that for every w appearing in a query Ju(w € associated(u) A
u appears in a return clause), it holds that for all v’ s.t. v/ € associatable(v) —
associated(v), Ju(v' € associated(u) A u appears in a return clause A u # v).
This implies that there are always positive examples (including dropped examples)
corresponding to v and «(5£ v) and v’ is bound to an XML node on a path between v
and u. Therefore, predicates in RS({v, v'}) are those that hold on a path between two
different positive example nodes, which cond(contezt(e), o) can enumerate.

33

