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Abstract

There exist many systems that consist of a common-pool resource shared by multiple users, each of
whom strives to optimize its own utility noncooperatively by determining its input to the common-pool
resource. Such systems are regarded as noncooperative games. The situations where every user has
attained its optimization coincidently but noncooperatively are Nash equilibria. In this article, first, it is
seen that, in a fairly general framework of such systems, Nash equilibria are strongly Pareto inefficient,
that is, for each of these Nash equilibria, there exists another situation where all users have better utilities
than in it. Then, a number of examples of such situations in communication networking are presented,
which are similar to the ‘tragedy of the commons’ in economics. In particular, this article considers a
noncooperative flow-control problem for communication networks with multiple ports of entry and of
exit, where each user decides its throughput, as its input, so as to optimize its own performance objective
as its utility. As such an objective, we mainly consider the power which is the quotient of the throughput
over the expected packet-passage time. The existence of a Nash equilibrium is given. It is shown that this
Nash equilibrium has strong Pareto inefficiency. It is also shown that for a category of networks, the de-
gree of Pareto inefficiency increases as the number of users increases, and it can increase without bound
in some cases. We also show a flow-control version of the Braess-like paradox. Furthermore, we con-
sider another flow-control setting with additive costs and the power control in wireless communications.

Keywords— Braess paradox, common-pool resource, flow control, Nash equilibrium, noncoopera-
tive game, Pareto optimum and inefficiency, power, power control, tragedy of the commons.

1 Introduction

There exist many systems where multiple independent users, or players, may strive to optimize each own
utility by determining its input to a common-pool resource, which can be regarded as noncooperative games.
The situation where each user attains its own optimum coincidently is a Nash equilibrium. For example,
communication networks like the Internet are becoming more and more widespread and are having more
important roles in societies. As the scale of a communication network increases, the number of independent
users or organizations, like Internet service providers, that join the network tends to increase. It is natural
that these independent users seek their own benefits or utilities noncooperatively. Thus, such systems are
regarded as noncooperative games.

Nash equilibria may, however, be Pareto inefficient, that is, there may exists another situation of a system
where no users have less benefits and some more benefits than in the Nash equilibrium of the system. Dubey
(1986) showed that Nash equilibria may generally be Pareto inefficient, but it appears to be difficult to obtain
the concrete cases of inefficient Nash equilibria from his result. In particular, we call a situation of a system
strongly Pareto inefficient if all users have more benefits in another situation than the situation. As for the
communication and transportation networks, however, examples of such strong Pareto inefficiencies have
been shown with respect to noncooperative routing, first by Braess (1968), and a number of related studies
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followed (Murchland, 1970; Frank, 1981; Cohen and Kelly, 1990; Kelly, 1991; Cohen and Jeffries, 1997;
Korilis et al., 1995; Korilis et al., 1999; Roughgarden, 2001). As for the non-cooperative load balancing in
distributed computer systems, the existence of paradoxes similar to Braess’s that appear only in the case of
a finite number of players but not in the case of infinitesimal players, in the same environment, has been
shown (Kameda et al., 2000; Kameda and Pourtallier, 2002). Note that load balancing and routing have
muctually similar logical structures that are different from those of the systems considered here (Tantawi and
Towsley, 1985; Kameda et al., 1997; Li and Kameda, 1998; Altman and Kameda, 2001).

On the other hand, flow control is also a very important issue in communication networks (Hsiao and
Lazar, 1991; Parekh and Gallager, 1993; Chakravorti, 1994; Korilis and Lazar, 1995; Altman and Basar,
1998; Ching, 1999). It is necessary to keep the adequate amount of flow through and the proper congestion-
level of a communication network by controlling the admission rates of packets to the network. It is natural
to think of noncooperative optimal flow control and of the Nash equilibrium concept therein. It appears,
however, that few studies have addressed the issue of Pareto inefficiency of Nash equilibria in noncooperative
flow control. This article addresses mainly this issue. In addition, we note that the Nash equilibrium
concept has been discussed with respect to the power control in wireless communications (Famolari et
al., 1999; MacKenzie and Wicker, 2001; Saraydar et al., 2001; Saraydar et al., 2002; Ji and Huang, 1998).
We slightly touch on it. The examples of such systems as considered here have been studied in social science
under the name, ‘Tragedy of the Commons’ (see, Hardin (1968), Roemer (1989), Roemer and Silvester
(1993), Funaki and Yamamoto (1999), etc.).

This article first shows a fairly general framework of strongly Pareto-inefficient Nash equilibria. Also
mentioned are some concrete examples of noncooperative games, all of which are shown to have strongly
inefficient Nash equilibria. In particular, this article considers a flow-control problem for communication
networks with multiple ports of entry and of exit, where each user decides its throughput, that is, the rate of
its packets to inject into a network so as to optimize its own performance objective. As such an objective,
we mainly consider the power which is the quotient of the throughput over the expected delay, that is, the
expected time for a packet to pass through the network. The optimized situation is a Nash equilibrium, the
existence of which is proved here. (We note that Korilis and Lazar showed the existence of Nash equilibria
for networks of one pair of ports of entry and exit where each user optimizes noncooperatively its thoughput
within its response time constraint (Korilis and Lazar, 1995).) We call a situation of a system strongly Pareto
inefficient if all users have more benefits in another situation than the situation. We show that our Nash
equilibrium is always strongly Pareto inefficient and what is Pareto superior to it. (We note, in passing, that
Mazumdar et al. (1991) discussed cooperative power optimization, that is, the Nash arbitration scheme, in
Jackson networks extensively, but mentioned briefly the Pareto inefficiency of the Nash equilibrium without
showing its existence. We also note that Dubey (1986) showed that Nash equilibria may generally be Pareto
ineflicient if they exist, but it appears to be difficult to obtain from his result the concrete description of
the way how each Nash equilibrium is inefficient, for example, which state is Pareto superior to the Nash
equilibrium in question.)

Furthermore, we show that for a category of noncooperative networks, the degree of inefficiency in-
creases as the number of users increases, and it can increase without bound in some cases. On the other
hand, we may have a Pareto-optimal solution that achieves the solution of the Nash equilibrium propor-
tionately for the category of networks. It is shown that this Nash equilibrium is always strongly Pareto
inefficient. It is also shown that for a category of networks, the degree of inefficiency increases as the num-
ber of users increases, and it can increase without bound in some cases. On the other hand, we may have a
Pareto-optimal solution that achieves the solution of the Nash equilibrium proportionately for the category
of networks. We also show a flow-control version of the Braess-like paradox. That is, adding connections
to a noncooperative flow-control system may leads to the degradation of the power of every user. Further-
more, we present another flow-control setting with additive costs (instead of the power criterion) as well
as power-control problems in wireless communications as examples of the general framework of strongly
Pareto-inefficient Nash equilibria.



Organization of this paper

The rest of this paper is organized as follows. Section 2 discusses a general framework of strongly Pareto-
inefficient Nash equilibria. Section 3 discusses a flow-control problems, and Subsections 3.2, and also 3.3,
show that the Nash equilibrium of noncooperative flow-control on the network considered is always strongly
Pareto inefficient. Subsection 3.2.1 presents more detailed estimates on the Pareto efficiency for a category
of networks. Subsection 3.2.2 presents numerical examples of some cases where the degree of inefficiency
of Nash equilibrium can increase without bound as the number of users increases. Subsection 3.2.3 presents
a flow-control version of the Braess-like paradox. In Subsection 3.3, we present inefficiency results for the
flow control with additive costs. Section 4 presents another example of the general noncooperative game,
the power control in wireless communications, which has a strongly inefficient Nash equilibrium. Section
5 concludes this article. The Appendix presents a proof of the existence of a Nash equilibrium for the
noncooperative flow control presented in Subsections 3.2 and 3.3.

2 A General Framework of Pareto-inefficient Nash Equilibria

Consider a noncooperative game that has n players each of whom decides the value of 4; > 0, that is, the
strategy space consists of real nonnegative numbers. Denote n = (1,2,...,n). Thus, the strategy profile is
presented by a vector, 4 = (41, Az, ..., 4,). Let U;(2) denote the utility that player i strives to maximize. Let
L be the product of the strategy spaces. Denote by C (C L) the set of feasible values of 1. The definition of
feasibility may depend on the system concerned. For example, for a stochastic system, such A as leads the
system to statistical equilibrium is feasible. C may have boundaries. Let A (¢ C) denote a strategy profile
that presents a Nash equilibrium (with finite utilities). Denote 2 = {i | A; is not a boundary value of C}.
Introduce the following assumptions on a Nash equilibrium A:

Assumption ¥1. For a Nash equilibrium A, the partial derivatives of U{Q) for i € fi exist at A = A and either
of the following two holds:
(1) The utility, U;, of player i is decreasing in Aj, j # i, that is,

g—%<0forall JER(#ID).

(2) The utility, U;, of player i is increasing in A;, j # i, that is,

g%>0forall JeER(#1I).

Assumption 2. For a Nash equilibrium A, more than one element of A is not a boundary value, but is an
interior value. Then, ft has more than one element. That is, the strategies A; of at least two users are of

interior values.
Assumption P2 implies:
oU;
—_— =0 for i € d. 1
04; |a=2 )

Theorem 1 If Assumptions W1 and VY2 hold for a Nash equilibrium in C, it is strongly Pareto inefficient.

[Proof] Consider the situation where reducing the values of all elements A;(¢), i € @, of A(f) from A; except
elements A;(¢), i ¢ 7i. Then, by noting that dA;/dt = 0, j ¢ #i, we have for i € n,

Ui _0Uidd | < 0Uidy

dt  04; dt Pyl 04, dt

@



U‘
Consider the case (1) of Assumption ¥1. Note, for all i € #, that L

3 = 0 (since A is a Nash

AH=1

di, .
of — forallgedi(qg #1i)is

equilibrium) by Assumption ¥2 (eq. (1)), and that the coefficient Ui of —
=1

a1,

dU; A

negative by Assumption ¥1. Therefore, —t' _>O0forall i if gt—’ < Oforalliefi,thatis,all A;,i € fi
A)=1 _

are being reduced from A;. This implies that there exists a value of A such that U;(1) > U;(A) for all ;.

Similarly for the case (2) of Assumption W¥1. O

Remark 1 Note that, in the case where 7 has only one element i, reducing A; from 7;, while keeping all
other 4; = A j» J # i, may decrease the utility U;, although all other utilities U, j # i, may increase as seen
from (2). This comes from the definition of the Nash equilibrium. O

Example 1 Consider the case where the utility function for player i consists of two components, one de-
pends on A and the other only on A; as follows:

Ui(D) = Ri(A;) — Ti(d). (3)
Note that (3) includes most of the cases where U;(1) = Ri(4;)/T;(), since, then,
log Ui(4) = log Ri(A;) — log T«(A). 4)

If R; is increasing in 4; and if T(A) is increasing in A; for all j (# i), the above assumptions ¥'1 and P2 hold.
Such utilities have already appeared in the literature (see for example, Haurie and Marcotte (1985)). O

3 Flow Control in Networks

3.1 Assumptions on Networks

Consider a communication network modeled by an open product-form network of m state-independent
queues, k = 1,2,...,m (that model communication links, or, simply, links) (Baskett et al., 1975). De-
fine m = (1,2,...,m). The vertices or nodes connected by links model the routers of the communication
network. There are n independent users, 1,2,...,n as before. User i decides the rate A; of packets to pass
through a communication network so that the utility, U;, of the user i may be maximum. A = (11, 4,,...,4,).
T; is the average passage time of the packets in control of user i.

Wik 1s the state-independent service rate of user-i packets at link k. In this article, it is assumed that each
router (or, node) has a sufficient capacity of storing packets, and, thus, losses of packets may not occur.

qix is the resulting visit rate of user-i packets to link k. That is, g, for all i, k, is the solution of the
following system of equations:

qik = Pf)k + Z qilpfk,
I

where pfk and pf)l, respectively, are the probabilities that a user-i packet goes to link k after leaving link /
and when entering the system. Then, if user i injects the rate A; of packets into the network, user-i packets
visit link i at the rate of gz 4;. User i injects the rate, Pf)k/lia of packets into link k from the outside of the
network. User-i packets departing from link k leave the network at the frequency (or, probability) g;,. That
is, the network has multiple ports of entry and of exit. Consider the case where the mean response time for

a user-i packet to pass through link %, Tl.(k) is

1

T = 2 T® and T7® = :
i = Hie 1= 51 22p qpicAp/ tpk

®

where s; is 1 for a link modeled by a single-server, 1/h for a link consisting of 4 parallel channels each
of which is chosen with probability 1/4 and is modeled by a single server, and O for a link modeled by an

4



infinite server, for 1 51 2p GpkAp/ppr > 0 (Baskett et al., 1975). Denote k = {l|s; # 0}. Then, using the
Little’s result,

Qtl . . .
T;dD) = + , ifl—s A, > O for all I, otherwise infinite, 6
() = Zl—szszpzA lmz‘ Qi IZQPZ ©)

where Q; = @.
il
Clearly, T;(4) is increasing in A. Since } ;¢ Qy is constant and independent of the strategy, we only consider
the case where all links are in k. In order that the statistical equilibrium of this network should be attained,

it must hold that A € C, where the feasible region C is

C=@l420ienl-s) Oulp>0,lck). o)
p
Furthermore, define regions C and C such that
C’=(/l|/l,->O,ien,1—leQpl/lp>O,lek), ®)
p
=@ 420ienl-5) 0uly=0,l€ck). ©)
p

Cc-C comprises the boundary consisting of n + k hyperplanes each with (n — 1)-dimensions, n from 2; = 0,
i €n,and k from 1 — 5,3, Opid, = 0,1 € k. We call the part of the boundary consisting of 2; = 0, the (i —0)
policy boundary, and the part of boundary which is not any of (i — 0) policy boundary, i € n, the capacity
boundary. We also define for convenience,

Ai=1-5) Oplp. (10)

p#I

3.2 Noncooperative Flow Control with Power as the Objective

The power is defined as P; = A;/T; for a user-i packet. In this subsection, we consider the case where
the utility, U;, of user i depends only on and increases monotonically in its power, P;. From (6), P;(d) is
defined for all A € L, and P;(1) = O for A € L — C and i € n. Furthermore, from (6), for 4; > 0 and
1—-5;2,0pndp>0forall ],

_ T;(A) Qi
P.] D == = 11
D= = ) s, o) (v
1 51031 Qi
= — . 12
Z(/I-i * -5 Zp Qplflp)1 ) Zp;hi Qpl/lp (12)

Clearly, P! is convex in A. The partial differential coefficients of P‘ are the following:

q 0; 1%
—pl-__ 13
o af(Z,: =5 2w szzp)+z,: 0= 5 2 O =512, O

Oi 570;
s (Z Azll ) * Zl: Au(Ay 'l- SllQilfli)z' (14

(13) is derived from (12). It can be seen that, since both the first and second terms of the right-hand side of
(14) is increasing in A4;, given A, for all j # i, there is a unique value, A;, of A; that makes (14) to be zero
and, thus, maximizes the power P;, that is, from (14),
) S A )
&:Z@( i _1) , (15)
T An S An\s; 0
0 < &; < min{A/(s:Qu)})} (16)
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Figure 1: A Nash equilibrium point

It is evident that such a value of A; satisfies 1 — 5; Y p2i Opidp — 510a; > 0 for all 1. Denote by A;(ACD) the
value of 4; that maximizes P; given the values of the other A; for all j # i. Then, from this, we see that
(4D, AEDy € C. Furthermore, from (15),
04’ 1+ Al.l/vl. 2/ xz
Z :2 ”{1 M) L 3} = {Z 7 - 3}75 amn
1 il (—”V—l) I (—lv—l) 4
51Qid;i s1Qid;
Then, from (10) and (15), we see that as any of other 4, j # i, increases, A; decreases.
Clearly, the value of 2 = (4;, A, ... ., 1) that satisfies the above for all i is a Nash equilibrium. Denote by
0 a vector for which all the elements have the value, zero. We can see that (1;(1¢?), AD), 1 € C, comprises
an (n — 1)-dimensional hyper-surface that connects the point (1(0C?),009) and (n — 2)-dimensional hyper-
surface that is the intersection of the (i — 0) policy boundary and the capacity boundary. In total, there exist
n of these (n — 1)-dimensional hyper-surfaces, one for each i(€ n), and the intersection of all these hyper-
surfaces will be one (and possibly only one) point, which is a Nash equilibrium. Fig. 1 illustrates a case
where n = 2 and k = 3. The solid lines show the boundary. The dashed curve consists of the points (1;, 1)
where each A; is the strategy optimal to user 1, given the strategy of user 2, 1,. The dotted curve consists
of the points (11, A;) where each A, is the strategy optimal to user 2, given the strategy of user 1, ;. The
intersection of the dashed and dotted curves shows a Nash equilibrium point. A proof of the existence of a

Nash equilibrium, A € C, based on the Kakutani fixed-point theorem (Kakutani, 1941) is presented in the
Appendix.

Theorem 2 Nash equilibria for flow control where each user optimizes its power are always srtongly Pareto
inefficient.

[Proof] Consider the situation where reducing the values of all elements of A(f) from A. Note that, from

(11),

P71 da, P71 da
dpa O dh O i (18)
dt ' 0A; dt 4 0A, dt
q#i
P71 510,
where i _ Z{ thl qu . }
a/lq 7 Al -5 Zp Qpl/lp)
op;! o o _opl
Note, for all i, that —— = 0 (since A is a Nash equilibrium), and that the coefficient, , of —
0d; =1 04, dt

for all g # i in the second term of (18) is positive. If (—Pi‘l) is considered as the utility, U;, of player i, then
Assumptions W1 and Y2 hold. Therefore, from Theorem 1 follows this theorem. O



Remark 2 It is to be noted that the powers of all users improve by reducing the throughputs, A, of all users

from the Nash equlibrium coincidently. O

3.2.1 Flow Control in a Category of Networks

Consider, in particular, the case where gix/uix (= Qix) = yi/wi for some vy, for all 7, k. This can be satisfied,
for example, when there exist ; such that p; = Sy and g = Sy, for all i, k. Define p; = A;/u; and

p = Xp pp- Then, from the assumptions on networks given in Subsection 3.1, we have

1
T; = —D(p), D(p) =
o 0 ® ;l—smp

Then, we have the following property.
Lemma 1 For D(p) given by (19) and 0 < p < ming{1/(sxyr)}, D{0)/D’(p) is decreasing in p.

[Proof] Note that
2
Y1
D)= s,(———) .
=\l =syp
Without losing generality, k = 1,2,...,m, can be renumbered such that syy; = minger{sry;}. Then,

2
VI 1-syip
D(p) = E ( ) + E
) 1 - syip VI 7

gk

_l=sm Y
St Sl 3 o) e o
s171 & l—smp iy Momsip) \stye o sin ) £

Therefore,

V! 1 - spyip
Z(1 - smp) 0! Z 7

D(p) _ Iek Iek
D' (p) 2
Z sl(l -j;lmp)

lek

2
) G )

S eeeer—— — — —

l( syt S ZW

_ 1 - s1y1p + lek,l#1 1 - spyip £
$171 ( " )2
S|l ——
Zz: 1 - sryip

Thus, by noting that s;y; < sk for all &k, we see that D(p)/D’(p) is decreasing in p. O
From the above, we have

19)

(20) |

Proposition 1 For D(p) given by (19) and 0 < p < minex{1/(sry1)}, log D(p) is increasing and convex in p.

[Proof] From (19) and Lemma 1, follows this proposition. I
Then, the following assumption is satisfied.
Assumption 111 Given A, T; is given by a function D(p)-as follows:
1 A
T; = —D(p), where p = pr, and p; = —.
Hi >

Hi

D(p), defined for p > 0, satisfies the following: D(0) = 1, D(p) is increasing, and log D(p) is convex.

2D



Noncooperative flow control with power as the objective If Assumption IT1 holds, additional properties
can be derived. From Assumption 111,

A i H;pi

Pi=—=—"=— 22
"“T,” D)~ Dip) @
From (22)
0 1 D'(p)
—(logP;)) = — — , forp; > 0. 23
p; gLl o Dip) pi (23)
Thus, the set of the values p; of p; s.t. §; = D(p)/D’(p), for all 7, is a Nash equilibrium, where
| . _ nD(p)
p=— (24
D'p) )
Then, the noncooperative optimum flow for user i is A; = ;.
Cooperative flow control Consider an overall measure, O = ; ,ui‘zP,-. Then, from (22),
- p
0= 2p, = — 25
0 1 D'(p)
—(log0)= - - ——=, forp>0. 26)
o 9 5" Dy P (
Then, an overall optimum for this overall measure O is given by such a value p of p that
. _ D)
= . 27
P=1 ?) )

There are distinct sets of flows for users that results in p and achieves this cooperative optimum. One set of
flows for users that gives the cooperative optimum is given by 4; = y;p/n and p; = p/n.

Noncooperative vs. cooperative flow control Denote by P; and P; the powers of user i in noncooperative
and cooperative flow control, respectively. The following property holds in the setting of the model.

Theorem 3 There exists a unique Nash equilibrium of noncooperative flow control, and it is always strongly
Pareto inferior to the cooperative optimum defined above, that is, for all i, P; < P;. The power of each user
in the cooperative optimum is proportionate to that in the Nash equilibrium, that is, P; = KP;, for some
constant K > 1, for all i.

[Proof] Since log D(p) is convex and increasing by Assumption I11, D’(p)/D(p) is nondecreasing in p. Note
also that D’(p)/D(p) > O for p > 0, from the assumption IT1. Thus, D(p)/D’(p) > 0 is nonincreasing for
p = 0. From (23) and (26), respectively, follows that there exist unique g and p. Clearly, from (24) and (27),
p > p, and 5 and thus /p increases as n increases. P; = y?/D’'(p) and P; = yi? /D’ (p). Then, for all i,
- D' (p)
P; = KPpP;, K=l)/—(ﬁ)>1.|:|

Remark 3 It may be said that the cooperative optimum achieves the Nash equilibrium proportionately. O

Define K; 2 P;/P;. Then, K; = K = D'(3)/D'(p). K is regarded as the degree of Pareto superiority of
the cooperative optimum over the Nash equilibrium.

From (24), as n increases, g, and, thus, D’(p) increases, while § and, thus, D’(p) remain the same, as
seen from (27). Thus, K; = K increases as n increases, which means the following.

Proposition 2 The degree of Pareto superiority of the cooperative flow control over the Nash equilibrium
of noncooperative flow control increases as the number of independent users increases.



3.2.2 A Special Case: Series-Parallel Channels

Consider the case where the network is regarded as o parallel paths each of which consists of a series of x
identical links, that is, series-parallel queues. A new random choice of a path is made by each user for each
packet with an equal probability 1/0 (koo = m) where choices are made independently of past choices.
K

T 1-plo’

Clearly, the D(p) given by (28) satisfies the assumption IT1. Then, from (28), D/D’ = o — p. Then, for the
noncooperative flow control,

D(p)

(28)

p=on/(n+1), pi=0c/(n+1).
Therefore, P; = ,ufcr/ (n+ 1)2.

For the cooperative flow control,

p = o /2. Then, the optimum can be
achieved by p; = 07/(2n). Then P; = (2o /(4n).

Thus, K; = P;/P; = (n+1)*/(4n),and K; = K > 1forn>2, K — co (n — o). Note, in passing, that

- o, o A n+1
Pi=—— Pi= 7 and, therefore, Z—Z =——< 1,
D(P) = k(n + 1), D(p) = 2, and, therefore L__2 > 1
= Kk\n > = s > y = = .

Ti n+1

Thus, in the cooperative optimum, each user injects less flow and has better responsiveness than in the Nash
equilibrium. Some numerical examples are as in the following. Recall that » is the number of users.

For 9 users, in the Nash equilibrium, each user injects the rate of packets of 1.8 times, and receives the
average packet-passage time of 5 times and the power of 0.36 times as large as those in the cooperative
optimum.

For 99 users, in the Nash equilibrium, each user injects the rate of packets of 1.98 times, and receives the
average packet-passage time of 50 times and the power of 0.0396 times as large as those in the cooperative
optimum.

For 999 users, in the Nash equilibrium, each user injects the rate of packets of 1.998 times, and receives
the average packet-passage time of 500 times and the power of 0.003996 times as large as those in the
cooperative optimum.

3.2.3 A Flow-Control Version of the Braess-like Paradox

By the paradox, we mean that situation where the benefit of every user in a Nash equlibrium after adding
connections to a system is less than that before adding it (Braess, 1968). Note that the original Braess
paradox has been considered in the context of network routing. We show here a paradox similar to the
Braess paradox can also occur in flow control.

Consider the system where there are n users and »n paths. Consider two cases [A] and [B]: In the case
[B] (before adding connections) each of » users uses only one path dedicated to it. In the case [A], n users
shares the use of n paths. Intuitively, the performance of the system in the case (A) may not be worse than
in the case (B), at least, but, in fact, it may be so in noncooperative flow control as shown in the following.
Note that case [A] is identical to the case of Subsection 3.2.2 where o~ = n paths are commonly used by n
~users, and that case [B] is the situation where o = n paths are separated with each path being used by one



user only. Clearly, the power of user i in the case [B] is, P; = /11.2 /4, which happens to be the same as the
situation of the cooperative flow control. The power of user i in the case [A] is P; = ,u?cr/ (o + D>,

That is, for all users, the ratio, 1/K, of the power after adding connections ([A]) to that before ([B]) is
40 /(o + 1)?, which is 8/9 for o = 2, is 3/4 for o = 3, is 0.36 for o= = 9, is 0.0396 for o = 99, etc. Therefore,
each user has less power after adding connections ([A]) than before adding them ([B]), which may look
paradoxical.

3.3 Noncooperative Flow Control with Additive Costs

In this subsection, we briefly touch on another case of each user’s objective. That is, a common utility
function used in flow control is the sum of two components: The first corresponds to some function of the
throughput, and the second to some cost. More precisely, consider the network described in Section 3.1, and
assume that the cost per packet over link k is given by the function (1/ ,u,-k)T(k> (or) (given by (5)) where

Pr = prk, pik = Qui.
P

The total cost payed by player i is thus
Ji() = A4T; = ZPilT(l)(Pl)-
7

The utility for player i is then given by
Ui(Ad) = Ri(;) — aiJi( D),

where R; is concave in its argument and g; is a positive constant. Utilities with the above structure are
common in telecommunication networks (see, for example, Alpcan and T. Basar (2002; 2003) that study
special cases of such utilities).

Clearly, given the strategies, A9, of other users, user i optimizes U; by choosing its strategy A;, which
is unique given A9, and

0< 4 < min{A/(s1Qi)}- (29

If we have 2 such that, given A9 as A0, 4; = 4; holds for all 7, A is a Nash equilibrium. In the Appendix,
we show the existence of a Nash equilibrium, A € C, based on the Kakutani fixed-point theorem.

Since T® is strictly increasing in its argument for all , then ¥'1 holds. Therefore, from Theorem 1, it is
seen that, if more than one user has the positive 4; in a Nash equilibrium, ¥2 holds as well, and it is strongly
Pareto inefficient.

4 Another Example: Uplink Power Control in CDMA

This application is taken from Alpcan et al. (2002). There are n mobiles, and mobile 7 has to determine its
transmission power A;, i = 1,2,...,n. The utility is additive with two components: the first is a utility that
is a function of the signal to interference ratio, and the second is proportional to the consumed power. More
precisely, it is a function of the ratio between the power received at the base station from station i and the
total noise received: the interference from other mobiles plus a thermal noise. Thus, the utility is given by

hid;

Ui = fily) ~ @idi, where y; = Lo———.
i) = fily) - a;di, where 7; ¥ jei hjdj + 02

Here, h; is the attenuation between mobile j and the base station, L is called the spreading gain factor and
o? is the thermal noise. f; is assumed to be increasing in its argument. Alpcan et al. (2002) consider the
case where

filyd) = u; In(1 + ;). ' (30)
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With this choice of f;, this utility is proportional to the Shannon capacity for user i (if we make the simpli-
fying assumption that the noise plus the interference of all other users constitute an independent Gaussian
noise) and can thus be interpreted as the throughput that user i can achieve with a given power. The existence
of a Nash equilibrium for this system has been shown (Alpcan et al., 2002).

In this system, W1 is clearly satisfied. Therefore, Theorem 1 shows that, if more than one mobile has
the positive power in a Nash equilibrium, ¥2 holds, and it is strongly Pareto inefficient.

Similar models of the power control in wireless communications can be found (Famolari et al., 1999;
Saraydar et al., 2001; Saraydar et al., 2002; Ji and Huang, 1998). We can see that the models of these papers
satisfy Assumption 1. Therefore, Theorem 1 implies that, in the situation where Assumption ¥2 holds for
them, the Nash equilibria of these models are Pareto inefficient.

5 Concluding Remarks

In this article, a general framework of strongly Pareto-inefficient Nash equilibria in noncooperative games
competing common-pool resources is presented. Some examples of such noncooperative games in com-
munication networking are given. In particular, it is shown that the noncooperative flow control for which
each user optimizes its power has the strongly Pareto-inefficient Nash equilibrium, the existence of which is
shown on the basis of the Kakutani fixed-point theorem. Furthermore, it is also shown that, in some flow-
control games, the degree of Pareto inefficiency of the Nash equilibrium in noncooperative flow control
can increase without bound as the number of users increases. These observations anticipate the possibility
that the paradox like the Braess one may also occur in such systems modeled by the noncooperative game
including flow control, for which we show an example. Examples examined include another flow-control
setting with additive costs and the power control in wireless communications.

Appendix. A Proof of the Existence of a Nash Equilibrium in Noncooperative
Flow Control

In this appendix, we give a proof of the existence of a Nash equilibrium in noncooperative flow control as
given in Subsections 3.2 and 3.3. We consider the utility function U;(2) = exp{U;} = exp{Ri(A;) — a; J; (D)}
for Subsection 3.3. Then, both utility functions, P;(1) for Subsection 3.2 and U;(2) for Subsection 3.3, have
non-negative finite values for A € C and the value zero for A € € — C. In the following part 1), we first show
that there exist a Nash equilibrium in region € with the above utility functions. Then, in part 2), we show
that such a Nash equilibrium is in region C, which is a really feasible region considering the achievability
of the statistical equilibrium of the systems considered.

1) Consider the following function, ¢;, for arbitrary i, whose domain is C, defined as follows. Given
A € €, the function ¢; gives the A; as follows with other A being unchanged: A; is uniquely given, if
Ay > 0for all , by (15) for Subsection 3.2 and by the statement above (29) for Subsection 3.3. and, A; = 0,
if Ay = 0 for some [ (that is, 4; = 0 and 1 — 5, 3, Qpi4,, for some J). Note that, in the case where A; > 0
for all ], /Vli is determined to be the same value, regardless of whether U; or U; is used for the utility of user i
for Subsection 3.3. In the case where A;; = O for some I, 4; is determined independently of the shape of the
utility function of user i.

From (15) for Subsection 3.2 and from the statement above (29) for Subsection 3.3. it is clearly seen
that, for A € €, such that Ay > 0,1 € k, ¢; is a continuous function of A € C to (1;, A9y € €. Furthermore,
from (16) for Subsection 3.2 and (29) for Subsection 3.3, as A; — 0 for an arbitrary [ with A remaining in
C, A; — 0. For such A that A; = 0 for some /, A; keeps to be 0 while A remains in €. Therefore, ¢; is a
continuous function of A, for A € € and i € n. Thus, ¢; is a continuous function of A € € into C.

Consider a function ¢ = ¢; o ¢ o --- o ¢,. From the above, we see that ¢ is a continuous function and
maps A € C to A € C. By noting that C is a closed compact set, from the Kakutani fixed point theorem
(Kakutani, 1941), the function ¢ has a fixed point A such that ¢(/~l) =1 1€ C. We can easily see that, if
#(A) = A, then ¢1(A) = p2(A) = - - - = () = A. Thus, if ¢(2) = 4, A is a Nash equilibrium.
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2) Clearly, 4, such that 1- s, 3, @14, = 0 for some [, cannot be such a fixed point. Indeed, such A gives
zero utilities (P; = 0 and U; = 0 for all i), and user i such that 2; > 0 could increase its utility by decreasing
its 4; (that is, if 4; > 0, then it must hold that A;; > O for all I. Then, from (16) for Subsection 3.2 and (29)
for Subsection 3.3, A; mapped from A must be such t~hat -5 p#i Opidp — 5104 = Ay — 5;054; > 0, and,
thus, is less than 4;). Therefore, a fixed point of ¢, A, exists and A € C, which is a Nash equilibrium of the
noncooperative flow control.
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