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Abstract

Based on the recent progress of digital cartography, global positioning systems (GPSs), and hand-held
devices, there are growing needs of technology that provides neighborhood information to moving ob-
jects according to their locations and trajectories. In this paper, we propose spatial query generation
models that take account of the current position and the past/future trajectories of a moving object
to provide appropriate neighborhood information to it. For this purpose, we introduce an influence
model of trajectory points and derive neighborhood query generation models using adaptive ellipsoid
distances. We describe query processing strategies for these query generation models and show incre-
mental query update procedures to support continual query facilities with low processing cost. Finally,
we present experimental results to show the effectiveness of our approach.



1 Introduction

Mobile computing technology has gained much interest recently because of the advances of wire-
less communication, electronics, and positioning systems. The growth of mobile computing has
brought a new field of database research area—moving object support based on database technol-
ogy [1, 7, 12, 16, 22, 23, 29, 34, 35]. In this paper, we focus on the retrieval and presentation of
neighborhood information for moving objects such as a vehicle equipped with a GPS and a navigation
system, and people with hand-held mobile devices. By cooperating with forthcoming technology of
intelligent traffic systems (ITSs), such neighborhood tracking functionalities would realize new types
of applications that have “location- and situation-awareness”.

We briefly explain the proposed idea using Fig. 1. Suppose that a vehicle, which came from the left
side of the map, is now approaching the position x. Its future trajectory is represented by the dotted
arrow. Then consider the problem: “for the vehicle at the point «, what is an appropriate spatial query
to retrieve neighborhood information from a spatial database?” A simple approach would be to use the
Euclidean distance from z to obtain objects in neighborhood as shown by the circle in Fig. 1; the query
can be formulated as a range query or a k-nearest neighbor query (k-nn query for short). Although this
approach is simple and clear, it often loses useful information since it does not consider the trajectory
of the moving object, namely, the past locations and the predicted future ones. In contrast to this
Euclidean approach, we use an ellipsoid region to retrieve neighborhood information. The ellipsoid
region shown in Fig. 1 is computed based on the past and future trajectories of the object and slightly
biased toward the “future”; namely, the center of the ellipsoid region is located at a predicted future
position of the moving object and the shape of the region reflects the future trajectory than the past
one.

Figure 1: Retrieval of Neighborhood Information

Neighborhood queries in our framework are formalized as spatial queries based on the ellipsoid
distances [2, 3, 19, 31] that have elliptic isosurfaces. We call such queries ellipsoid queries. The
benefits of using ellipsoid queries are summarized as follows.

Adaptiveness: As shown in the following sections, ellipsoid queries can have arbitrary “shapes” that
reflect the trajectories and the current positions of moving objects. By tuning query centers and
ellipsoid distances adaptively for each trajectory point, our query generation method can gener-
ate neighborhood queries that retrieve appropriate neighborhood information along the trajectory
of a moving object. Figure 2 illustrates the idea. Suppose that the moving object is located at



the point ¢, _; at the time ¢ = 7 — 1. After one unit time later (i.e., when ¢ = 7), the object
moves to -, then it goes to €41 at ¢ = 7 + 1. Each ellipsoid shown in the figure is the isosur-
face of the spatial query issued at each trajectory point. As shown in the figure, three ellipsoids
have different shapes in terms of rotation and thickness, and focus on the “neighborhood” of the
moving object. Our proposed approach shown below provides such an adaptive neighborhood
query generation facility for continuously moving objects. Additionally, our method offers some
user-specifiable parameters to reflect users’ preferences to the query generation.

Efficiency and simplicity: For the efficient retrieval of neighborhood information from a huge spatial
database, effective use of spatial indexes [13] is indispensable. Fortunately, there exist some
query evaluation techniques proposed for ellipsoid distances that can effectively use spatial in-
dexes [2, 31]. In this paper, we extend these techniques and apply them to our context. The
retrieval algorithm shown below is implementable using conventional spatial indexes such as
R-trees [17].

Figure 2: Adaptive Query Generation

As an alternative approach of neighborhood information retrieval, we could utilize spatial networks,
consisting of spatial points, line-segments, and polygons, to process connectivity-based retrieval rather
than proximity-based retrieval [32]. Although this approach may be able to perform a more detailed
computation using connectivity information, it has to manage huge spatial network information and
requires specialized data structures. :

Our method has an additional feature: the support of continual queries [25]. The task to generate
and process queries for a moving object along its trajectory is considered as a continual query task
for the object. To generate and process queries continuously, we preserve the internal state used in
the previous query generation and update the state incrementally. Since this proposed method has low
update and storage costs, we can process continuous queries in an efficient manner. This feature would
enhance real-time “tracking” capabilities often used in the analyses of spatio-temporal data [4].

The rest of the paper is organized as follows. In Section 2, we introduce some basic notions. The
influence model of trajectory points, an important concept in this paper, is defined there. In Section 3,
we derive some neighborhood query generation models taking account of the influence model. Sec-
tion 4 introduces the notion of “continual query” task and presents query processing procedures to use
spatial indexes efficiently, and Section 5 presents incremental query update methods. Section 6 shows
experimental results and Section 7 describes the related work. Finally, Section 8 concludes the paper.
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2 Basic Notions

In this section, we introduce basic notions used in the following discussion. Symbols and their mean-
ings are shown in Table 1. Although our approach mainly targets geographical applications in low-
dimensional space (two- or three-dimension), we derive formulas for arbitrary d dimension for the
generality.

Table 1: Symbols and Their Definitions

Name Definition
d number of dimensions
xz; location vector (t = 1,...,7,... 7+ 7")
T current time
7! predicted time to arrive at the destination from the current position

o “look ahead” parameter
w decay factor for past trajectory points
v decay factor for future trajectory points
a(t) weight of the location information at time ¢
q query center
T weighted average of location information
AM distance matrix and derived distance matrix
C, C covariance matrices
DEuclid(-, -) | the Euclidean distance function
Dals, *) ellipsoid distance function
s™, st (past and future) state vectors
c,Cct (past and future) covariance matrices

2.1 Representation of Trajectories

In our framework, neighborhood queries are generated based on the trajectory of a moving object,
consisting of the past trajectory, the current position, and the future trajectory. Let the start time of a
moving object be t = 1 and the current time be ¢ = 7. We denote each position of the object at time
t(t=1,...,7) byavectorx; = [zi1,...,7;4]" ina d-dimensional space, where *T"” denotes vector
transposition. Next, let the predicted time to arrive at the destination be ¢ = 7 + 7'; namely, we will
need 7' unit times to arrive at the destination from the current position. The predicted positions of
the objectatt = 7+ 1,...,7 + 7’ are also represented by d-dimensional vectors T r41,..., T,y
Figure 3 illustrates the definition. »

2.2 Influence Model of Trajectory Points

In the following, we utilize the past (and current) trajectory points ¢ 1, .. ., . and the predicted future
trajectory points 41, ..., Z,, for the generation of the neighborhood query for the moving object
located at x,. For this purpose, we introduce the influence model of trajectory points. This model is
based on a simple idea that the influence of a trajectory point is the highest for the “current” position
and decays gradually towards past and future. To realize this idea, we incorporate the following three
parameters o, u, and v:

e “look ahead” parameter o This parameter o (o > 0) is used to reflect user’s preference such
that the predicted position  ,4,, at where the moving object will arrive after o unit times, is the



Destination
Current Position (t=7+17")

(t=1)

ol Starting Point (1 =1)
Figure 3: Representation of Trajectory

most influential position to generate a neighborhood query. Consider an example: suppose that
a car driver driving a vehicle has high interest to the neighborhood of the location at where he
will arrive one minute later. In this case, he can set ¢ = 1 to reflect his preference, then x r+1
will have the highest influence.

e decay factor for past trajectory points p: The parameter 4 (0 < p < 1) is used to set exponential
influence values for the past trajectory points. The influence values exponentially decay from
t=74+o0tot=1.

e decay factor for future trajectory points v: The parameter v (0 < v < 1) is used to set exponen-
tial influence values for the future trajectory points. The influence values exponentially decay
fromt=7+otot=7+7"

By using the three parameters, the influence model of trajectory points is formally defined as follows:

Definition 2.1 The influence value for each trajectory pointz¢ (t = 1,...,7 + 7') is given by
T+o—t —
o t=1,...,7+0)
ot) = { VT (t=T140,..., 7+ 7). M

Figure 4 illustrates the notion of .influence values. By tuning o, i, and v appropriately, users can
reflect their preferences in various situations. The query generation models shown in the next section
are based on this model.

1 4 Influence Value

T+0-2 TH+T TH+T+2 Time
T+0-1 TH+T+1

Figure 4: Influence Values



3  Query Generation Models

In the following, we derive neighborhood query generation models for a moving object at position
x,. The neighborhood queries are constructed as spatial queries that retrieve data points from a spatial
database. In general, queries in spatial databases can be specified in terms of the following three
factors:

1. query center ¢
2. distance function D
3. query task (e.g., range query and k-nn query)

In this section, we focus on how to derive an appropriate query center ¢ and a distance function D
from the given trajectory information. Query tasks are discussed in Section 4.

3.1 Query Center Derivation Models

We introduce two derivation models of a query center. We intend that a user will select an appropriate
one based on his or her requirement.

Model cur The model cur is a simple approach and does not use past/future trajectories except for
Tr4¢, the highest influence position. The query center is given by

q = w‘r+a' (2)

Model avg The model avg fully uses the trajectory information and derives the query position as the
weighted average of the trajectory points:
T+7’
= Zt 1 a(t)x;
0= = S 3
Doy ot

Note that the query center is determined by considering the recent and the near future trajectories,
because the influence values (a(t)’s) set high weights on the trajectory points around ;4.

3.2 Distance Function Derivation Models

‘We introduce three derivation models of distance functions.

Model EU The model EU is based on the ordinary Euclidean distance and introduced only for the
comparison purpose. The Euclidean distance has less computational cost and clear semantics, but is
not adaptive. In this approach, first a query center q is derived based on either of the query center
derivation models, then a distance is computed for each object x by using the Euclidean distance
Dguyciid(z, g). In the following, we denote a combination of a query center derivation model and a
distance function derivation model such as EU(cur) and EU(avg).

Model OV In this model OV (‘OV’ stands for “oval”), we use ellipsoid distances as the distance
functions. By setting parameters appropriately, we can tune the “shape” of a distance function based
on the application need. The ellipsoid distance (also called elliptic or ellipsoidal distance) is often used
in various application areas such as image retrieval [9], pattern recognition and classification [8], and
statistics [21]. It is defined as follows:



Definition 3.1 An ellipsoid distance has the following quadratic form
D} (@, @) = (x: — q) Az — q), “)

where A is a symmetric positive definite matrix (AT = A and zTAz > 0 for any = # 0). We call A
the distance matrix for Da(-, -).

An ellipsoid distance Da (-, -) defined by the above formula has arbitrary-rotated ellipsoidal isosur-
faces. In a special case, if A is a unit matrix I, the induced distance Dj(-, -) agrees with the Euclidean
distance (i.e., model EU). ‘

An ellipsoid distance can be tuned by setting A appropriately. In this model OV, we derive an
appropriate distance matrix based on the trajectory of a moving object using the influence model of
trajectory points. For the derivation, we consider the following penalty formula:

T+’
P(A, q) = Y a(t)Di(z:, q) ®)
t=1

Since the influence factor a(¢) is incorporated in the summation, the position 4, the most important
position, exert the highest influence on the penalty, and the effects of other positions decay gradually
towards past and future.

To derive the optimal distance matrix M according to the penalty (Eq. (5)), we apply the optimiza-
tion technique used in [19]; M is derived as the matrix that minimizes the penalty:

M = argmin P(A, q). . (6)
A

Since M = O (O represents the null matrix) is obtained when we do not restrict M, we set a constraint
on M such that
det(M) =1, @)

where det(M) is the determinant of M. From this formulation, M can be derived as follows.

Theorem 3.1 The matrix M that minimizes Eq. (5) under the constraint Eq. (7) can be derived as

M = det(C)iC™!, where 8)
747’

C = > a®)(@—q)(z—q7 ©)
t=1

C = [cji] is called the (weighted sample) covariance matrix and det(C) is the determinantof C. ®
Proof. See Appendix A.

The distance derived as above is a variation of statistical distance (also called Mahalanobis dis-
tance) often used in pattern analysis and multivariate statistics [8, 21]. In [19], we used a similar
technique to derive distance functions based on user-specified examples for feedback-based interac-
tive information retrieval. The statistical distance takes the spatial correlation of sample points into
consideration and puts appropriate bias on each dimension so that it gains elliptic isosurfaces.

Now we mention the relationship between the EU model and the avg model. In Eq. (6), we have
treated g as a constant, but we can treat ¢ as an another optimization variable such as (M, ¢ opt) =
argmin, o P(A, g). In this case, we obtain q,,, = Z and the result coincides with OV(avg). This
would be a good property to give a theoretical foundation to the avg model.



Model HB The model OV derived above has a benefit that it can utilize trajectory information to de-
rive distance functions, but it lacks of robustness compared to the Euclidean distance. For example, if
an object continuously moves along a straight line, the covariance matrix C becomes an ill-conditioned
matrix, then the derived distance Dy (-, -) tends to have too narrow isosurfaces. Moreover, in an ex-
treme.case, C approaches to a singular matrix and we cannot derive M using Eq. (8). This is because
the model OV uses the spatial correlation of trajectory points; it requires d-dimensional spatial spread-
ing of sample points.

To alleviate this problem, we introduce a hybrid model HB that integrates two models EU and OV;
it inherits the robustness feature from EU and the adaptivity feature from OV. The idea is based on the
heuristics to regularize ill-conditioned matrices to obtain non-singular covariance estimates [27]. In
this model, we use the following matrix C, instead of C, as the covariance matrix:

~ C I
C—)\m+(1—)\)m, (10

where |-| is the Frobenius matrix norm [15] and works as weight normalization factors. The parameter
A (0 < X < 1) specifies how to set weights to EU and OV. In this model, as in the case of OV, the
distance matrix M is derived as follows:

M = det(€)3C . )
Note that when A = 0 and 1, the HB model reduces to EU and OV, respectively. Therefore, we can
say that HB is a generalized version of EU and OV.

4 Query Processing

In this section, we describe the query processing strategies for the query derivation models shown in
Section 3.

4.1 Query Task

First, we introduce the notion of a query task. A query task specifies what should be retrieved when a
query center g and a distance function D are given. As described in Section 3, a spatial query is fixed
by specifying a query center, a distance function, and a query task. In our framework, query centers
and distance functions are variables and change according to the movement of an object, while a query
task is usually fixed throughout the movement. Therefore, we can say that a query task specifies a
continual query for the moving object.

In this paper, we consider the following two query tasks:

e range query task (equi-volume query task): On each movement, data objects within distance
€ from the current query center q are retrieved. When a query center g, a distance matrix M,
and a distance value ¢ is given, we denote the ellipsoid region, centered at g and enclosed by the
isosurface of distance ¢, by

ellip(M, g, ¢) = {p | p € R*, Dy(p, q) < £’} (12)

e k-nn query task: For each movement, k nearest objects from q are retrieved.

Here we mention an important property of the range query task. The volume of an ellipsoid region
ellip(M, g, ) is given by the following formula [6]:

d

5
(VB

e
T(§ +1) det(M)?

vol(ellip(M, g, €)) = (13)
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where I'(-) is the gamma function. Since our ellipsoid distance derivation models OV and HB assure
that det(M) = 1 as shown in Eq. (7), if € is constant, the volume of each ellipsoid calculated on each
object movement also becomes constant. Namely, if € is constant, we can assure that the volume of
the ellipsoid region for each range query is also constant throughout the movement. Therefore, we can
say that the range query task is also an equi-volume continual query task.

4.2 Use of Bounding Regions

It 1s indispensable to use spatial indexes [13] effectively for the efficient query processing in spatial
databases. Although we have to process ellipsoid queries for the OV and HB models, spatial indexes
such as R-tree only support Euclidean distance-based queries and rectangle-based range queries in
general. Therefore, we incorporate the approach proposed in [2] into our framework. The idea of the
approach is to calculate the bounding region (bounding box or bounding sphere) that tightly bounds
the given ellipsoid region then retrieve candidate objects using spatial indexes.

The MBB (minimum bounding box) region MBB(M, q, ¢) that tightly bounds the ellipsoid region
ellip(M, q, £) (Eq. (12)) is given as follows [2]:

MBB(M, g, ¢); = [Qi —e\ /M, @ +€\/M{il] ; (14)

where MBB(M, ¢, €); (i = 1,...,d) denotes the range that MBB(M, ¢, ¢) takes in the i-th dimen-
sion. M;;' means the (4, 7) entry of the matrix M. This is illustrated in Fig. 5.

pdimj  ellip(M, g, &)

Y - !
9te MJ; \

oq «— MBB(M, ¢, £)

dim 7
q4;— ¢ Mx'_il q; +8\;’M;l

Figure 5: MBB-based Approximation

The MBS (minimum bounding sphere) region MBS(M, g, €) that tightly bounds the ellipsoid re-
gion ellip(M, q, €) is derived as follows [2]:

62
MBS(Ma q, E) = {p I pc Rd: Dlziluclid(p’ q) < } ) (15)

- /\min

where Amin is the smallest eigenvalue of M. Therefore, the radius of the MBS is given by £/ v/Amin.
This is illustrated in Fig. 6. The selection of the bounding region approximation method depends on
the available spatial indexes; for example, if an R-tree index is available, we should use the MBB

approximation.

4.3 Query Processing Algorithms

In this subsection, we show query processing algorithms to process neighborhood queries using spatial
indexes. We assume that the underlying spatial index module provides the following functions:



Figure 6: MBS-based Approximation

e rect_search(r): retrieves all the objects within a d-dimensional rectangle region r.
e dist_search(q, €): retrieves all the objects p that satisfies Dgyeiia(p, q) < €.
e knn_search(q, k): retrieves the nearest k objects from g based on the Euclidean distance.

Since these search functions can be easily supported by traditional spatial indexes, the query processing
procedures shown below are considered to be general ones.

Processing range queries The processing of a range query task is basically based on the approach in
{2]. If we use the MBB-based approximation, we first issue a range query rect search(MBB(M, q, ¢))
for the filtering; note that according to the nature of the bounding region, the retrieved objects may con-
tain false alarms but there are no false dismissals [11]. Therefore, we check whether each retrieved
object p satisfies the original condition Dpm(p, q) < € and discard false alarms to obtain the final
result. If we use the MBS-based approximation, the query dist search(q, £/ v/ Amin) is issued as the
filtering query considering the spherical bounding relationship shown in Fig. 6.

Processing k-nn queries For k-nn queries based on ellipsoid distances, processing algorithms that
effectively use conventional spatial indexes are shown in [2, 31]. However, these algorithms directly
use the internal structures of spatial indexes. Instead of them, we use the following k-nn query pro-
cessing procedure that is implementable using only the three basic search functions described above.

1. Issue knn_search(q, k), then get k-nn objects in terms of the Euclidean distance D gycnia (-, *).
Let the Euclidean distance from g to the k-th object be 4.

2. Apply the range query procedure shown above to retrieve objects within the ellipsoid region

ellip(M, ¢, 6v/Amax)-

3. Select k nearest objects in terms of the ellipsoid distance Dy(-, -) from the objects retrieved in
Step 2.

The ellipsoid region ellip(M, g, dv/Amax) in Step 2 is an ellipsoid centered at ¢ and tightly bounds
a sphere centered at ¢ with radius 4, as shown in Fig. 7. According to Step 1, we can find at least k&
objects within the ellipsoid ellip(M, q, §v/Amax). Therefore, it is assured that all the result objects
of the original k-nn query are contained in this ellipsoid region. Therefore, we issue a range query
to retrieve all the objects within ellip(M, ¢, 6v/Amax) using the above procedure, then rank them in
terms of the ellipsoid distance Dy (-, -) to obtain the k-nn objects.



k-th object in knn_search(g, k)

Figure 7: Processing k-NN Query

A similar k-nn query processing strategy is used in [24] to retrieve medical images with similar
shapes based on the morphology concept. They used a cost-effective lower-bounding distance function
instead of a costly morphological shape similarity function to determine the upper bound distance for
the efficient k-nn query processing.

5 Incremental Query Update
5.1 Ouwur Approach

When an object moves to the next position, we have to recalculate a new query center and a new
distance function to generate the next neighborhood query. However, it is costly to recalculate all the
required information from scratch and to maintain a long sequence of trajectory points permanently.
In this section, we show incremental query update strategies which are efficient in terms of storage and
computation costs.

Note that we do not reuse the previous query result for the next query processing. We simply
process a new query without considering the previous query result. The reasons as follows:

1. If the spatial indexes are well-organized, page caching will reduce the I/O cost because continual
object movement usually has page access locality.

2. It is difficult to reuse previous query result with low cost in our context since query centers and
distance functions change every retrieval time.

3. Although ellipsoid distances are criticized by their computation costs in high dimensional spaces
[2, 28, 31], our main target areas are low dimensional spaces such as d = 2 and 3 so that
the calculation cost of ellipsoid distances in query processing is not the bottleneck of query
processing.

5.2 Incremental Update Procedures

In this subsection, we assume that a moving object, which is located at « - at t = 7, actually arrives at
the predicted next point 2,1 in time. Namely, the predicted arrival point & -1, the point where the
object was supposed to reach at ¢ = 7 + 1, is approximately equal to the point &,4; where the object
isactually located att = 7 + 1 (41 & &,41).
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Changes of influence values When a moving object arrives at « 41, we have to update the influence
values on the trajectory points for the next query generation. When the current time changes from ¢ = 7
to ¢ = 7 + 1, the influence decay factors change as shown in Table 2. After the change, & ,,.1 has
the highest influence value for the query generation. Update procedures for query centers and distance
functions shown below have to reflect these changes of influence values. :

Table 2: Changes of Influence Values

Lo e Tr Lr41 che Lrio Lrio+1 U Lr4r!
t =T ,LI,T+0_1 e /.La- ua~l P l v e I/T -0
- T
t:T+1 #T'HT Ha""l No' . I 1 . v —o—1

Updating query centers For the model cur, we can simply set 4,41 to the new query center g.
For the model avg, we can use an incremental algorithm shown in Appendix B. The algorithm uses
two d-dimensional vectors s~ (Eq. (41)) and s+ (Eq. (42)) as internal states and updates query centers
efficiently. The algorithm has a benefit that we do not have to maintain a long sequence of trajectory
points; we can update q in constant time for fixed dimensionality d.

Updating distance functions For the models OV and HB, we have to update the distance matrix
M according to the movement of an object. As shown in Eq. (9) and Eq. (10), an update of M can
be reduced to an update of the covariance matrix C. In Appendix C, we show an incremental update
procedure for C when query centers are calculated by the avg model. Since we can update C incremen-
tally for the avg model, OV(avg) and HB(avg) are incrementally updatable. Using similar algorithm,
we can also update OV(cur) and HB(cur) incrementally (shown in Appendix D).

For the distance function update algorithms, we only have to maintain two d x d matrices C ~
(Eq. (56)) and C* (Eq. (57)) as the state matrices and the update costs are constant for a fixed d.

5.3 Practical Update Procedures
Unfortunately, the incremental update procedures shown above have two problems:

1. If £-11, the predicted point for the time ¢ = 7 + 1, and &1, the actually arrived point at
t = 7 4 1, are quite different, the calculated query center and the distance function will drift
from the “true” ones. This situation is caused by two reasons: 1) the moving object came to the
point -4 earlier or later than expected, or 2) the moving object has changed its route.

2. The query center derivation model avg and the distance function derivation models OV and HB
have a noise problem: evenif .1 & &,41 is satisfied, the use of the update formulas (Eq. (42)
and Eq. (83) shown in Appendix B and C) to update s+ and C* causes the amplification of
small noises because v < 1. Therefore, repeated use of the update formulas for a number of
incremental updates will result in incorrect query generation.

The practical solution for this problem is as follows:

o If the actual point £,,4 att = 7 + 1 is mostly equal to the prediction (Z,11 =~ T 11), or the
user allow small errors, apply the ordinal update procedure in Subsection 5.2.

e Otherwise, get a new prediction of future trajectory points « 42, r+3, . - . from the route calcu-
lation module (e.g., a car navigation system) then recompute statistics values s ¥ (required only
for avg) and CT (required for OV and HB).

11



This update strategy seems to be costly, but remember the role of the future decay factor v; it sets high
weights on the “near future” positions and discards far future ones. Therefore, the route calculation
module has to calculate only a small number of trajectory positions that will be reached in the near
future. Additionally, the recomputation cost of s+ and C* would not be higher than the cost to estimate
future trajectories often recalculated by the route calculation module in typical mobile applications.

Finally, we have to remind the benefit of our approach: we can “forget” the past information freely;
in contrast to 1 and C™, we do not incur additional processing cost for z ~ and C™.

6 Experimental Results

6.1 Behaviors of Query Generation Models

In the first experiment, we examine the difference between query generation models and their behaviors
under different parameter settings. Figure 8 shows a trajectory of a moving object from A to B, and
the object is currently located at 2. We assume that the object is moving with constant velocity and 35
trajectory points are taken along the trajectory. The figure shows the isosorfaces of queries generated
by EU(cur) and OV(cur) under the conditions o = 0 (no look ahead) and y = v = 0.5 (same decay
late for the past and the future) for the range query task. As shown in the figure, the model OV,
represented by an ellipse, is well conformed along the trajectory as expected.

Figure 8: Comparison of EU and OV

Figure 9 shows isosurfaces of queries generated by OV (cur) under the conditions o = 0 (no look
ahead: represented by the solid ellipse centered at ¢;) and o = 5 (highest weight on five unit times
later: represented by the dotted ellipse centered at g,). Other conditions are the same as Fig. 8. The
query center g, for ¢ = 0 is approximately equal to the point &, the current location of the moving
object. We can easily observe that g, is more biased towards the future trajectory because of the look
ahead parameter o. ,

Figure 10 shows the behaviors of OV(avg) under two different v values v = 0.4 (middle influence
weights on future points: represented by the solid ellipse centered at q1) and v = 0.9 (high influence
weights on future points: represented by the dotted ellipse centered at q ,). Other parameters are set as

12



Figure 9: Comparison of Different o-values (o = 0, 5)

Figure 10: Comparison of Different v-values (v = 0.4, 0.9)
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¢ = 0.4 and 0 = 0. The query center g, is approximately the same as x, the current location of the
moving object. As shown in the figure, query g, is more biased to the future because of the parameter
setting of v. .

Figure 11 shows the behaviors under different A values for HB(cur): A = 1.0 (the solid ellipse)
and 0.7 (the dotted ellipse). The former case corresponds to OV(cur) since A = 1. The small circle
is an isosurface of EU(cur). As shown in the figure, OV(cur) has a narrow isosurface for this case
because the trajectory nearby x is almost on the straight line. It may be an excessive behavior for a user
who has interests only for the neighborhood information. In contrast to this, HB(cur) with A = 0.7
has a more mild behavior; we can observe that the HB model has a mixed behavior of OV and EU.

Figure 11: Comparison of Different A-values (A = 1.0, 0.7)

6.2 Continual Neighborhood Tracking

In this experiment, we perform a trace-based simulation of continual neighborhood tracking. Figure 12
shows a driving route from the point A to C via the intermediate point B. We assume that a vehicle
make a short stop at B. From A, it takes about thirteen minutes to reach C. For this route, we collected
real driving trace data, represented by the positions of a car, obtained for every five seconds of the
drive. We put small circles on the trajectory for every thirty seconds based on the trace data. As shown
in the figure, the driving speed is slow nearby B because the road is congested around there, and the
vehicle has to turn down a side road to stop by the intermediate point B.

In Fig. 13, the isosurfaces of neighborhood queries for the driving trace data is shown. To make
the presentation understandable, isosurfaces are presented for every one minute of the driving. The
neighborhood tracking is based on the range query task and the OV(cur) model with the parameters
o =1,pu=2028,and v = 0.8. As shown in the figure, each neighborhood query captures the local
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Figure 12: Driving Trace Data
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trajectory around it. Note that, for the straight roads driven with high speed, the isosurfaces take
narrower shapes, and for the curved and crowded roads (especially around the point B) driven with
slow speed, the isosurfaces take more rounded shapes. Based on this experiment, we can say that the
proposed method can adaptively modify spatial queries according to the situation (the direction and
the speed) of the moving object.

- amEa
o j’-fig;gsﬁ*

& 521“?{%&%&1@%. B
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Figure 13: Neighborhood Tracking Result

6.3 Retrieval Cost

Finally we report the analysis of the retrieval cost. We use the Montgomery County dataset [10] with
mid-points of road segments from the Montgomery County of Maryland that consists of 27,282 points
(Fig. 14). We compare three approaches: sequential scan, the Euclidean distance-based approach, and
the ellipsoid distance-based approach (OV(cur) is used). As the spatial index facility, we use the R *-
tree extension of GiST [14]. We assume that an object moves along the road as shown in the figure; the
road runs from south (Washington D.C.) to north and there are 62 mid-points of road segments on it.
We also assume that the moving object specifies the k-nn query task (k = 1, 10, 50, 100, 150) and a
k-nn query is issued on each of the 62 mid-points. We examine the number of page accesses to process
k-nn queries.

Figure 15 shows the average number of page accesses to process k-nn queries on each query point.
The z-axis represents the parameter k& (k = 1, 10, 50, 100, 150) and the y-axis shows the number
of page accesses in log-scale. In this experiment, we do not assume the existence of page caches.
As shown in the figure, the page access cost of ellipsoid queries is slightly higher than that of the
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Figure 14: Montgomery County Dataset

Euclidean distance-based queries (this property always holds because of the k-nn query procedure
shown in Section 4), but quite lower than that of sequential scan. As shown in this experiment, the
use of a spatial index based on the algorithms shown in Section 4 reduces the processing cost, and is
indispensable in our context. Although this experiment does not assume the existence of a page cache,
if a spatial index is well-organized and the spatial locality is well preserved in each leaf page of the
index, page caching will further reduce redundant page I/Os since the trajectories of moving objects
have spatial contiguity. Based on this experiment we can say that our use of a spatial index facility will
support the neighborhood tracking task with low cost.

7 Related Work

Recent years, database technologies according to moving objects have been extensively developed:
the main topics are data modeling issues [12, 16, 35] and efficient indexing and retrieval methods. In
[1,7,22,23,29, 34], indexing methods are proposed to query moving objects stored in a database. In
a typical setting, the trajectory of a moving object is represented by a function (t) parameterized by
time ¢. In many cases, a linear function is used as (¢) for its simplicity. In contrast to these indexing
approaches aiming for efficient retrieval of moving objects stored in a database, we intend to provide
neighborhood information for a moving object along its trajectory. Moreover, most of the indexing
approaches for moving objects only consider static cases such that trajectories of objects are fixed
beforehand. In contrast to this, we have considered a more dynamic situation and proposed adaptive
query generation and processing strategies. And note that our approach is applicable to the parameter-
ized representation of trajectories by transforming x(¢) into a sequence of points using sampling.

The influence model of trajectory positions proposed in this paper is a model to set the highest
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Figure 15: Average I/O Cost

importance to the current position and to discount the importance of past and future trajectory points
exponentially. The approach setting exponential weights to past samples then focusing mainly on
recent data samples is used in various areas that process time-varying data in an online manner, for
example, in signal processing and control [5, 26], time-series analysis [36], and machine learning
[33]. The approach is often called exponential forgetting or exponential discounting and the past decay
parameter y is called a forgetting factor or a discount-rate parameter. Our approach shares the same
idea with these approaches but we also set exponential weights to future predicted positions to focus
on the “near future”. Sample weighting is also used in statistics, for example, to estimate covariance
matrices in a robust manner by excluding the effects of outliers [30].

8 Conclusions and Future Work

In this paper, we proposed a new approach to retrieve and provide neighborhood information to moving
objects. Our approach use the past and future trajectories of a moving object to generate an appropriate
query that mainly focuses on the current (or near future) neighborhood of the object. For this purpose,
we introduced the influence model of trajectory points to discount past and future positions gradu-
ally. In our context, queries are formulated as ellipsoid queries that can be tuned by considering the
trajectories of moving objects and users’ preferences. Since ellipsoid queries can be supported effi-
ciently using conventional spatial indexes, our approach can be implemented with low overhead. Also,
we presented the incremental query update procedures to generate the next query from the previous
query states in an incremental manner. Therefore, our approach would be highly adaptive in practical
situations.

In future work, we would like to develop a semi-automatic parameter tuning scheme that incor-
porates sensory inputs from the external devices to tune the parameters to realize “‘situation-aware”
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neighborhood information presentation systems.
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Appendix A. Derivation of Optimal Solutions for OV(cur) and OV(avg)

For convenience, we first derive the solution for OV(avg). The aim is to derive the distance matrix A
and the query center g that minimize Eq. (5). For this purpose, we can use a solution method as shown
in [19], but here we use a more refined method.

Note that we have assumed that A satisfies the folloing conditions:

1. A is a symmetric matrix (A7 = A)

2. det(A) =1
We use the Lagrange multipliers method. First, we define F' as
T+7’
F=3 at)(x: —q) Alz: —q) - £(det(4) - 1), (16)
t=1

then derive it by A and q.
Before showing the result, we briefly introduce the derivation methods for matrices and vectors

(for details, see the appendix of [18]). The partial derivative of a scalar f by a vector r = [z, y, 2] Tis
defined by
of

5 = e fy £2]7, . an
where f; represents derivative of f by z, and the partial derivative of a scalar f by a matrix
w=[a)
is defined by
of of of

We show three important equations according to vector/matrix derivations. For any vector x and
matrix M, the following equations are hold [18]:

Ly T
= 1
52" Mz (M+M" )z (19)
9 T _ T
B—Ma: Mz = zz (20)
O det(M) = det(M)M-T @1)
oM - ’

where M~7 means M~T = (M~ )7
Using above equations, we get

T+T
= =Y A +ATw -0
t=1
747
= —2A)  a(t)(z: - q) 22)
t=1
oF = b a(t)(z: — q)(ze — @)7 — Edet(A)A™T
OA o~
= alt)(@; — q)(x, — q)7 — AT (23)
t=1
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By setting 8F/0q = 0 in Eq. (22), we get

747 T+7'

A Z alt)r; = A Z a(t)q.

Since A™! exists because of the assumption det(A) = 1,

T+7’ : 77’

Z a(t)z, = Z a(t)q

t=1 t=1

holds and we get
_ ::lT a(t)z:

q= — =Z. (24)
t:l a(t)-
This g value is the optimal one that minimizes Eq. (5).
Here we set C = [cjz] as ’
47!
C=> alt)(z:—g)(z:—q)". (25)
t=1
Namely,
T+7'
cin = ) a()(@j — )@tk — qr)- (26)
t=1
By setting 0F/9A = 0 in Eq. (23), we get
C=¢A"L. @n
Now consider the determinant of this formula:
det(C) = ¢&det(A™Y)
= ¢4
é-d
If we assume that £ > 0, we get ‘
1
' € = (det(C))4. (28)
Therefore,
A = ¢c? .
(det(C))<C™L. (29)

Thus, we have derived the optimal instance of A that minimizes Eq. (5). Note that Eq. (25) holds for
any q. Namely, for any fixed g, the distance matrix A that minimizes Eq. (5) can be using Eq. (25).
However, since we have already get the optimal query center Z derived in Eq. (24), we use Z as the
query center. Therefore, the matrix C = [c;] that derives the optimal distance matrix is given as

47!

C = > a)(e:—a)(z - z)" (30)
t=1
747

Cjk = Z a(t)'(a:tj — i‘j)(z‘tk — a‘;k). (3D

t=1
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Based on the above discussion, the optimal query center and the optimal distance matrix that min-
imizes Eq. (5) for OV(avg) model are given by

q = & (32)
A = (det(C))7C! (33)
747 -

C = a(t)(z: — z)(x — )7 (34)

For OV (cur) model, we can use a similar approach. The difference is that q is fixed as ¢ = T 41,
and only A is a variable. The result is shown as

A = (det(C))zC! (35)
747!

C = Y ot)(@—Trio) (@ — Tr40) T (36)
t=1

Therefore, for OV(cur) and OV(avg) models, the optimal solutions are:

A = (det(C))iC™! 37
T+7'
C = > at)(@ —q)(x—q)T (38)
t=1
Ty, 1f OV(cur) ’
7 { T if OV(avg) (39)
Appendix B. Update Algorithm for Model avg
First, we translate Eq. (3) as follows:
_ 57|, + s,
‘T = _uv (40)
wlr
where vectors s~ |, and sT|, are defined as:
T+0o
sleo= D a e | (4D
t=1
T+7'
3+|T = Z I/t_T_aitt. (42)
t=74+0+1
The notation “|,” represents that the variable is as of ¢ = 7. Scalar values w|  is defined by
w = wl +wt @3
T+o
1— ur+¢1
— — T+o—t _ - M 44
w |, > T (44)
t=1
T ¢ bt i is
D D e e @3
t=74+0+1
When the object moves to .41 attime ¢ = 7 + 1, we can update the state vectors by
s” |T+1 = us |T + Tryot1 (46)
1
§Tlrp1 = ;3+l’r — Triot1- 47
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Then we can derive the new query center as follows:

8 |rt1 + 8%
w|7"+1 ’

jjf'r+1 =

(48)

Appendix C. Covariance Matrix Update Algorithm for Model avg

C.1 Transformation of Expressions
Based on the update formulas for s~ and s+ (Eq. (46) and Eq. (47)), we get

Sﬁlr—i—l + 3+|T+1

e = wlr41
Wl Trpor1) + (38T —rioi1)
B w,‘r—l—l
_ us” | + %S.l_lr
= —w|7+1—_
P
Wr41 VW|ry1
Therefore,
Z|ry1 — Z|; = (Ls‘h + 1 s+|T) - <—1~s_|r + Ls“'IT)
(] P VW|ry1 wlr wl,
_ (pw|r —wlr41)s7 |, + (%wlr —w|r41)st |,
B Ww|rw|r41
holds. Bysetting a vector 7 = [r1, ra,...,74]7T as
= (pwly —wlr1)s™ |, + (%wlT —wlr41)sT|,
wlrw|r41 ’
we get
Zlr41 = Z|r + .
Namely,

.’Z‘j|-,-+1 = Q_Sjlf +r; G=1,...,4d).
Using this formula,

(Tt — Tjlrt1)(@er — Th|rs1)
(@t — Zjlr —75)(@er — Tkl — k)
= [(zt; — Z5l-) — rill(zer — Zrlr) — 7]
(zt; — Zjlo ) (@er — Telr) — (e — Tklr) — relwe — E5]7) + 757k

is obtained.
Next, consider C. The elements of C at the time ¢ = 7 is shown as

Ciklr
T+’
= > a)(zy — Tl (@w — Tl
t=1
T+o ’ 747’

(49)

(50)

6D

(52)

(53)

(54)

= D> T @y — Bl @w — Fkl) + Y VT (@ — 3500) (@ — Telr)- (55)

t=1 t=17+0+1
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- +
Now we define ¢ |- and ¢y | as

T+0
Gile = oW - ol e~ Tl) (56)
t=1
T47'
chle = D0 VT @y — &) (@ — Bl (57)
t=r+4+0+1

and we get
Ciklr = Cplr + il (58)

Using this notation, for t = 7 + 1, we have

Cjk|T+1
T+o+1 T7!

Z I @y — 2| eg) (T — Bklrg1) + Z VT g — Zleg) (Bek — Tklra)
t=1 t=7+4+0+2 .

= Ciplrt1 + ¢l ' (59)
where

cj_k|7‘+1
T+o+1
= > T gy = Fl ) @k — Tklr)
t=1
T+0
= Z NT+U+1_t($t]’ = Zjlr1) @k — Tilria) + (x7'+d+1,j — Tl 1) (@roti, b — Zi|rt1)
t=1
T+0
= wy W@y = Zilen) @k — Exlr1) + @rgort, ) — Tilre1) @rpors, b — Balrir)
t=1

(60)
and

cfilra
T+’
= > VT Nay = Bylea) (@ — Bxlrra)
t=74+0+2
747!
= Z l/t_T_o'*l(il’tj = Zjlr 1) (@tk — Tilr+1) = (Triot1,5 = Tjlrt) (@rport, b = Talry)
t=74+0+1 '
1 747
= - Y VT (@ = &) (@ — Bklri1) = @rgoss, s — Tilren) @rpotn, b — Eklrar)-
t=17+0+1
(61)

Using Eq. (54), the first term of Eq. (60) is transformed as:

T+0

Iz Z w I @y — Zilra1) @k — Tilra)
t=1
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+o T+o
= p {Z prr ey = Bl ) (@i — Tkle) = > wTH g (g — Tl

t=1 t=1
T+o T+o
—t - —t
- E u T (e — 5)0) + Z Wty
t=1 t=1

T+o T+0
= p {Z W @y — Z5le) (@ — Txlr) =5 Y 0T (@ — El-)

t=1 t=1
T+o T+0o
—t — ~t
— 1 Z Tnd (Te; — Zj|-) +7jm Z urte
t=1 t=1
T+0 T+0o T+0o
_ ~ —t - —t _ _
= p|cplr—r; Z P @ — ZTplr) — T Z T @y — Z)) + e Z utte t]
t=1 t=1 t=1
T+0o T+o T+o
— —t —t- —
= w |Gl =i Yo a4y Y T T ] e Y Ty
t=1 t=1 t=1
T+0o T+o
—t~ —t
+ 7 Z NT+J a’}le + 7T Z /.LT+U :|
t=1 t=1
T+0o T+0o T+0
— — _ —t — — —t —
= w|Chlr —risg e + Tkl Z prteTt - TiS; v + TeT5] E pETT iy Z pre t}
t=1 t=1 t=1
= K [C{klr =78y e = sy e+ w | (ryBale + sl + Tka)] : (62)
and the first term of Eq. (61) becomes
1 7'
t_ — — —_
= D V(@ &len) (@or — Belri1)
t=7+0+1
1 TH+T" T+7'
— t—7— = =~ t—T— _
= 5 Y Ty — &) (e — Exl) — S VT (e — k)
t=r+0o+1 t=7+o+1
T+7' T+7’
— Z VT (e — Zjl7) + Z z/t_T""rjrk
t=7+o+1 t=7+4+0+1
1 =+ T47
— t—7— = = t—r— _
= 7 Yo VT — &) @ — 3kl — Y. VT (s — Tl
t=7+4+0+1 t=7+o+1
7' 7!
t—7— = t—r—
e > VT = El) e Y w0
t=7+o+1 t=14+0+1
1 7 T+7!
— t—7— = t—7— -
= c;_k|r~7”j Z VT (2 ~ Zglr) — T E VT (@ — Tlr)
t=1+0+1 t=7+0c+1 .
T+
t—T—
+ 7Ty Z v
t=74+0c+1
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T+T T+T T+T
1 ’ 7 !
— + . t—7—0o . t—T—0 t—1—0,, .
= - Ciplr =15 v ek + Ty v Tklr — Tk v Ltj

t=17+4+0+1 t=74+0o+1 t=74+0+1
T+ T4+7'
+ 7y Z s T Tk Z pyimTe
t=rto+1 t=r+o+1
747
t_ —_ — —
= = |chlr—ristl —rmsTlr+ D VT (k] + gl + )
t=17+o0+1
1 ' _ _

= el = ristle = st +w L (2l + ezl + rime)] (63)

Also, for the second terms of Eq. (60) and Eq. (61), by setting ¢t = 7 + o + 1 in Eq. (54), we get

(Trtot+1,5 = Zjlr41) (@rto+1,k — Tklrt1)
= (Trto+1,5 — Tjl) (Trioqr, k — Trlr) — Ti(Trto+1,k — Thlr) — Tk (Trtot1,j — Tjlr)

+ 7Tk, (64)
Now define Az = [Azy, ..., Azy]T, the difference vector of the estimated vector I r4o41 at the time
t = 7 + o + 1 and the average vector &, att = 7 as
AT =Zri541 — X7, (65)
then we get
(Trtot1,5 = Zjlre1)(Triot1, & — Tk|r+1) = Az Az — rjAzy — AL + v (66)

Thus, we obtained the following results:

Cirlr+1 = [cj‘le =TSk lr = ThS; | + W R (ri Tkl + TRl + ij‘k)]
| + (Azj Az, — 1Ay — rpAz; + 1) 67)
rlran % [Cﬁ|r —risile = rrst e +wTly (rZelr + 1) + rjrk)]
— (AzjAzy — rjAzy, — r Az +ryry) (68)
We use two d x d matrices to represent the state at t = 7:
C7lr = [cxl] (69)
Ct, = [chl] (70)

Based on the results shown above, the update formulas for these state matrices are given as

C i
= p[C|r—r(s ) —s7 7T +w | (r(@])T + 27T + reD)] + (Az — r)(Az — )T
© {C_'T + "'[w_lf(jlr)T - (3—|T)T] + (w™ | 2|, - 3_|T)rT + w_l,-’r'T‘T} + (Az —r)(Az — "')T
= p[CTlr+rw | 2, — s )T + (w |, 2|, — s |,)rT + wl,rr] + (Az — r)(Az — )7,
(71)
Now we define a vector m as
m = w | &;—s"|;
Ll R
w” |, +wtlr

- kel s, (72)

w—'T +’LU+I7-

= wl, B
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then we get

Clrpr=pn[C s +rmT + mrT + w”l;rrT] + (Az — ) (Az — )T 73)
Similarly, we get
C+"r+1
= % [CHl —r(st])" = sTorT + |, (r(@])T + 2|77 +rrT)] - (Az — ) (Az — )T

= % {C+[T + ’I‘[u)fl,-(a‘:]T)T = () + (wh-E], - stl)rT + w+|TTTT} —(Az —r)(Az — )T

1 .
= ;[C+|T +r(wh -z, — st + (wt, 2], - s7)rT + wh|rrT] — (Az — rY(Az —r)T. (74)

Since
+| &l — gt — + S_IT+3+|T ot
w ITwlT S |7 IT-U)*|7- +-_w+lr ,T
_ w+|7'3_l‘r - w‘ITS+IT
N w™|r +wt|,
= _m, (75)
we obtain
1
Ctri1 = =[CT]; —rmT —mrT 4wt |, 77T - (Az — 7)(Az — )7 (76)
v
C.2 Update Procedure

We show the update procedure based on the above discussion.
1. Assume that C™|; = [cj; |-] and C*|; = [¢f; |,] are permanently maintained by the system.

2. Also assume that following state vectors are maintained:
T4

57l = Y wtota, a7
t=1
T+7!
stl, = Z T, (78)
t=7+o+1
3. Calculate d-dimensional vector m:
m =~k wTlsT (79)
w|,
4. Calculate d-dimensional vector 7:
wlr —wlr1)s7 | + Rw|, —w s, ’
o Gl = wla)sle + (bl — wl)s?] .
wlTw,T-I—l

5. A differential vector Az = [Az1, ..., Axy]T is obtained by

AT =T yo41 — ;. 1)

6. Update the state matrices as follows:
Clry1 = p[C|r+rmT +mrT + wolrrT] + (Az —r)(Az — )T (82)
CHllrpn = %[Cﬂr —rmT —mrT +wt|rr?] = (Az — r)(Az — )T (83)
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Appendix D. Covariance Matrix Update Algorithm for Model cur

D.1 Transformation of Expressions
The elements of C at the time ¢ = 7 is given by

T+ao 47

Citlr = Y W@ = Tt )@tk — Trba )+ D VTR~ T, ) (Tek — Trto,k)-

t=1 t=r+o+1
Using similar symols as OV (avg), we define ¢}, |, and cjk |- as

T+0o

cj_le = Z P @y — Trio,5)(Ttk — Triok)
t=1

T4’
C;'I-kl‘r = Z v T (ay — Trio,i)(Tth — Tryo k),
t=14+0+1
then we get
ciklr = el + cfilr-

Using this notation, at ¢ = 7 + 1, we have

Ciklr+1 = e + Cjk|r+1,

(84)

(85)

(86)

@87)

(88)

(90)

on

(89)

where
Cj—kl‘r-i-l
T+o+1
1—t
= > W @y w1, ) (@t — Trgot, k)
t=1 .
T4+0o
—t
= M Z MH_U (xtj - $r+a+1,j)($tk - $r+a+1,k) + ($r+a+1,j - $r+a+1,j)($r+a+1,k - $r+a+1,k)
t=1
T+0o
—t
= pY W Ey — Trgogn, ) @k — Tt k)
t=1
and
T+7’
t—T—o—1
hlrrr = D VTN @y = Brota, ) @tk — Trrot1,k)
) t=7+0o+2
T+7’
t4 —
= > Z v U(wtj = Tryot1, i) (Ter — Trto+1,k)
t=1+0+1
- (fvr+a+1,j - $r+o+1,j)(wr+o+1,k - il?r+a+1,k)
1 T+’
t—1—
= Yo VTTTN@y — Tt )@k — Trpot, k)
t=740c+1
Next we set
Trio+l = Trqo + 1,
namely

Trto+l,j = Trdo,j T 75 (.7 =1,.. 7d)
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Using this formula,

(Ttj = Tryot1,5)(Tek — Tryo+1,k)
= (thj - x‘r+a,j)(mtk — Tr4o, k) - 'rj(l'tk — Tr4o, k) — Tk (xtj - $T+O',j) + 75Tk (93)

is obtained. Based on this, Eq. (89) becomes as follows:

T+o
n Z /,LT'HT—t(fIth - :L'T+U+17j)(ﬁ?tk - x7+0+1’k)
t=1
I [Cj—klr — 7S lr = TkSS I + 0T | (1T po, k + ThTr 40,5+ Tfrk)] ' O

Also, Eq. (90) is represented as

1 T+7'
_ Z yt_T—a(xtj — wT+U+1,j)(:’Etk — Trtot, k)
v t=17+40+1
1
= [c;_klr =188 e = 18] s+ wh e (rj2rgo k + TREr 10,5+ rjr’“)] ' ©)
Thus
e e L R MR ST ) B
1
C;_k|‘r+1 = v [C;_kl‘r - Tjs;ci_lr - ’I"kS;rl‘r + ’LU+|7' (zjr-‘rﬂ’k T ThTr 4o, + T‘J‘T‘k)] - O

To represent the status at the time ¢t = 7, we introduce two d X d matrices:
Clr = lepl] | ©8)
Ctl, = [l (99)

Based on the results shown above, we can derive the update formulas for these matrices as follows.
First, since

C_lT-‘rl
= plCr=r(s7 )T —s |- rT +w | (r2l, + zrporT + rrT)]
= p[CTlr+rw s rie —s7|)T + (W s @rie — 57| )rT +w™|,rrT],  (100)

we define a vector m™ as

m- =W |;&rte — S |7 (101)
Then we get _
Clep=pu[Clr+r(m)T +(m )" +w [,rrT]. (102)
Similarly, since
C+|T+1 .
1
= - [CTlr —r(sT)T = sTlrT + wh | (P(@r40)T + ZrporT +rr7)]
1
= ;[C’LIT +r(wt |, Tro — s+|T)T + (w+|Ta:T+¢ —st)rT + w+lrrrT], (103)
we define
mt =wt, 2,4 — 5T, (104)
and we get
1
Ctp1 = —[CT|r +r(mD)T + (mT)rT 4wt rrT]. (105)
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D.2 Update Procedure

Based on the above discussion, we show the update procedure.

1. Assume that C™[. = [cj;|] and ct|, = [cﬁtr] are permanently maintained by the system.

Note that these formulas are slightly different from the case of OV(avg).
2. Also assume that the following state vectors are maintained:

T+0o
s_l-r — Z NT+0—twt
t=1

T+’

3+|T — z l/t—‘r—a'wt

t=740+1

3. Calculate d-dimensional vectors m~, m* as

m- = w_]‘rm7'+a - silr

+

mt = wt|;z,q, — st

4. Calculate d-dimensional vector r as
T"=Tr4o+1 — Lr+o-

5. Update the state matrices:
Colran = u[CTh +r(m )T+ (m T +w|rrT]

1
Chlyn = ;[C+|,- +rmH)T + (mH)rT +wt|rrT]
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