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Abstract. The Bi-CGSTAB(L) proposed by Sleijpen, et.al. is one of iterative
solvers for large and sparse nonsymmetric linear systems, and is used exten-
sively. However, it is hard to estimate a suitable value of the restart number L
for good convergence behavior in realistic problems. In this paper, we propose
a way to select dynamically L for getting more efficient convergence behavior
in Bi-CGSTAB(L). Finally, we compare the Bi-CGSTAB(L) using the dy-
namic selection of L with the original Bi-CGSTAB(L) by several numerical
experiments.

1 Introduction

In the field of scientific and technical computation, we need to solve numerically the
partial differential equations which describe realistic problems like natural phenomena.
In the end their solutions comes down to solving the linear system of equations;

(1.1) Ax=b

which has large and sparse n x n coefficient matrix A, by discretizing with a finite differ-
ential method. It is very important to solve of Eq. (1.1) precisely and efficiently.

The Bi-CG algorithm[2, 4] proposed for solving nonsymmetric matrices often becomes
numerically unstable due to stagnation, breakdown, or irregular behavior of residuals,
in some cases. Therefore, the Bi-CGSTAB [7] algorithm was proposed. This algorithm
employs a product of an adequate first degree polynomial and a residual vector of Bi-CG
method as a new residual, and minimizes 2-norm of the residual. This method has better
convergence than the Bi-CG, and numerical stability of residuals. However, when the
eigenvalue of A is pure imaginary, this method causes stagnation or breakdown. The Bi-
CGSTAB?2 algorithm(3] is further improved method which uses second degree polynomials
instead of first degree polynomials in the Bi-CGSTAB. With this method we can avoid
stagnation and breakdown as the Bi-CGSTAB causes, and calculate solutions efficiently.

Furthermore, Sleijpen, et.al. proposed the Bi-CGSTAB(L) method[6] which general-
izes the Bi-CGSTAB and the Bi-CGSTAB2 method. The Bi-CGSTAB(L) algorithm is the
iterative method which obtains approximate solutions correspond to residuals newly de-
fined by the products of an adequate L’th degree MR (Minimal Residual) polynomial and
a Bi-CG residual vector calculated by L times Bi-CG iterations with preselected positive
integer L. Throughout this paper, the total number of iterations means the dimension of

* ISE-TR-~03-191: This paper is an English translation of " Trans. of the Japan SIAM, 11(2), (2001)
pp-49-62 (in Japanese)” as a Technical Report at University of Tsukuba, Japan.
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Krylov subspace which approximate solutions belong. Therefore, approximate solutions
are obtained at small dimension numbers when total numbers of iterations required for
convergence are small. To make up an approximate solution, it is needed to calculate
matrix-vector products 2 X (the total number of iterations) times independent of L. In
our study, we regarded the part calculating matrix-vector products as the main part of
the computation, and take the total number of iterations at convergence as a criterion of
the computational amount. Consequently, “optimum L” means the value L which leads
to convergence with the lowest total number of iterations.

The convergence of the Bi-CGSTAB(L) depends heavily on values of L. Theoretically,
- if L is sufficiently large, the convergence will be improved[6]. However, contrary to this
expectation, it causes stagnation in some practical numerical problems. The optimum
value of L depends on the nature of the problem. Therefore, selection of the optimum
value of L is very difficult problem.

In this paper, we propose a new method which avoids stagnation and dispersion of total
numbers of iterations by dynamically defining L in the iteration process of Bi-CGSTAB(L)
algorithm. First, we noted that the part calculating A%y of Bi-CGSTAB(L) algorithm,
which corresponds to “power method[8]” for calculation of eigenvalues. When a value
of L is large enough, the residual vector of Bi-CGSTAB(L) converges to the eigenvector
which corresponds to the coefficient matrix A’s eigenvalue whose absolute value is the
maximum. Thus the dimension of Krylov subspace generated by the calculation becomes
lower than the theoretical value. The problem is that this causes numerical rank-defection.
Consequently, to avoid this problem, we propose the dynamic selection of the values of
“restart number L in iteration processes. This method newly introduces the criteria to
evaluate occurrences of the rank-defection which comes with calculations correspond to
power method. With this evaluation, the Bi-CG iterations break before the occurrence of
rank-defection and then the value of L is taken as a selected value. In this manner, the
values of L are dynamically selected in Bi-CGSTAB(L) iterations.

In this paper, section 2 gives an outline of the basic scheme of Bi—CGSTAB(L) al-
gorithm. Section 3 shows the conventional method for selecting L and problems due
to values of L. Section 4 describes the above-mentioned problems of the conventional
Bi-CGSTAB(L) algorithm in detail, and shows the new method which dynamically se-
lects values of restart number L to avoid these problems. Further, section 5 shows the
effect of this new method with numerical experiments. The last section summarizes our
suggestion.

2 Bi-CGSTAB(L) Algorithm

Bi-CGSTAB(L) method[6] is the iteration method which uses products of a Bi-CG resid-
ual vector obtained by L times Bi-CG iterations (Bi-CG part) and an L’th degree MR
polynomial (MR part) as a new residual vector. Here, the whole iteration consists of these
two parts is called “outer iteration”, and the Bi-CG part and the MR part are called “in-
ner iteration”. The Bi-CGSTAB(L) method iterates the process of calculating a new
residual vector 71 and an approximate solution @ corresponds to 7 every L iterations,
where k is the total number of iterations and an integral multiple of L.

In Bi-CGSTAB(L) method, when m outer iterations were finished, the total number
of iterations k& equals mL. Then the residual vector 7,,;, and the search direction vector



U7, are expressed as;

(21) TmL = QmL(A)T?n%G,
(2.2) Upmr = Qumu(A)uC.
Here, r29¢ and u25¢ indicate the residual vector and the search direction vector of
the Bi-CG part When the total number of iterations is mL; and Q,,r(A) indicates the
product of m times L’th degree MR polynomials.
Subsequently, when the outer iteration number is m + 1, the residual vector of the
whole Bi-CGSTAB(L) method is expressed as;

(2.3) TmL+L = Um(A)QmL(A)rBSE—L'

Here, U,,(A) is the L’'th degree MR, polynomial;

BCG

(2.4) Un(4) = I- iyjmm‘

=1

and @Q,r(A) is made up as the product of MR polynomials Up,—1(A) - - - Up(A). Moreover,
Yim (j = 1,---,L) is defined so as to minimize the 2-norm of the residual rp,r.z. Its
calculation will be shown later in the description of the MR part.

For derivation of (2.3), first,

(2.5) Yo = Qumr(A)rE5S:
is calculated from 7, and w,,r. Furthermore, by calculating
(26) TmL+L = Um(A)ym

Yim (3 =1,--+,L) of (2.4) is determined. Here, Eqs. (2.5) and (2.6) are called “Bi-CG
part” and “MR part” respectively. The detalls of each part are given in the following
explanation.

2.1 Bi-CG Part

Here, we derive y, expressed as (2.5). The fundamental recurrence formulae[2]

BCG _  .BCG _ , A,,BCC
i = T ajAu;

BCG _ ,.BCG BCG
Ui = Ty t+ P

multiplied from the left side‘by the polynomial @Qr(A), for j = mL,mL+1,---,mL +
L — 1, make

QmL (A)"'?fl(} QmL( ) BCG — Oy AQmL( )'U';BCG7

Qui(Auiy = QmL(A)r?waJQmL( JuBe

and finally y, = Qmi(A)rE3S,, is obtained.



2.2 MR Part

Here, we derive the unknown vim of Eq. (2.4) and simultaneously calculate 7,14 1.
With y, derived at the Bi-CG part and Eq. (2.4), (2.6) is modified to

L
(2.7) Tmirr = Un(A)Yo = Yo — D 1imA Yo
j=1

The second term of this equation comes down to computing A’y, and finding the
solution for jp,.
If we put

(28) Y, = Ajym .] = 17 e aL7
AJy, can be calculated with the following relation [6];
(2.9) y] = ij—l) j == 1, e ,L.

If we define as

Y = [yI’ Yoy =y yL]a
7m = [’}/Im’ Yomy * 7Lm]Ta
Eq. (2.7) becomes as
Yim
Yom
Tmitl = Yo~ Y1 Yo YLl | . | =YYV
YLm

Here calculation of +;,, results in solving the least squares problem:

(2.10) ’y,I:Iei?%L 1Yo — Y ¥l

In Ref. [6], problem (2.10) is solved by the modified Gram-Schmidt method.

3 Conventional Method of Selection and Its Prob-
lems

The conventional Bi-CGSTAB(L) method uses fixed values of L. That is, the value of L
is selected in advance before the Bi-CGSTAB(L) computation is executed. We call such
a method of selection “Static selection”.

Theoretically, the static selection of L can decrease the total number of iterations by
using a large value of L[6]. However, using larger L does not necessarily bring about a
result obedient to the theory, for instance, it causes stagnation. Moreover, the optimum
method for selecting L has not established yet, and the selection depends on the nature
of the problem or its size. Namely, the optimum L depends on the right-hand side terms
and the coefficient matrix. This section shows examples of such problems with numerical
experiments.



3.1 Numerical Experiments

In the following numerical experiments, we take up two problems. We used Sun Ultra-
SPARC I CPU and computed all operations in double precision. As the convergence
criteria, true residuals are evaluated as ||b — Axk||2/||b]]2 < 1.0 x 1078 (k: total number
of iterations). If the residual does not converge, it is truncated at the iteration number
2000. The initial value of the approximate solution is o = [0, 0, -- -, 0]7.

Table 1 and 2 show numbers of iterations (iter) required for convergence and relative
residual 2-norms (residual) calculated as logy(||b — Axk||2/]|b||2) where L’s variation is
from 1 to 16, for each problem. Here, “sta” indicates an occurrence of stagnation, and
then value of the relative residual norm is filled in the column of “residual”.

Figs.1 and 2 present the behavior of relative residual norms at each problem. These
graphs show the convergence under the static selection, L = 1, 4, and 16, and under the
value of L which minimizes the total number of iterations. We used the value L = 4

which was suggested as a standard value in Ref. [6], and L =1 and 16 as instances using
extreme value.

Problem 1

In an analytic domain Q = [0,1] x [0,1], we consider following partial differential
equation:

O % ou  Ou
—('a‘ﬁ‘Fa*yg)‘FQ(*—-l-—) = 2z+y+2), (z,y)€Q,

or Oy
u(0,y) = v, (Dirichlet conditions),
u(z,0) = =z, (Dirichlet conditions),
o
o = 14y, (Neumann conditions),
oz|,_,
ou "
e = 142, (Neumann conditions).
27—

These equations are discretized with five-point central difference method, and the cal-
culation region is divided equally into 128 parts in  and y directions.

Table 1: The Number of iterations and the relative residual 2-norm
under the Static Selection, L = 1,2,---,16 (Probleml).

L | iter | residual || L | iter | residual || L | iter | residual || L |iter | residual
11325 -8.071{ 5] 315 -8.11 || 9| 288 -8.14 || 13| sta -7.05
2| 332 -8.14 || 6| 294 -8.04 || 10| 300 -8.121| 14| sta -6.10
3| 291 -8.09 || 7| 308 -8.75 || 11| 275 -8.45| 15| sta -5.00
4| 340 -8.12 || 8| 264 -8.06 || 12| 288 -8.00| 16| sta -4.10

Table 1 indicates that the computation converges with the least iteration number under
‘static selection L = 8 in the Problem 1.



Behavior of Convergence by Static (Problem1)
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Fig.1: The residual history of Static Selection, L =1, 4, 8, 16 (Problem1).

Problem 2

In an analytic domain Q = [0,1] x [0,1], we consider following partial differential
equation:

u 0% ou ‘
_(EEJ”E?HQ% = 2y+1), (zy) e,

ulsn = zy+x+vy, (Dirichlet conditions).

These equations are discretized with five-point central difference method, and the cal-
culation region is divided equally into 256 parts in z and y directions.

Table 2: The number of iterations number and the relative residual 2-norm
under the Static Selection, L =1,2,---,16 (Problem2).

L | iter | residual || L | iter | residual || L | iter | residual || L |iter | residual
11537 -8.07 || 5 460 -8.04 | 91 477 -8.28 || 13| sta -6.69
2 | 542 -8.43 || 6| 456 -8.00 || 10| 490 -8.29 | 14| sta -5.84
3| 558 -8.19 || 7| 483 -8.05 || 11| 462 -8.18 || 15| sta -4.99
4 | 556 -8.36 || 8| 480 -8.04 || 12| sta -7.52| 16| sta -3.72

Table 2 indicates that the vcomput»a,tion converges with the least iteration number under
static selection L = 6 in the Problem 2.



Behavior of Convergence by Static (Problem2)
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Fig.2: The residual history of Static Selection, L = 1, 4, 6, 16 (Problem2).

3.2 Problems of Static Selection

As the above-mentioned results show, we can conclude that the computation stagnates in
the worst case, with statically-selected L. Even if the computations converge, there are
significant differences in the total numbers of iterations for convergence. In this manner,
the selection of L has a great influence on the convergence. The major problems of the
static selection of L, are as follows:

o A small value of L makes the behavior of convergence irregular.

e A large value of L is not necessarily optimum and can cause stagnation, contrary
to the theoretical expectation of a good convergence.

As above-mentioned, we conclude that it is very difficult to preselect the optimum
value of L.

4 Dynamic Selection of L

This section describes the problem of Bi-CGSTAB(L) algorithm as the cause of the stag-
nation which occurs when the static selection is used. We propose and describe the new
method which derives values of restart number L dynamically in each iteration process,
to avoid this problem.



4.1 Problem of Bi-CGSTAB(L) Method

In Bi-CGSTAB(L) method, the operation of Eq.(2.9) is executed in each iteration. This
corresponds to “ the power method [8] ” for eigenvalue calculation. Consequently, there is
the possibility that after sufficient number of iterations, y; = Aly, converges to the
eigenvector corresponds to the coefficient matrix A’s eigenvalue which has the max-
imum absolute value. Then the dimension of the Krylov subspace defined as Span
{yo, Ayg, - ,ALyO} become smaller than L + 1, therefore the rank-defection will occur
numerically; and the Bi-CGSTAB(L) method does not converge.

4.2 Proposal of Dynamic Selection

In order to prevent the rank-defection of Krylov subspace, there is the need for stopping
the iterations of (2.9) with some kind of criterion. Here we propose the criterion using
the Rayleigh quotient for y, [1] as follows.

The Rayleigh quotient for y, is expressed as,

YiAY; _ YiYin

4.1 pi =
(4.1) ! Yy, Yy,

This formula includes operations of only two inner products. The conventional Bi-
CGSTAB(L) method requires operations of 2L matrix-vector products and O(L?) vector
inner products and vector-scalar products per one outer iteration. Therefore our method
requires only 2L vector inner products in addition to these operations.

The procedure of the dynamic selection is as follows, Every Bi-CG iteration the relative
error E derived from Rayleigh quotients, '

E = |p; — pj-1l/lp;l,  (here,p_1 = 0.0)
is calculated. If this F is less than a tolerance TOL, i.e.
(4.2) E<LTOL,

we judge the rank-defection to be occurred, and stop the computation of inner iterations.
Then the value of L is selected.

We call the Bi-CGSTAB(L) method employing this “dynamic selection of L”, DS(Dynamic
Selection)-Bi-CGSTAB(L) method.

4.3 Algorithm of the DS-Bi-CGSTAB(L) Method

The practical expression for DS-Bi-CGSTAB(L) algorithm is given as follows. The cal-
culation part of p; and the judgement routine ((4.4) - (4.8)) are added to the Bi-CG
iteration part of Bi-CGSTAB(L) algorithm in Ref. [6]; additionally, L = LM AX is given
first (Eq.(4.3)). The maximum iterating number for Bi-CG part is modified to LM AX —1.



(4.3) set L = LMAX,
k = —L,
choose xg, To,
compute rg = b— Az,

take u_y =0, xg =g, pPo

Il
\.'_l

a=0, w=1,

repeat until ||rg4r|le is small enough,
begin
k = k+1L,
put o = ug_1, To = Tk,

Zo = X, po = —wpo,

for j=0, ---,LMAX -1
/* (Bi—CG PART) x/
P1L= (f'jv ';'O)a
p1
B=Pr+j = s
Po = p1,
for i=0,---,7,
Uy = 7 — Pu;,
“end,
U1 = Ady,
v = (@41, 7o),

PO
Q= Ok+j = —,

To = T + adig,
for i=0,---,3,
Ty = 5 — oy,
end,
Pjr1 = Arj,
/*  Start the judgment with the Rayleigh quotient * /
(4.4) compute E
(4.5) if (E < TOL) then
(4.6) ‘ L=j+1,
(4.7) goto 10,
(4.8)  end if
/* - End the judgment with the Rayleigh quotient * /
end,

10 'continue,



for j=1,---,L
/* (MR PART) x/
for i = 1,---,5—1,

oj = (P4, ),

1 . .
Y = ;(ro’rj)a

F]
end,
0
YL =YL
w =YL,
for j=L-1,---,1,
L
'l
Yi =~ Z Tji%Yiy
i=j+1
end,
for j =1,---,L—1 |,
L-1
"
Vi = Yi+1+ Z TjiYi+1,
i=j+1
end,
Lo =g+ o,
A A~ ] A
To =To—YLTL
Uy =19 —yLir,

for 4 =1,---,L—-1,
o = o — YUy,
:270=ﬁ:0+7;!'f.j7
"A’O=f°0—’7_;"f'ja

end,

put  ugyp-1 = o,
Tk+L = To,
Xg+L = Zo,
end.

10



5 Numerical Experiments

In the following numerical experiments, the DS-Bi-CGSTAB(L) method was applied to
the two problems mentioned in section 3.1. As the condition peculiar to the dynamic
selection, LM AX = 16 and TOL = 0.01 are used.

The results are shown below. Figs. 3 and 5 show the behavior of relative residual
norms of each problem, and Figs. 4 and 6 show the values of dynamically selected L.

Problem 1
0 Behavior of Convergence by Dynamic (Problem1)
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Fig.3: The residual hlstory of Static (L = 4, 8) and Dynamlc Selection (Problem 1).
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Fig.4: The variation of L under Dynamlc Selection ( Probleml)

This result indicates avoidance of stagnation. The total number of iterations required
for convergence is 270, and then log,,(||b — Azxk]||2/||b]|2) = —8.08.
Fig. 4 shows the value of L reaches L > 8, and 11 at its maximum.
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Behavior of Convergence by Dynamic (Problem2)
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Fig.5: The residual hlstory of Static (L 4, 6) and Dynamlc Selection (Problem 2).
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Fig.6: The variation of L under Dynamic Selection (Problem?2).

Problem 2

Also in this problem stagnation is avoided. To mention specially, the total number of it-
erations for convergence with the dynamic selection is 420, and then log,(||b — Axk||2/]|b]|2)
= —8.76. This means that the dynamic selection of L leads to convergence with less iter-
ation number than that of static selection’s optimum value L = 6.

Fig. 6 shows that L varies to 14 at its maximum, while static selection causes stagnation
at L > 12. Therefore using dynamic selection is more effective and stable.

6 Conclusmn

~ In this paper we have proposed the DS- B1-CGSTAB(L) method which dynamically selects
restart numbers L of Bi-CGSTAB(L) method. This method avoids the problem of Bi-
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CGSTAB(L) algorithm. Namely, this method employs criteria to avoid numerical rank-
defection, and dynamically selects values of L. As the criteria for determination of L,
we employed relative errors of Rayleigh quotients obtained at the Bi-CG part of Bi-
CGSTAB(L) method.

We established that proposed criteria avoids the stagnation dependent on L selected
statically in Bi-CGSTAB(L) method. If L = 4 is regarded as a standard value in the
static selection, the total number of iterations for convergence of the DS-Bi-CGSTAB(L)
method is generally less than that of the conventional Bi-CGSTAB(L) method. Usually,
the optimum L of Bi-CGSTAB(L) can not be estimated in advance. Therefore we can
conclude that our method is sufficiently effective.

As for computational amount, the DS-Bi-CGSTAB(L) method requires only 2L vector
inner products in addition to computational amount of the Bi-CGSTAB(L) method (2L
matrix-vector products and O(L?) vector inner products and vector-scalar products per
one outer iteration).
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