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Abstract

In computer networks (and, say, transportation networks), we can consider the situation where each
user has its own routing decision so as to minimize noncooperatively the expected passage time of its
packet/job given the routing decisions of other users. Intuitively, it is anticipated that adding connections
to such a noncooperative network may bring benefits at least to some users. The Braess paradox is,
however, the first example of paradoxical cases where it is not always the case. This paper studies the
bounds on the degrees of coincident cost improvement (benefits) and degradation (harms) for all users by
adding connections to noncooperative networks. For Wardrop networks (noncooperative networks with
infinitesimal users), the degree of benefits for all users can increase without bound by adding connections
whereas no Wardrop network has been found for which the degree of harms can increase without bound
for all users. In contrast, for Nash networks (noncooperative networks with a finite number of users),
the degrees of both benefits and harms can increase without bound for all users. On the other hand, we
see that, for some category of Wardrop networks, adding connections to them can bring neither benefits
nor harms to all users, and that, for some homogeneous networks, adding connections to them can never
bring benefits to all users under any static policy including cooperative and noncooperative ones.

Keywords— Braess paradox, Wardrop equilibrium, Nash equilibrium, coincident cost degradation
and improvement, computer and communication networks, distributed computer systems, network rout-
ing, shortest path routing, source routing, static load balancing.

1 Introduction

There exist networks and systems wherein a number of independent users share and compete for resources.
For example, communication networks like the Internet consist of a finite number of links, and of flows of
packets each of which is issued by an independent user and flows through the links. Distributed computer
systems like GRIDs [14] consist of computers widely distributed and interconnected by communication
networks, and of flows of jobs each of which is issued by an independent user.

We can consider communication networks where each infinitesimal user has its own routing decision
so as to minimize the expected passage time of its packet from the origin and the destination given the
routing decisions by other users. The situation where every infinitesimal user has attained its optimization
given the decision of other users and would not unilaterally deviate its routing decision is called a Wardrop
equilibrium, a Nash equilibrium with infinitesimal players. We call here such a noncooperative network in
a Wardrop equilibrium a Wardrop networks. In computer networking, some shortest path routing protocols
may bring about situations close to Wardrop equilibria. It would be anticipated that users’ benefits would
increase by adding connections to a network, and thus increasing the degree of freedom in choices to each
user. This is not always the case, however, as first exemplified in the Braess paradox [3].

The famous Braess paradox shows that adding connections (links) to a network may sometimes degrade
the cost for all users in a Wardrop equilibrium. The Braess paradox attracted the attention of many re-
searchers and a lot of work has been accumulated, e.g., [2,4,8-12,15,16,28,30,32,35,38]. Coincident cost
degradation for all users by adding connections to a network looks paradoxical, and is called the paradox.
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It seems that, since its discovery, the paradox has been studied mostly with respect to Wardrop equilibria. It
also seems that the topologies of concrete networks examined with respect to the paradox have been similar
to or centered on that of the Braess network.

On the other hand, we can consider networks where users are classified into a small number of groups,
each of which optimizes its cost non-cooperatively. The situation where, in such a scheme, every user has
attained its optimization given the decision of other users and would not unilaterally deviate its decision
is called a Nash equilibrium. We call here such a noncooperative network in a Nash equilibrium a Nash
network. In computer networking, some source routing protocols may bring about situations close to Nash
equilibria. Examples of paradoxes similar to Braess’s in a Nash equilibrium have been found not only for
networks of topologies similar to the Braess one [26,27], but also for a network of another topology [20].
Motivation for studying Wardrop and Nash equilibria in computer networking is discussed in the Appendix.

It seems that, except [19, 31], few studies have emphasized the estimation of how harmful the paradox
can be, i.e., the worst-case degree of coincident cost degradation for all users by adding connections to
a noncooperative network. Moreover, we have not seen the estimation of how beneficial the addition of
connections to a noncooperative network can be, i.e., the best-case degree of coincident cost improvement
by adding connections to a noncooperative network.

We consider networks with fixed numbers of vertices. It has been shown that the degree of coincident
cost degradation by adding connections to Wardrop networks with one origin-destination pair is bounded
[19,31]. On the other hand, it has been shown that the degree of coincident cost degradation by adding
connections to Nash networks can increase without bound [22]. The present paper addresses the estimation
of the best-case degrees of coincident cost improvement for all users by adding connections to Wardrop and
Nash networks. We show that the degree of coincident cost improvement (benefits) by adding connections
to both Wardrop and Nash networks can increase without bound. In contrast, for homogeneous distributed
systems, no coincident cost improvement occurs by adding connections under any static load balancing
policy including cooperative and noncooperative ones. Furthermore, in Wardrop equilibia for any distributed
system, neither coincident cost degradation nor coincident cost improvement occurs by adding connections
to the system.

Note, in passing, that each user of a network may have decisions on flow control, in addition to routing.
In wireless networks, users may have power control. The concept of a Nash equilibrium is also discussed in
flow control [1,5,7,17,25,29] and in power control [13, 18,33, 34,37], both of which are not addressed in
this paper.

The outline of this paper is as follows. Section 2 presents the concepts around Pareto superiority, Braess-
like paradoxes, and their degrees of magnitude. Section 3 gives the description of the Wardrop networks
investigated, and presents the results. On the other hand, Section 4 examines networks with a topology dif-
ferent from that of the Wardrop networks, in particular, with that of distributed systems. Section 5 concludes
this paper.

2 A Measure Showing the Degree of the Paradox

This paper uses a single scalar measure that shows the degree of Pareto superiority of a system state before
adding connections to that after doing so, or the degree of paradoxes in Nash equilibria.

The Pareto superiority is defined as follows. Consider a system consisting of » users (or players, decision
makers), 1,2,...,n. Useri has its cost C;(S), in the system state S . Denote by S and S? two different states
of the system. k; = C;(S9)/Ci(S?). S? is Pareto superior to S iff k; > 1 for some i and k; > 1 for all other
j. In particular, we say that S? is strongly Pareto superior to S® iff k; > 1 for all i. A state to which
some other state is Pareto superior is Pareto inefficient. Thus, the Pareto superiority depends on the vector
(ky, k2, - .., ky). Tt may, however, be convenient to express the degree of Pareto superiority, using a single
scalar measure. It is required that the measure should clearly reflect Pareto superiority. If ki > 1, the state
S§? is (strongly) Pareto superior to S%, and if kpin < 1, the state S? is Pareto indifferent or superior to S4.
Thus, the measure ky;, may be used as a primary measure of Pareto superiority. In contrast, for example, a
measure based on a certain average or on a product of all k; cannot satisfy the above requirement, but may
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be used as a secondary measure for tie-breaking the case where ki, = 1.

It would be anticipated that in a system state where each user has more freedom of choice than in another
state, at least one user should enjoy higher utility than in the latter state. But, as the famous Braess paradox
shows, it is not always the case for noncooperative systems. Thus, a Nash equilibrium of a system with
less freedom may be Pareto superior to that with more freedom, which is called paradox. We, therefore,
use the measure of Pareto superiority as the measure of the degree of the paradox, i.e., the coincident cost
degradation for all users by adding connections. The measure of the degree of coincident cost improvement
for all users after due by adding connections can be considered in a similar way.

3 Wardrop Networks

3.1 Assumptions on Wardrop Networks

Wardrop networks considered here consist of one origin and one destination and some relay nodes, some
pairs of which a one-way link connects. One of the simplest networks is the general Braess network (Fig. 1)
discussed later. There are a number of paths each of which connects the origin and the destination through
a different series of links. The cost of a path is the sum of the cost of each link in the path. Infinitely many
infinitesimal users send their packets through the network. Each user chooses a path of the minimum cost.
The choice of a single infinitesimal user has only a negligible impact on the cost of each link. The situation
where no user can reduce his/her cost by unilaterally choosing another path is a Wardrop equilibrium, an
infinitesimal-user version of a Nash equilibrium.

It is assumed that the cost of each link is a non-decreasing function of the total flow, i.e., the rate
of packets through the link. In a Wardrop equilibrium of the networks with only one pair of origin and
destination, the costs of all users are identical. C, and C., respectively, denote the costs of users of a
Wardrop network before and after adding connections to the network. Define k = C;/C,. Then, k expresses
the degree of cost change for all users by adding the connections. ky;, of Section 2 reduces to k here.

Figure 1: General Braess network. (Type-GO0). Left: The network before link 1-2 is added. Right: The
network after link 1-2 is added. Similarly for the subsequent pairs of drawings.

The Braess network consists of four nodes: one origin, one destination, and two relay nodes (Fig. 1).
Each user flows through one of the paths. Before adding connections, the network has two paths, 0-1-3 and
0-2-3, each of which contains two links, the origin to one relay (0-1 or 0-2) and the relay to the destination
(1-3 or 2-3), respectively. After adding connections, i.e., a one-way link connecting two relays (1-2), the
network has three paths including the new path (0-1-2-3) connecting the origin, one relay, the other relay,
and the destination. Each user flows through one of the paths. In the original Braess network, the cost of
each link is a linear function of the amount of the flow through the link [3].

This paper also considers the networks, called general Braess networks, that have nonlinear link cost
functions. If we denote by 75 the flow of each link, the costs of links 0-1, 1-3, 0-2, 2-3, and 1-2 are,
respectively, denoted by a(r), b(i7), c(), d(1), and e(z). The total flow through the network is denoted by X.
Denote the amounts of the flows through paths 0-1-3 and 0-2-3, respectively, by x and y before adding link



1-2. Denote the amounts of the flows through paths 0-1-3, 0-2-3, and 0-1-2-3, respectively, by u, v, and w
after adding link 1-2. Denote by X the total flow, and, thus,

x+y=X=u+v+w. )

The cost of links 0-1, 1-3, 2-3, and 0-2, are, respectively, a(x), b(x), c(y), and d(y) before adding link 1-2.
The cost of links 0-1, 1-3, 2-3, 0-2, and 1-2 are, respectively, a(u+v), b(u), c(v+w), d(v), and #(w) after
adding the link.

For the original Braess network, a(n) = c¢(n) = 101, b(n) = d(n) = n+ 50, #(7) = n+ 10, and X = 6,
which result in C, = 83 and C; = 92, and thus k = C./C, = 1.1084... [3]. Recall that k shows the degree
of cost change by adding link 1-2. £ > 1 means coincident cost degradation. In the above case, it is about
11 % degradation. :

By general Cohen-Kelly networks, we mean a subset of general Braess networks for which the costs of
links 0-1 and 2-3, are, respectively, a(n) = @/(a — 1) and c(i7) = y/(a — 1) for 0 < 17 < a and for which the
costs of links 1-3 and 0-2, are, respectively, b(r) = d(n) = b for any 7 > 0 with #(17) = ¢ (constant). Cohen
and Kelly [10] considered a network of this type for whiche@ = 1,a =¢,b = 2,¢ = 1, and X = 2, which
is actually symmetric. They showed that Co = 1/(¢ =) +2 <3 = C¢, ie., 1 < k < 3/2, assuming that
24 > ¢ — 1> A > 0, which is a paradox. In the above case, it is less than 50 % degradation.

As a general result on the Braess networks, it has been shown that the degree, k, of coincident cost
degradation is bounded to 2 for the general Braess networks for which a(-) and c(-) are increasing and b(-),
d(-), and #(-) are non-decreasing [19]. Furthermore, as a general result on the Wardrop networks, it has been
shown that k is bounded to | n/2] for Wardrop networks that consist of # vertices and have link costs each of
which is a nondecreasing function of the flow through the link [31].
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Figure 2: Model Cohen-Kelly network.

We define more special Braess networks that will be used in the next section.

e [Model Cohen-Kelly network](Fig. 2) Networks that are the same as general Cohen-Kelly networks
with and b > @/(a — X) + t. Thus, u = v = 0 and w = X. Then, the following relations hold.

a

= 2

CO a_X/2+ba ()
2a

Co=—— +1. ?3)

We consider the case of ¢ = 0, in particular. Then, model Cohen-Kelly networks are described by the
values of parameters a, a, b, and X that satisfy 0 < X <aand 0 < a/(a — X) < b.

e [Reduced Cohen-Kelly network] A subset of model Cohen-Kelly networks with » = a/(a - X) + t.
Thus, the following relation holds for C. while C,, is given by (2).
2a a

C. = +t=2b-t=
‘T a-X a—

< +b. @

We also consider the case of ¢ = 0, in particular.



3.2 The Results

Proposition 1 For every value of k, s.t. 0 < k < 2, there exist model Cohen-Kelly networks for which the
measure k is that value.

[Proof] The outline of the proof is given as follows.

Step 1) shows that k£ depends only on p (= X/a) and Z (= b(a — X)/a - 1), i.e., k = k(p, Z).

Step 2) sees that k = k(p, 0) monotonically increases in p with the range 1 < k < 2 and the domain
0 < p < 1. Thus, given k, s.t. 1 < k < 2, the corresponding value of p can be obtained and thus, with
Z = 0, the corresponding combinations of values of @, a, X, and b, can be obtained, which describe model
Cohen-Kelly networks that are also reduced Cohen-Kelly networks.

Step 3) sees that, given p, s.t. 0 < p < 1, k = k(p, Z) monotonically decreases in Z with the range
0 < k < 1 and the domain Z, < Z where Z, = p/(2~p) > 0. Thus, given k, s.t. 0 < k < 1, the corresponding
value of Z can be obtained and thus, with given p, the corresponding combinations of values of @, a, X, and
b, can be obtained, which describe model Cohen-Kelly networks.

Steps 4) shows, by combining 2) and 3), that, for every value of k, s.t. 0 < k < 2, the corresponding
combinations of values of @, a, X, and b, can be obtained, which describe model Cohen-Kelly networks.
Therefore, for every value of k, s.t. 0 < k < 2, there exist model Cohen-Kelly networks that have the value
of k.

The details of the proof are as follows.
1) Consider a model Cohen-Kelly network. Then,

2«
k:ﬂ_ a—-X
Co Ay -
a-X/2 a-X a—-X
B 2 B 2
_Z 1 X _Z 3 ’
* +a-—X/2 2T,

where p=X/a(O<p<Dand Z =bla - X)/a—1(Z = 0).

2) Consider the combinations of values of «, a, X, and b such that Z = 0. Note that, with Z = 0, k
is a continuous and strictly increasing function of p with the domain 0 < p < 1 and the range 1 < k < 2.
Therefore, for every value of k, s.t. 1 < k < 2, the corresponding value of p is found, and then, combinations
of values of «, a, X, and b that satisfy p = X/a and Z = b(a — X)/a — 1 = 0 can be obtained, which describe
model Cohen-Kelly networks that are also reduced Cohen-Kelly networks. Thus, it is seen that, for every
value of k, s.t. 1 < k < 2, there exist model Cohen-Kelly networks that have the value of k. It is also
seen that the worst-case value, 2, of the measure k of coincident cost degradation due to adding link 1-2 is
asymptotically reached in certain reduced Cohen-Kelly networks as p approaches 1.

3) Next, consider the case where a, X, and thus p (0 < p < 1) are given. Then, a value of Z, Z, =
p/(2-p) > 0, gives that k = 1. Note that k is continuous and strictly decreasing in Z with the domain Z > Z,
and the range 0 < k < 1. It is seen therefore that, given a, X, and thus p (0 < p < 1), for every value of
k,s.t. 0 < k < 1, the corresponding value of Z > Z, is found, and then, combinations of values of o and b
that satisfy Z = b(a — X)/a — 1 can be obtained, which describe model Cohen-Kelly networks along with
the values of a and X given at the beginning of 3). Thus, it is seen that, for every value of k,s.t. 0 <k < 1,
there exist model Cohen-Kelly networks that have the value of k.

4) Combining 2) and 3) above, it is seen, therefore, that for any value of k, s.t. 0 < k < 2, there exist
model Cohen-Kelly networks that have the value of k. Furthermore, from 2), it is seen that the worst-case
value, 2, of the measure k of coincident cost degradation due to adding link 1-2 is asymptotically reached in
certain reduced Cohen-Kelly networks as p approaches 1. O



Remark 1 In the above proof, it is seen, in 3), that the degree of coincident cost improvement can increase
without bound (k = 0) in some model Cohen-Kelly networks, withb > a/(a—X)or Z > 0, as, e.g., b — oo
with a, a, and X fixed. On the other hand, in 2), in reduced Cohen-Kelly networks with t = 0, the ratio of
the paradox approaches 2 as p — 1, which means asymptotically infinite link costs.

Define the degree k = log, k . Then, adding link 1-2 leads to the cost improvement of 2 times if k < 0,
and leads to the cost degradation of 2™ times if k > 0, and unlimited large values of || can be considered.
The above result shows, however, that —o < k< 1. O

From Proposition 1, we see that there exist Wardrop networks for which the degree of coincident cost
improvement (benefits) for all users by adding connections to the networks can increase without bound.
Therefore, we have the following property.

Theorem 1 The degree of coincident cost improvement for all users by adding connections to Wardrop
networks can increase without bound.

4 Noncooperative Load Balancing in Distributed Systems

The previous section has shown that by adding connections to Wardrop networks with fixed numbers of
vertices, the degree of coincident cost improvement can increase without bound, although the degree of
coincident cost degradation cannot be over some bound.

This section gives a category of noncooperative networks [20], for which it has been shown that the
degree of the Braess-like coincident cost degradation can increase without bound in Nash equilibria [22].
This category of networks presents models of distributed systems, like GRIDs [14]. Load balancing of jobs
among nodes in distributed systems are regarded as routing in the equivalent networks [21,24,39]. .

4.1 Assumptions on the Networks Equivalent to Distributed Systems

node 1

|

Figure 3: The model of a distributed system for m = 3. The symbols near each arrow express the rate of
jobs that flow through the arrow. 8; = ¢1x1; + Paxp; + P3x3;,i = 1,2, 3.

A network equivalent to a distributed system consists of m origins and one destination, with each origin
being connected to the destination through one separate link, which is often called ‘node’ here. Denote the
total flow of O-D pair i is ¢;.

Before adding connections, there is only one path for each O-D payer. After adding connections (see
Fig. 3), some flow passes through the connections to forward to other nodes, out of the total flow ¢; that
arrives at the origin i. Let the flow from origin i to node j be ¢;x;;, i # j. The amount of flow, ¢;x;, goes to
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node i. Then, 0 < x;; < 1,4,j=1,2,...,m, 2.p %ip = 1. Denote the vector (x;1, xi2, ..., Xim) by x; and the
vector (x1, X2, ..., X,) by x. The load balancing policies considered determine (only) x, and, thus, are static
in nature. Denote by C the set of x’s that satisfy the above constraints. The resulting flow S; through node i,
i=12,...,m,is

Bi= D, bop. o)

2

Thus, the cost for the entire flow associated with the O-D pair i is

Ti(x) = ) xipTip(¥), ©)

p

where

Tii(x) = Di(B;), and @)
T;j(x) = Dj(B)) + G;j(x), for j # i. 8)

D;(B;) denotes the cost of processing a packet/job at node i in the case where the load on node i is ;. G; (x)
denotes the cost of sending a packet/job from origin i to node j in the case where the strategy profile is x. It
is assumed that, for all i, j,k (i # j # k # i),

Gij(x) < Gi(x) + Gyj(x). ®

Thus, a job forwarded from a node is not to be forwarded again to another node.

4.2 Wardrop Networks of This Category

We consider an individual optimization scheme for the networks of this category. Each infinitesimal user
seeks its own optimization and chooses the path of the minimum cost to send its jobs through. The situation
where every infinitesimal user attains unilaterally its optimization given the decisions of other users is a
Wardrop equilibrium. We call the network at a Wardrop equilibrium a Wardrop network as before. A
Wardrop network in question is characterized as follows: Infinitesimal users choose the path of the smallest
cost for each O-D pair. Thus, the Wardrop equilibrium ¥ after adding connections satisfies the following for
all 4, j:

T;(x) = mkin{Tik(J"c)} for x;; > 0, (10)
Tij(j') > mkin{T,'k(i)} for .7_Cl'j =0. (11)

That is, all the paths used have the equal cost for each O-D pair. We have the following property.

Theorem 2 The costs of all users neither degrade nor improve coincidently by adding connections to any
Wardrop network of this category.

[Proof] Similarly as [39], [21,40], after adding connections to a Wardrop network in question, nodes are
one of the following:

(1) idle source (Rq): The node sends jobs and does not process any jobs. That is, 8; = 0.

(2) active source (Rq): The node sends jobs and does not receive any jobs. But, the node processes a part
of the jobs that arrive at the node. That is, ¢; > ; > 0.

(3) meutral (N): The node processes jobs locally without sending or receiving jobs. That is, 8; = ¢;.

(4) sink (S): The node receives jobs from other nodes but does not send out any jobs. That is, 8; > ¢;.

7



That is, there does not exist such a node that both sends and receives jobs. Indeed, suppose that node i sends
jobs to node j and receives jobs from node k. Then,

D;i(Bi) = Dj(B;) + Gij(x), (12)
Di(Br) = Di(B;) + Gyi(x) = Ti. (13)

It is because, if (12) does not hold, processing jobs at node i incurs the smaller cost than sending jobs to
node j from node i. Similarly for (13).

Then, from (12) and (9), we have T}; = Di(Bi)+Gri(x) =2 Di(B))+G;j(x)+Gri(x) > D;(B;)+Gyj(x) = Ty;.
That is, Ty; > Tyj. Then, from (10) and (11), x;; = 0. That is, node i does not receive jobs from node £,
which contradicts the supposition.

Denote by T; and T}, respectively, the cost of O-D pair i before and after adding connections to the
network in question. Recall that D; is nondecreasing for all 7.

1) Assume that adding connections to a network in question brings about coincident cost degradation to
all O-D pairs.

Suppose that there exists an idle or active node i after adding connections, then T; = D;(¢;) > D;(8;) >
7;. That is, the O-D pair i suffers no cost degradation. Thus, we see that there exists neither idle nor active
node.

Then, since there exists neither idle node nor active node, there must exist no sink node. Only remain
neutral nodes. That is, no coincident cost degradation occurs for all O-D pairs by adding connections to the
network in question.

2) Assume that adding connections to a network in question brings about coincident cost improvement
to all O-D pairs.

Suppose that there exists a sink node i, then T; = Di(¢;) < Di(3;) = T;, which is no cost improvement
for the O-D pair i. Thus, we see that there exists no sink node.

Then, since there exists no sink node, then there must exist neither idle node nor active node. Only re-
main neutral nodes. That is, no coincident cost improvement occurs for all O-D pairs by adding connections
to the network in question. O

4.3 The Best-Case Degree of Coincident Cost Improvement by Adding Connections to Nash
Networks

A Nash network in question is described as follows: For each O-D pair, there is one decision maker, or a

player, that strives to minimize the cost for the O-D pair, i.e., decision maker i for O-D pairi,i=1,2,...,m.
Before adding connections, each decision maker has no choice since there is only one path for each O-D
payer. After adding connections, decision maker i (i = 1,2, ..., m) chooses the amount of the flow to

pass through the connections to forward to other nodes, out of the total flow ¢; that arrives at the origin i.
Thus, within these constraints, decision maker i (i = 1,2,...,m) chooses the values of x; »J=12,...,m,
to achieve optimization. Assume that each decision maker strives to optimize non-cooperatively the cost
associated only with the corresponding O-D pair.

A Nash equilibrium is given by such ¥ as satisfies the following for all i,

Ty(%) = min Tj(x;; _;)), such that (x;; X_g)eC,
Xi

where (x;; ¥_(;)) denotes an m-dimensional vector in which the element corresponding to %; has been replaced
by x;. X is called a solution for the above non-cooperative optimization.

Theorem 3 The degree of coincident cost improvement for all users by adding connections to Nash net-
works can increase without bound.

[Proof] 1) We first show this property even if D;(-) and G; (+) are nondecreasing, i, j(# i) = 1,2,...,m.



Consider the following network with m = 2, ¢; = ¢, ¢ = ¢+ € (¢ > 0, € > 0), 6/D = D/A £ «
0 <d6<D<A),

D1(B1) =D (constant),

D(ﬂ)_d,forOs,stgﬁ,
2P\ A, for B > 4,

Dy, Dy, G12, and Gy are nondecreasing. Then, clearly, ¥ = (%11, %12, %21, ¥22) = (0, 1,1,0) is a Nash equi-
librium after adding connections, and

Ti(X) =6, TxX)=D.
Note, however, that, before adding connections,
Ti(%) =D, Ty(*)=A.

Therefore, k; = k; = k < 1, and both users 1 and 2 have coincident cost improvements by adding connec-
tions, and the best-case degree can increase without bound as k — 0.

2) We can easily show this property if we relax the condition that D;(-) and G; ;(+) are nondecreasing,
LjFEH=12,...,m.

Consider the following network that is different from the above network only in the following. 0 < § <
D = A,

_|D, for0<p; < ¢,
D) _{6, for 81 > ¢,
D;(B1) =D (constant). (19)

D1, D;, G12, and G7; are nonincreasing. Then, clearly, ¥ = (%11, %12, %21, ¥22) = (1,0, 1, 0) is a Nash equilib-
rium after adding connections, and
Ti(X) =06, TrX) =6.

Note, however, that, before adding connections,
T1(%) =D, TxX) =D,

Therefore, ky = k, = 6/D < 1, and both users 1 and 2 have coincident cost improvements by adding
connections, and the best-case degree can increase without bound as §/D — 0.

3) Thus, we have seen that there exist Nash networks for which the degree of coincident cost improve-
ment (benefits) for all users by adding connections to the networks can increase without bound. Therefore,
we can say that the degree of coincident cost improvement for all users by adding connections to Nash
networks can increase without bound. O

4.4 Homogeneous Distributed Systems

As previously noted, it has been shown that, for homogeneous distributed systems, the degree of coincident
cost degradation by adding connections can increase without bound in Nash equilibria [22]. That is, for
any value of the ratio k, s.t. k > 1, of coincident cost degradation by adding connections, there exists
a homogeneous distributed system that has that value of the ratio in a Nash equilibrium. However, as
to coincident cost improvement by adding connections to homogeneous distributed systems, we have the
following property.

Theorem 4 No static load balancing policy in homogeneous distributed systems after adding connections
can bring about coincident cost improvement for all users over the situations before adding connections, if
node cost functions are nondecreasing and convex.



[Proof] Before adding connections, each user has the identical mean response time for its job, T; = T =
D(g), for all i. Denote by £ the strategy profile that all users take after adding connections under some static
load balancing policy which includes an overall optimal policy. Then, user i has the mean response time for
its job,

T > Z %ipD(Bp), for all i, Then,
p
6> T2 BD(B,). (15)
p p

Note that }’, 8, = m¢. We can show by induction, for m > 0,

D BoD(B,) = mpD($). (16)
p

Induction steps: (i) Relation (16) clearly holds for m = 1.
(ii) Suppose that (16) holds for m = M(> 1). Denote Mgy = Z;”: 1 Bp- Then, we have, for some ¢,
O =¢+E/M,and By = p — €.
M+1 M

D BeDBY) = )" ByD(By) + 1D (Brar1)
p=1 p=1

2z MouD(éum) + Bu+1DBum+1)
(by the assumption of the induction),

3

= (M +ED(@ + =) + (9~ DG~ &)
¢
= ¢{(MD(g + +) + D( - £)]
¢

+#[D(@ + =) = D¢~ €)]
(Note that D is convex and nondecreasing,
as to the first and second terms, respectively.)
> (M + 1)¢D(9).

We, thus, see that (16) holds for any m > 0, and, therefore, from (15),
1 . _
~ > 12D =T,
J2

which means that it is impossible that all 7; are not greater than T with some 7T; are strictly less than 7. That
is, no coincident cost improvement for all users can occur by adding connections to the networks. O

Remark 2 From the above, we see that under any static load balancing policy (any policy that determines x,
not only noncooperatively but also cooperatively), it is impossible that all users have benefits coincidently
from adding connections to homogeneous distributed systems. This result would give some insight into
scheduling in GRID computing. O

5 Concluding Remarks

The present paper has examined Wardrop and Nash networks. The results imply the following: For Wardrop
networks, the degree of coincident cost improvement (benefits) can increase without bound by adding con-
nections whereas there has been found no Wardrop network for which the degree of coincident cost degrada-
tion (harms) can increase without bound. On the other hand, for Nash networks, the degrees of both benefits
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and harms can increase without bound. In costrast, we have seen that some Wardrop network can have
neither.cost improvement nor cost degradation coincidently for all users by adding connection to it, and that
some homogeneous network cannot have cost improvement coincidently for all users by adding connection
to it under any static policy including cooperative and noncooperative ones.

Appendix. Motivation for Studying Wardrop / Nash eQuilibria in Computer
Networking

Consider a packet-switched computer network like the Internet (see, e.g., [6,23,36]). The network consists
of nodes, i.e., computers (hosts) and routers, connected by communication lines (links). Each packet is
associated with a unique pair of its origin and destination hosts. Packets originated at a host flow through
a path that consists of a series of interconnected routers to their destination host. Each router may keep
routing information in some form, e.g., of a routing table. Such information tells each arriving packet to
which adjacent router the packet is to be forwarded. Another possibility is what is called ‘source routing’
where the path of each packet is specified at the outset. Then, each packet carries this information about its
path while passing through the network. Source routing will be discussed later.

There exists a routing protocol that provides routing information at each router, so that each packet may
be guided through a path of the shortest cost among the paths that connect the same pair of origin and desti-
nation nodes, given the cost of each link. Thus, another routing protocol can be conceived, one that assigns
to each link the cost that reflects the estimated communication delay through the link. The communication
delay and availability of each link may vary from time to time, and so routers need to exchange packets to
update routing information. So-called ‘dynamic routing protocols’ will do such exchange. Such exchange
of packets, however, cannot be done too frequently. Otherwise, links would be flooded with such packets
and performance degradation would result. Thus, the information at each router is to be updated at some
regular (but not too short) intervals, and the cost optimization process cannot be truly ‘dynamic’ but rather
‘quasi-static.” Such an interval is called an update interval here.

Packet generation is regarded as a stochastic process. It is probable that this process is stable, i.e., in a
stochastic equilibrium, during a time period that contains a large number of update intervals. In quasi-static
control, the shortest path routing that reflects communication delays as link costs may cause oscillations in
the amount of packets that flow through each link, and thus, oscillations in the communication delay of each
link or path. Such oscillations could be avoided by means of suitably forecasting the expected delay of each
link for the next update interval, and/or by employing, if needed, an adequate mixing strategy of using more
than one possible path, each used at a certain ratio or frequency. Thus, if suitably controlled, the shortest
path routing may bring about situations wherein each packet flows through one of the paths of the shortest
cost (communication delay) among the paths that connect its origin and destination nodes, and the situation
must be very close to a Wardrop equilibrium. Thus, shortest cost path routing may have problems like that
of the Braess paradox. That is, adding new links to the network may cause performance degradation to all
the packets that have the same pair of origin and destination nodes.

On the other hand, the above mentioned source routing may provide situations quite close to a Nash
equilibrium as seen in the following. Consider a situation where the information on the estimated delay of
each link, and thus each path, is available at each origin. An autonomous system, e.g., a local telephone
network run by an Internet-service provider, or an autonomous network system belonging to an independent
organization, may be connected to the network at an origin.

Then, the manager or the administrator of the autonomous system would like to minimize the overall
cost or mean delay of the packets that are sent from the origin into the computer communication network.
Again, such oscillations as mentioned above could be avoided by means of suitably forecasting the expected
delay of each link in the next update interval, and/or by employing, if needed, an adequate mixing strategy
of using more than one possible path, each used at a certain ratio or frequency. Thus, if suitably controlled,
such source routing may bring about situations wherein the mean delay of the packets of an autonomous
system is minimum, given the routing decisions on the packets of the other autonomous systems that are
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connected to the network. In such cases, the situation must be very close to a Nash equilibrium.
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