A Revision of the Trapezoidal Branch-and-Bound
Algorithm for Linear Sum-of-Ratios Problems

Takahito Kuno*
December 4, 2003

ISE-TR-03-194

Institute of Information Sciences and Electronics

University of Tsukuba

Tsukuba, Ibaraki 305-8573, Japan

Phone: +81-29-853-5540, Fax: + 81-29-853-5206, E-mail: takahito@is.tsukuba.ac.jp

* The author was partially supported by Grant-in-Aid for Scientific Research (C)(2)
15560048 from the Japan Society for the Promotion of Science.

A Revision of the Trapezoidal Branch-and-Bound Algorithm
for Linear Sum-of-Ratios Problems

Takahito Kuno*

Institute of Information Sciences and Electronics
University of Tsukuba

December 2003

Abstract

In this paper, we point out a theoretical flaw in [15] which deals with the linear
sum-of-ratios problem, and show that the proposed branch-and-bound algorithm
works correctly despite the flaw. We also note a relationship between a single
ratio and the overestimator used in the bounding operation, and develop a pro-
cedure for tightening the upper bound on the optimal value. The procedure is
not expensive, but the revised algorithms incorporating it improve significantly in
efficiency. This is confirmed by numerical comparisons between the original and
revised algorithms.

Key words: Global optimization, nonconvex optimization, fractional program-
ming, sum-of-ratios problem, branch-and-bound algorithm.

1 Introduction

'The sum-of-ratios problem is a class of fractional programming problems and optimizes
a sum of multiple ratios of functions over a convex set. During the past twenty years, the
interest of researchers and practitioners has gradually shifted to multi-ratios problems
of this kind, from the single-ratio problem on which adequate results have already been
achieved for both theories and algorithms [18]. Included among those is the problem of
maximizing the minimum of ratios, which can be solved rather efficiently using a local
search algorithm similar to Newton’s method [5]. In contrast to this, the sum-of-ratios
problem has not yet been solved rigorously even when the number of ratios is only fifteen,
though various methods have been tested for twenty years.

One of the reasons why the sum-of-ratios problem has attracted attention is that
it has a broad range of applications. In light of applications of the single-ratio prob-
lem, ratios may be representing profit/capital, profit/cost, return/risk, and so on. The
sum-of-ratios problem is the handiest approach for optimizing these simultaneously.
Therefore, it can easily be imagined that the range of applications is as wide as that

*The author was partially supported by the Grand-in-Aid for Scientific Research (C)(2) 15560048
from the Japan Society for the Promotion of Science.

of the single-ratio problem. In fact, transportation problems [1], layered manufactur-
ing problems [16, 20], portfolio problems [12], named only a few, have been formulated
into this problem. Another reason is that the sum-of-ratios problem is challenging and
intriguing, especially to researchers. Even in the simplest case where the ratios are all
linear, their sum is neither quasiconvex nor quasiconcave, though each of them has both
properties. As a result, the problem has multiple local maxima, many of which fails to
be globally optimal. Since the difficulty of the problem strongly depends on the number
of ratios, some of the algorithms proposed so far [7, 9, 13, 14] assume it to be a few and
solve this multiextremal optimization problem by exploiting the low-rank nonconcavity
[11]. When the number of ratios is not limited, we have to rely on branch-and-bound
algorithms [3, 6, 10, 15] at this stage to solve the problem within a practical amount of
time. Among others, promising are the algorithms by Kuno [15] and Benson [3], both
of which use concave envelopes of ratios on quadrangles to compute upper bounds on
the optimal value in the bounding process. In the case of convex functions, it is rather
easy to compute tight upper bounds on rectangles or simplices generated by subdividing
the feasible set in the branching process. However, the sum of ratios is not convex,
as mentioned above. Then Kuno subdivided the projection of the feasible set on each
denominator-numerator space into trapezoids and defined a concave envelope over each
of them using two affine functions. Benson showed that the similar concave envelope
can be defined on a rectangle, as in the usual rectangular branch-and-bound algorithms
[8]. Readers are referred to a recent survey [19] for more details of applications and
algorithms. ' '

Kuno reported in [15] that his trapezoidal branch-and-bound algorithm can solve
the problem with linear ratios even when the number of ratios exceeds ten. However,
there is a little theoretical flaw in [15]. In this paper, we will correct it and show that
his algorithm works correctly and generates globally optimal solutions even though it
was designed based on an incorrect observation. Moreover, we will develop an inexpen-
sive procedure for tightening the upper bound of the trapezoidal algorithm significantly.
The organization of the paper is as follows. In Section 2, we present an outline of the
trapezoidal algorithm and show the flaw in [15]. We also re-prove the correctness of the
algorithm. In Section 3, we show that the upper bound of the trapezoidal algorithm
can be more tightened using a characteristic of ratios, and then propose two revised
branch-and-bound algorithms. Section 4 is devoted to a report of computational com-
parison between the revised algorithms and the original one. In Section 5, we give some
concluding remarks.

2 Linear sum-of-ratios problem and the trapezoidal algorithm

The problem we consider in this paper is a linear sum-of-ratios problem:

[U .
maximize 2z = Z %ﬁi
=1 c'X + Yi (2'1)

subject to Ax=Db, x>0,

where A € R™" b e R™, ¢',d’ € R"” and v;,6; € R for i = 1,...,p. We denote the
feasible set by
X={xeR"|Ax=Db, x> 0},

2

and assume that X is bounded and has a nonempty interior. We also assume throughout
the paper that ; ’
c’x+v%>0, dx+6>0, i=1,...,p. (2.2)

Under this condition, each ratio (d*x + &;)/(c’x + ;) is pseudomonotonic on X (i.e.,
pseudoconcave and pseudoconvex; see [2] for detail). The sum of pseudomonotonic
functions is, however, neither pseudoconcave nor pseudoconvex, even nor quasiconvex in
general. Therefore, (2.1) can have multiple locally optimal solutions, many of which fail
to be globally optimal; and besides, no vertex of polytope X might provide a globally
optimal solution for (2.1), unlike the usual global optimization problems of maximizing
a convex function. _

We first run over basic workings of the trapezoidal branch-and-bound algorithm [15]
for globally solving this multiextremal global optimization problem (2.1).

OVERVIEW OF THE TRAPEZOIDAL ALGORITHM

For convenience, let us introduce two vectors € and 71, each of p auxiliary variables, and
define
Q={(¢n)eR?|¢=Cx+v, n=Dx+6, x€ X},

c c! o] o d! 5 o
=1 1, =11, =1 1, =] : 1.
c? Yp d? Op

We also select four appropriate numbers s;, ¢;, u; and v; for each 7 = 1,..., p such that

where

0 < s; < min{(d*x + &)/(c’x +) | x € X}
oo > t; > max{(dx + ;) /(c’x + ;) | x € X}
0 <y <min{(c!+d)x|x€ X}+v+
0o > v; > max{(ct +d)x | x € X} +7; + &;.

(2.3)

Using these numbers, let us define
Di={(&m) e R |u; <&+m <wu}, A= {&,m) € R |86 <m <&}
where IR, denotes the nonnegative orthant of IR’; and let
=11 x---xIp, A=A x--- XA,

Then (2.1) is reduced to an equivalent 2p-dimensional problem:

14
maximize z = i/ i
(P) i‘én /€

1
subject to (€,m) € QNT NA.

The branch-and-bound algorithm proposed in [15] solves (P) recursively while replacing
Ay by

Ay = {(&me) € RY | spée < <wple}d, AL = {(&m) € R2 | wp&e <1 < tiéi}

n:/&i

t

Si i

Figure 2.1: Overestimator ¢; of 7;/&;.

for some k and wy € (sg, ;). The key to efficiency of this kind of algorithms is held by
the bounding operation. In [15], it is carried out by solving a relaxed problem of (P).

The objective function of the relaxed problem is a sum of overestimators for 7;/&;’s,
each of which is defined by two affine functions on the trapezoid I'; N A; (see Figure 2.1).
Let us denote the four vertices of I'; N A; by

S = (Ui, 5Zuz)/(sz + 1), T = (U,;, sm)/(si + 1)
U= (’l)i,ti’Ui)/(ti + 1), V= (’U,,g, tzuz)/(t, + 1)

One of the affine functions, say f;, is determined to pass 7;/& at S, T and V; and the
other, say g;, passes it at 7', U and V. Then we have

filéom) = (t + 1) (ms — 8:&i) /i + s (2.4)
gi(&,ms) = (si+ V) (s — t:&)/vi + ti. :

The overestimator for 7;/&; is given by the pointwise minimum of these as follows:
¢i (&, mi) = min{ fi(&, m:), 9i(&i, mi) }- (2.5)

Proposition 2.1 Function ¢; is concave, polyhedral and satisfies the following for any

(&, m) > mi/& if (Gi,m) € Ay } (2.6)
&i(&,m) < mi/& otherwise.)
Proof: See LEMMA 3.1 in [15]. .

In [3], Benson pointed out that ¢; is a concave envelope of 7;/&;, i.e., a minimal
concave function overestimating the value of 7;/&;, on I'; N A;. Anyway, the sum of

concave functions is concave; and hence we have a concave maximization problem, which
gives an upper bound of (P):

)
=, | maximize z=Y_ ¢;i(&,m)
(P) =1

subject to (§,m) € QNT NA.

Let (£,%) be an optimal solution to (P) and let Z = >°0_, ¢;(£,,7,), which is regarded as
—oo when (P) is infeasible, If Z is less than or equal to the incumbent value of (2.1), we
can discard A from the further consideration in the branch-and-bound algorithm.

FLAW IN [15] AND ITS CORRECTION

In [15], it is asserted that (P) is equivalent to a linear programming problem:

maximize Y y;
i=1
subject to Ax=Db, x>0 2.7)
(t; + 1)(sz~cf —d)x +wy < o)
(3i+1)(ticz—dz)x+v’iyé Sﬁ'& i:17"'7p7
i<y <ty

where
(t -+ 1)(5 Sz")’z) + S Us, ,Bz = (SZ + 1)(5z — ti%) -+ ti’Ui.

Although (P) is certamly a linear programming problem, this assertion is incorrect as is
shown by a simple example below,

Example 2.1 Consider a three-dimensional problem:

maximize z2 11 + Zt 1
Tzl a1 (2.8)

subject to x; + 2z +23 =2, x>0.

Problem (P) associated with (2.8) is of the form:

maximize 71 /& + 172/

subject to (£,7m) € Q, &En=>0
2<&+m <4, 25 &+m<d
(1/3)6 <m <36, (1/3)6

(2.9)

where

~{emen

Si=m+]1l, m=xa+l, T1+z2+23=1
52:.'1,‘24'1, 772:$1+1, XZO ’

If we apply the trapezoidal algorithm with bisection of ratio 1/2 (the details will be

shown later), it solves the following subproblem of (2.9) after seven iterations:

maximize /& +me/é
subject to (€,7m) € Q, £&n=>0

(1/3)51 < 771 (2/3)51, §2 <m < (4/3)52

5

(2.10)

The relaxed problem of (2.10) is

—(5/18)&1 + (5/6)m +1/3 } N
—(2/9)& + (1/3)m +2/3
win{ (/06 110+ |
—(2/3)62+ (1/2)m2 +4/3 (2.11)

subject to (§,m) € Q, &En>0

2<6+m <4, 2<&+m <4

(1/3)61 < m < (2/3)61, &< m2 < (4/3)&.
Since & = ny and & = 7, in this particular example, the last two constraints in both
(2.10) and (2.11) are inconsistent. However, if we transform (2.11) into the form (2.7),
we have :

maximize min {

maximize Y + Yo
subject to 1 +z2+23=1, x>0
(5/9)21 — (5/3)z2 + 2u1 < 16/9
(8/9)x1 — (4/3)z2 + 4y: < 28/9
—(7/3)x1 + (7/3)z2 + 2y, < 2
1/3<y <2/3, 1<y, <4/3,
which is feasible and has an optimal solution x = (1/3, 0, 2/3) and y = (2/3, 4/3). =

To obtain a linear programming problem actually equivalent to (P), we have to
replace the constraint s; < y; < ¢; for each i in (2.7) by ‘

si(cfx +) < d'x + 6 < ti(ctx + 7). (2.12)

Then we have

p
maximize Y y;
=1
subject to Ax=Db, x>0

(t; + D)(sic' — d)x 4+ wiy; < oy (2.13)
(sict — d)x < 6; — s
(dz - tici)x S ti")/,g - 57,

Proposition 2.2 Problem (2.13) is equivalent to (P) in the sense that if (2.13) is
infeasible, then Z = —oo; otherwise, for any optimal solution (X,¥) to (2.13) we have

i1=1,...,p.

_ P
=1

Proof: Let ¢ = CX 4~ and ' = DX+ 8. Then (¢',7) is a feasible solution to (P)
and satisfies

» P o

Z—gi = Z ¢: (&,) < Z ¢:(&:) = Z. (2.14)

1=1 i=1 =1
Since (€,7j) is a point of 2, we see from its definition that £ = Cx’+~ and 7 = Dx'+4 for
some x' € X. If the inequality in (2.14) holds strictly, we have a feasible solution (x,y’)
to (2.13) with 32, ¢/ > P | 7, by letting ¥} = ¢:(&',n') for each i. This contradicts
the assumption that (X,¥) is an optimal solution to (2.13).]

RECONSIDERATION OF THE TRAPEZOIDAL ALGORITHM

Problem (2.7) has turned out not to be equivalent to (P). Then, does the algorithm in
[15] which solves (2.7) repeatedly, instead of (2.13), yield incorrect solutions or fail to
converge 7 — The answer is NO. We should notice that (2.7) is a relaxation of (2.13),
and hence provides a lower bound for (P).

Proposition 2.3 If (2.7) is infeasible, then Z = —oo; otherwise, for any optimal
solution (X,¥) to (2.7) we have

A
M=
“_ﬁ‘?

=1

Proof: Let (X,¥) be an optimal solution to (2.13). For each i, either of the following
holds:

U = (ti+ 1) — s€)/ui+ i < (si+ D)0 — 6€s) /vi + 1 (2.15)
% = (si+ 1)@ — 1)/ vi +t: < (t: + 1) (7 — 8:&;) [ui + 51, (2.16)

where £, = ¢'X + v; and 7; = d'% + 5;. Since X satisfies (2.12), we have 8;€; < 7; < t:€;.
Therefore, in case (2.15), we have s; < J; < t; immediately. Even in case (2.16), we have
7; < t; similarly. To show s; < 7; in (2.16), we need to use the inequality £ +m; <w;as
well:

7 = (s + m — 8iti&; — 6:E;) [vi + i
> (siT; + 8:&; — il — &) [vi +
= (si—t:)(& +)/ vi +t: > si.

In either case, we have s; < 7, < t; for each 4. This implies that (X,¥) is a feasible
solution to (2.7). The objective function of (2.7) is the same as (2.13); and hence its
optimal value is never below Z. -

Let us denote by Z the optimal value of (2.7) and regard it as —oo when (2.7) is
infeasible. As shown by Proposition 2.4, we have Z > Z; and besides we know that z
is an upper bound on the optimal value of (P). Therefore, if Z is less than or equal to
the incumbent value of (2.1), we can discard A from the further consideration. The
incumbent can be updated to X if necessary, because X is an feasible solution to the
target problem (2.1). The algorithm works without any trouble as long as we use an
exhaustive subdivision rule (see e.g. [8]) such as bisection to divide A = A; X -+ X Ay,
This rule selects Ay = {(&,) €]Ri | sk&r < me < k€ } with the longest [sg, k] and
sets wy, = (1 — A)sg + Aty for any fixed ratio A € (0, 1).

As for the w-division rule, the algorithm seems to fail because an optimal optimal
solution (X,¥) to (2.7) might not satisfy (2.12) for some ¢. The w-division rule selects
Ay such that B B

k € argmax{;(&, %) —m/&|i=1,...,p},
and sets wy = ﬁk/gk, where & = ¢'X + 7; and 7; = d’% + §; for each i. Hence, if (2.12)
is not satisfied for all ¢, then w; deviates from the interval [si, ;] and A cannot be

divided. In that case, however, A contains no feasible solution better than (§ 7) and
can be discarded from the further consideration.

7

- Proposition 2.4 Assume that (2. 7) has an optimal solution (X,¥) and let € = CX+v
and 71 = DX+ 8. If (€,7) satisfies

Wi/& & (s ts), i=1,...,p, (2.17)
then A has no feasible solution to (P) better than (€, 7).
Proof: We first remark that 7); /E, > s; for each 1. Otherwise, we have
G < (t; + 1) (7 — 8:&) Jui + si < s,
which is inconsistent with the constraint y; > si‘in (2.7). Therefore, (2.17) implies
Wf& >ty i=1,...,p. | (2.18)
We then have fi(é, 7;) > t; immediately, and

Gi(&,) = (:fl + 7 — siti&s — 8i€i) Ui + 5
> (ti—si)&+ M) ui+ti >t

by noting fz—!-m > u;. We see from these that ; = ¢; holds for each 4. On the other hand,
from Proposition 2.1, we have ¢;(&;,7;) < 7;/& because (&,7) € A;. Consequently, we

have
Zm/& <zZ= Zt < Zm/&

i=1

for any feasible solution (£,n) to (P).]

As observed above, the trapezoidal algorithm works correctly on (2.1) in spite of
the theoretical flaw in [15]. Furthermore, solving (2.7) has the advantage over (2.13)
in some respect. Each successor of (P), say (P') obtained by dividing Ay, is different
from (P) only in either s; or ¢;. To solve the relaxed problem of (P’), starting from
an optimal solution to the relaxed problem of (P), we usually restore its feasibility and
then reestablish the optimality, using sensitivity analysis of the simplex algorithm (see
e.g. [4]). This process can be done more efficiently on (2.7) because two of the four
constraints involving s or #; are just bounding constraints on yj, in (2.7). However, it is
also a fact that the upper bound Z given by (2.7) is inferior to Z. It will cause relatively
rapid growth of branching trees. In the next section, we will discuss a procedure for
tightening the upper bound z.

3 Tightening of the upper bound and its applications

Let us suppose that the relaxed problem (2.7) has an optimal solution (X,¥), and let
£€=Cx+~vyand) =Dx+4. If 7 /@ ¢ (si,t;) for each 4, we need not tighten the upper
bound Z = >¥_, ; any more, as seen in Proposition 2.4. Therefore we assume for some
j €{1,...,p} that B

s; <T;/& <15

ni= (ﬁ}'/gj)fi

o uj vj S

Figure 3.1: Tightening the upper bound.

Then we can easily check
s < fi(&) 55 < 955 7) <,

and see that the value of ; depends on neither s; nor ¢; directly, but on ¢, (5,, 7;). Let
us try improving this upper bound ¢, (53, 7;) on #j;/ EJ by noting that the value of §;/n;
is constant along the half line defined by 5; = (;/&;)¢; (see Figure 3.1).

Let us denote the intersection points of ; = (77;/€,)€; with &+n; = u; and &+n; = v;
respectively by

X = (ui&,uiiiy) /(& +75), Y = (0§, v/ (& +)

Both the values of 7;/£; at X and Y are 7;/ EJ Also, the values of ¢; at X and Y, given
by f; and g; respectively, coincide as follows:

$:(X) = f3(X) = [(s;+ t; + V)7 — 85861/ (& +) = 9; (V) = ¢;(Y).
Since ¢; is concave and overestimates n;/&; on I'; N A; (Proposition 2.1), we have
63(&5,7) > 65(X) = ¢5(Y) = 7 /§.

If we replace ; = ¢j(§~j, 7;) by §; = ¢;(X), the upper bound Z = }>7_, §; improves and
will suppress the rapid growth of branching trees.
Let

Yil&,mi) = [(si+ti + D) — siti&a] /(& +mi), i=1,...,p.
In general, the following relationship holds among ¢;, ¥; and 7;/&;:

Proposition 3.1 For any (&,n;) € I'; we have

i(&mi) = Wil&,ms) = mi/& if (Goms) € A (3.1)
(&, i) < i(&,mi) < mif& otherwise. :

Especially when (&,m;) is an interior point of I'y N A;, the first two inequalities hold
strictly. '

Proof: Let (£},7!) be a point in I';. We have already shown that the first two inequalities
hold when (&, 7.) lies on the interior of A;. If it is a boundary point of A;, both the
values of ¢; and 1; are s; or t;. Now, suppose (&;,7:) is an interior point of I'; N A; and
show that the inequalities hold strictly. There are two cases to consider:

fz(‘f;an':) S 91(5477}:) (32)
fil€hn) > gi&,m)- (3.3)

In case (3.2), we have ¢;(&;, m;) = fi(&, ;) and
| i€ ml) — bi(&m) = (8 + 1) (0 — s:&)(& + mf — w)/[ui(& + m)] > 0
because s:€ < 7 and u; < £ + 1l Also we have
(&) = (0 — 8:&) (66 — M) /[&(& +m)] > 0

because ;& < 7} < ;.. In case (3.3), we may replace &;(&},n;) = fi(&,mi) by gi(&,ni)-
The last two inequalities in (3.1) can be proved in the same way. []

REVISED TRAPEZOIDAL ALGORITHM

Let us revise the trapezoidal branch-and-bound algorithm using the procedure 7; for
tightening the upper bound Z. We denote by € > 0 a given tolerance for the optimal
value of the target problem (2.1).

algorithm TRAPEZOID
begin
fori=1,...,p do begin
compute s;, t;, u; and v;;
dFi = {(&,m) € R |u; <& +mi <k A= {(&m) €RE | s:& < < tai};
end;
Di=Ty x-- xTp A=Ay X -+ X Ap; D := {A}; 2°:=0;
while D # @ do begin
select A € D and set D := D\ {A}; define a subproblem (P) with A;
fori=1,...,pdo
determine the overestimator ¢; of 7;/& on I'; N Ay;
construct the linear programming problem (2.7) using ¢,’s;
solve (2.7) to obtain an upper bound Z on the value of (P);
if Z — 2° > € then begin
set £ = Cx + v and 7) = DX + 8 for an optimal solution (X,¥) to (2.7);
if S0, 7/€ > 2 then

10

update 2¢ := 0, 7;/& and x© := X;

fori=1,...,pdo _
if 8; < 7i/& < ti then §; == (&,)5

tighten the upper bound to z := Y0_; %;

if Z— 2> € then
select k € {1,...,p} and wy € [sg, k)5
A = { (&, m) € RZ | sp€p < < wiekic}s
AY = { (&, me) € RE | widy < e < tibi}s
A=Ay X e XA XX Ay AT = Ap X X AR X XAy
D :=DU {A, A"} |

end

end
end
end;

Although the rule for selecting A € D is not specified in this description, we can
use any one of the usual selection rules in branch-and-bound algorithms (see e.g. [8]).
Typical ones are the depth-first rule, where A is taken from the head of the list D and
{A’, A"} is put back there, and the best-bound rule, where A with largest z is taken
out of D. To select k € {1,...,p} and wy, € [sg, k], we can adopt either bisection or w-
division, as in the original algorithm shown in the previous section. Essentially, algorithm
TRAPEZOID has the same structure as the original, except for the tightened upper
bound, and hence behaves similarly as follows (see THEOREM 5.1 and COROLLARY
5.2 in [15] for proofs): |

Theorem 3.2 When € > 0, algorithm TRAPEZOID terminates after a fintte number
of iterations and yields a globally e-optimal solution x¢ to problem (2.1).

Corollary 3.3 Suppose € = 0. If the best-bound rule is adopted in selecting A € D,
the sequence of Xt’s generated by algorithm TRAPEZOID has limit points, each of which
is a globally optimal solution to problem (2.1).

SIMPLIFICATION OF THE ALGORITHM

The procedure 7); is based on a simple observation but highly effective in suppressing
the growth of branching trees, as will be indicated by numerical results in Section 4.
Those suggest an expectation that the algorithm might still work well by means of 1;
even if we further relax the problem (2.7). Here, instead of (2.7), we propose to solve
the following problem in the bounding operation:

P
maximize Z Y

=1
subject to Ax=b, x>0 (3.4)
(5,,; -+ 1)(tzC7' _ dz)x + ;Y5 S ﬂ," i=1 P
5 <y <ty e

11

ni= (77;/51)51

0 ' vj &

Figure 3.2: Simplified overestimator.

This is associated with a simplification of (P):

14
—. | maximize 2z = 9:(&,m)
) 2

subject to (&,m) € QNI'NA,

where ‘ ,
o= {(&,n) €R2 | &+m <wv}, T'=T)x---xTy.
The reason why we drop f; from each overestimator ¢; = min{f;, g;} is that f; is supposed

to be less active than g; in the maximization problem. Since p constraints are removed,
(3.4) is easier to solve than (2.7), though the upper bound loosens.

Proposition 3.4 If (3.4) is infeasible, then Z = —oo; otherwise, for any optimal
solution (X', ¥') to (8.4) we have

P
Z2<Z<D G
=1
Proof: Follows from the inclusion relation between the feasible sets of (2.7) and (3.4).
|
Suppose that (3.4) is feasible. Let 2’ = Y0_, 71, £ = C% +~ and i) = Dy’ + 6 for
an optimal solution (X',§') to (3.4). Even this loose upper bound 2’ can be tightened if

we replace 7; by v¥;(&},7;) for each j such that s; < ﬁ;/@ < t; (see Figure 3.2). Since

(;’, ;) € Aj, by Proposition 3.1 we have
7 = g &, 7) > 6; @, 1) > w1 > /8,

12

where the last two inequalities hold strictly if (E;, 7;) is an interior point of I, N A;. If
we use (3.4) in place of (2.7), we can omit computing u;’s in algorithm TRAPEZOID.
Since they usually need solving p linear programming problems, preprocessing time will
be reduced considerably by this simplification. Some other effectiveness will be shown
in the next section.

4 Numerical experiment

Let us report computational results of having compared algorithm TRAPEZOID and
its simplification with the original algorithm in [15]. Those algorithms were tested on
problems of varied sizes, each of which was of the following form and generated randomly
in the same way as [15]:

p oy Ao
D=1 dij%; €

i=1 Z?L—-l CijTj + €
: ad (4.1)
subject to Z“ij:i <10, k=1,....m
j=1

maximize 2z =

z; > 0.0, j=1,...,7,

where c;j, di; € [0.0,0.5] and ax; € [0.0,1.0] are uniformly random numbers. The con-
stant terms of denominators and numerators were all set to the same number ¢, which
ranged between 2.0 and 80.0.

The algorithms were coded using GNU Octave (version 2.0.17) [17], a Matlab-like
computational tool, according to the descriptions in the previous section and [15]. The
tolerance € needed in the backtracking criterion of each algorithm was fixed at 1073, As
to the initial values of s; and ¢;, we exploited the structure of (4.1) and determined them,
together with u; and v;, by solving a single linear programming problem for each 4. First,
u; was set to 2c because both Y, ¢z + ¢ and Y., dij -+ ¢ have the same minimum
value ¢ in (4.1). Then, a linear programming problem was solved to determined the
maximum value v; of Z;-":l(cij + dij)z; + 2c. Finely, s; and t; were set to ¢/(v; —c) and
(v; — c)/c, respectively. This method is easy to implement and makes no difference in
the preprocessing time of three algorithms, though the resulting A is somewhat loose to
wrap up . As the rule for selecting A € D, depth first was adopted, and both bisection
and w-devision rules were tried to divide A into A’ and A", in each algorithm. Therefore,
a total of six codes were written and run on a computer (Pentium M, 900MHz) with
Linux 2.4.20.

EFFECT OF CHANGES IN p AND ¢

It has been reported in [15] that the performance of the trapezoidal branch-and-bound
algorithm is strongly affected by changes in p and c¢. In order to check how much it
improves with the procedure ;, we solved (4.1) of size (m,n') = (60, 40) as changing
pe{24,...10,11,...15} and c € {2.0,4.0,... 10.0, 20.0, 40.0, 60.0, 80.0}.

Figure 4.1 shows variation in the average CPU seconds taken to solve ten instances
with ¢ fixed at 10.0 for each p using bisection. The results of algorithm TRAPEZOID
(trap) and its simplified version (simp) are represented by the solid and broken lines, re-
spectively; and the dotted line indicates the result of the original algorithm (orig). Figure -

13

CPU seconds (in log-scale)

2 4 6 8 10 12 14 15
ratios (p)

0.1

Figure 4.1: Behavior of algorithms using bisection when (m,n’) = (60,40) and ¢ = 10.0.

CPU seconds (in log-scale)

trap ——
simp
orig """

0‘1 L 1. L
2 4 6 8 10 12 14 15

ratios (p)

Figure 4.2: Behavior of algorithms using w-division when (m, n") = (60, 40) and ¢ = 10.0.

14

100

CPU seconds (in log-scale)

0.1 1 !
0 20 40 60
ratios (p)

80

Figure 4.3: Behavior of algorithms using bisection when (m, n’) = (60, 40) and p = 6.

200 T T T
trap ——
+ simp ——
100 | orig "7 7

3
wv -
50
L
k=)
8
8
g
=
Q
b } "
0. l 'l L 1
0 20 40 60 80
ratios (p)

Figure 4.4: Behavior of algorithms using w-division when (m,n’) = (60,40) and p = 6.

15

Table 4.1: Computational results of three algorithms when ¢ = 10.0.

p=4 p=35 p=26 p=7

mx n' trap simp orig trep simp orig trap simp orig trap simp orig
40x 60 sec 0.741 0.609 1.180 1.517 1.366 3.006 3.162 3.524 9.654 7.949 9.770 19.13
70.4 . 784 139.8 154.4 199.8 358.8 354.6 570.2 1,115 906.6 1,763 2,327

80x 60 sec 1.256 0.944 1.907 2.357 1.887 4.805 3.619 3.767 7.462 7.338 9.989 16.03
81.4 77.6 163.2 196.0 221.0 454.4 355.2 5114 797.0 739.0 1,604 1,657

60x 80 sec 1.485 1.203 2.697 2,732 2.036 5.764 5.412 5.173 15.34 11.14 24.07 3740
85.6 98.0 194.4 198.0 193.0 474.0 463.2 680.6 1,353 925.0 2,993 3,112

100x 80 sec 2.172 1969 3.681 3.983 3.899 13.86 6.861 9.376 15.57 13.46 20.85 46.07
72.2 83.8 200.0 179.2 229.8 894.0 357.2 T705.0 1,065 864.6 1,996 2,897

80x100 sec 2.338 2.068 4.094 4.049 3.926 8.077 8.468 10.54 25.78 15.02 30.17 45.88
86.0 89.0 216.4 1944 257.2 494.0 441.2 807.2 1,512 799.0 2,397 2,536

120100 sec 3.221 2.866 4.722 4.918 4.689 8.671 10.30 14.10 30.85 22.51 35.16 78.17
86.6 81.4 1883 162.4 2306 414.6 433.4 8918 1,383 976.8 2,376 3,731

4.2 shows the average CPU seconds taken to solve the same instances using w-division.
Whichever division rule it uses, the computational time of each algorithm increases as
an exponential function in p. However, we should notice that algorithm TRAPEZOID
requires far less CPU time than the original for every p. Even the simplified version
takes less CPU time than the original for each p when using bisection, and for p < 6
when using w-division.

Figures 4.3 and 4.4, respectively, show variation in the average CPU seconds taken
to solve ten instances with p fixed at 6 for each value of ¢, using bisection and w-division.
Since the overestimator ¢; is rather poor in estimating 7;/&; near the origin of the §;-
n; space [15], the computational time of the original algorithm increases explosively if
the value of ¢ decreases below around ten. We can see from these line plots that this
weakness is overcome considerably with the procedure ;. Especially when using w-
division, even the simplified algorithm requires fairly less CPU time than the original
for ¢ < 20.0, despite the removal of f; from the overestimator ¢;.

EFFECT OF CHANGES IN (m,n')

We next compare three algorithms on (4.1) of size (m,n’) larger than (60, 40). Except
for the above observation, we can study from Figures 4.1 and 4.2 that the w-division rule
is more efficient than bisection when p is a small number, say less than eight. Also, we
have seen that it is demanding for the original algorithm to solve instances with ¢ < 10.0.
Therefore, we employed the w-division rule in each algorithm and solved ten instances
with ¢ = 10.0 for each (m,n') € {(40, 60), (80, 60), (60, 80), (100, 80), (80, 100), (120, 100)},
as changing p € {4,5,6,7}.

Table 4.1 shows the computational result, which contains the average CPU sec-

16

onds (sec) and the average number of branching operations (#) needed by algorithm
TRAPEZOID (trap), the simplified version (simp) and the original algorithm (orzg) for
each (m,n') and p. Both figures of each algorithm increase mildly with increase in the
size of (m,n'), in contrast to their rapid change depending on p. As expected, the per-
formance of algorithm TRAPEZOID is superior to that of the original for every (m,n’)
and p. It should be noted that the simplified version takes less CPU time than algorithm
TRAPEZOID for each (m,n’) when p is less than six. Since the former almost always
requires more branching operations than the latter, this is due to the ease of solving the
relaxed problem (3.4) compared with (2.7). Unfortunately, the performance of the orig-
inal algorithm impeded further comparisons on instances of larger (m, n',p). Algorithm
TRAPEZOID, however, could solve them rather efficiently unless p exceeds ten.

5 Concluding remarks

In this paper, we pointed out a theoretical flaw in our previous paper [15]. The linear
program (2.7) has been asserted in [15] to be equivalent to the relaxed problem (P) of
the linear sum-of-ratios problem (P). Actually, it is not equivalent to but is a relaxed
problem of (P). The trapezoidal branch-and-bound algorithm proposed in [15] solves
this incorrect (2.7) repeatedly. Nevertheless, it converges to a correct globally optimal
solution to (P), as we proved in Section 2. To tighten the upper bound yielded as the op-
timal value of (2.7), we proposed the procedure ;, which exploits a relationship between
7/ & and its overestimator ¢;. This is a simple procedure but significantly effective in
suppressing the growth of branching trees, as shown in the previous session. We also
showed that 1; enables us to further relax (2.7) without damaging the performance of
the algorithm not so much.

The procedure #; is not only applicable to (2.7), but can also be used for the original
relaxed problem (P). In that case, since we can expect a still tighter upper bound, the
number of branching operations would be further decreased. Also, we could design a
procedure similar to v; for improving the overestimator of 7;/& proposed by Benson
[3]. His overestimator is defined on rectangles but using two affine functions like ours.
Details of these matters will be reported elsewhere.

References

[1] Almogy, Y. and O. Levin, “Parametric analysis of a multi-stage stochastic shipping
problem”, in J. Lawrence (ed.), Operational Research ’69, Tavistock Publications
(London, 1970), 359-370. '

[2] Avriel, M., W.E. Diewert, S. Schaible and 1. Zang, Generalized Convezity, Plenum
Press (N.Y., 1988).

3] Benson, H.P., “Using concave envelopes to globally solve the nonlinear sum of ratios
problem”, Journal of Global Optimization 22 (2002), 343-364.

[4] Chvétal, V., Linear Programming, Freeman (N.Y., 1983).

17

[5] Crouzeix, J.P., J.A. Ferland and S. Schaible, “An algorithm for generalized frac-
tional programs”, Journal of Optimization Theory and Applications 47 (1985), 35-
49.

[6] Diir, R. Horst and N.V. Thoai, “Solving sum-of-ratios fractional programs using
efficient points”, Optimization 49, 447-466.

[7] Freund, R.W. and F. Jarre, “Solving the sum-of-ratios problem by an interior-point
method”, Journal of Global Optimization 19 (2001), 83-102.

[8] Horst, R. and H. Tuy, Global Optimization: Deterministic Approaches, 2nd ed.,
Springer-Verlag (Berlin, 1993).

[9] Konno, H. and N. Abe, “Minimization of the sum of three linear fractional func-
tions”, Journal of Global Optimization 15 (1999), 419-432.

[10] Konno, H. and K. Fukaishi, “A branch-and-bound algorithm for solving low rank
linear multiplicative and fractional programming problems”,.

[11] Konno, H., P.T. Thach and H. Tuy, Optimization on Low Rank Nonconvez Struc-
tures, Kluwer Academic Publishers (Dordrecht, 1997).

[12] Konno, H. and H. Watanabe, “Bond portfolio optimization problems and their
applications to index tracking”, Journal of the Operations Research Society of Japan
39 (1996), 295-306. |

[13] Konno, H., Y. Yajima and T. Matsui, “Parametric simplex algorithms for solving a

special class of nonconvex minimization problems”, Journal of Global Optimization
1 (1991), 65-81.

[14] Konno, H. and H. Yamashita, “Minimization of the sum and the product of several
linear fractional functions”, Naval Research Logistics 46 (1999), 583-596.

[15] Kuno, T., “A branch-and-bound algorithms for maximizing the sum of several linear
fractional functions”, Journal of Global Optimization 22 (2002), 155-174.

[16] Majihi, J., R. Janardan, M. Smid and P. Gupta, “On some geometric optimization
problems in layered manufacturing”, Computational Geometry 12 (1999), 219-239.

[17] Octave Home Page, http://www.octave.org/.

[18] Schaible, S., “Fractional Programming”, in R. Horst and P.M. Pardalos (eds.),
Handbook of Global Optimization, Kluwer Academic Publishers (Dordrecht, 1995),
495-608.

[19] Schaible, S. and J. Shi, “Fractional programming: the sum-of-ratios case®, Opti-
mization Methods and Software 18 (2003), 219-229.

[20] Schwerdt, J., M. Smid, R. Janardan, E. Johnson and J. Majihi, “Protecting critical
facets in layered manufacturing”, Computational Geometry 16 (2000), 187-210.

18

