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Introduction

One of the central issues in the research of human-machine systems is how functions can
be allocated to human and machine. The design decision of assigning functions to human
and machine is called function allocation. How can we determine function allocation? One of
the easiest ways is to allocate each function to an agent (human or machine) with ability
that is superior to that of the other. Or, we may allocate to machine every function that can
be automated. Or, we may determine assignment of functon just from the viewpoint of
developing cost of the human-machine system. These function allocation schemes are
static in nature, because, once a function is assigned to an agent, the agent must be in
charge of the function forever. Static function allocation is easy to implement. However, the
resulting function allocation may not be advantageous for humans. For instance, human
may be overloaded or underloaded, or may fail to feel any job satisfaction.

Dynamic _function allocation is a scheme in which a responsible agent for a function can
vary occasionally during the period of system operation. Many of recent systems are
designed so that human and machine can share responsibilities for functions and can
cooperate dynamically. Dynamic function allocation is expected to give mote flexibility and
promise better performance than static function allocation. When friendliness to human is
emphasized, we come to the concept of adaptive function allocation.

In adaptive function allocation, functions can be reassigned to human and machine in
response to changes in situations or human performance (Rouse, 1988; Parasuraman, Bhari,
Deaton, Morrison, & Barnes, 1992; Scerbo, 1996; Hancock & Scallen, 1998). Thus adaptive
function allocation is dynamic in nature. One of main aifns of adaptive automation is to
regulate human workload. During periods of moderate workload, human may control a
process. Human may hand off control of particular functions when wotkload becomes too
high. Automation that operates under an adaptive function allocation scheme is called
adaptive antomation. Adaptive automation assumes criteria to determine whether functions
need be reallocated, how, and when. There are some types of automation invocation
algorithms that trigger automation in response to vatious factors, such as human
performance, occurrence of specific events that may impose high workload to human,
psychophysiological state of human, and so on.

It is well-known that humans working with highly autonomous systems often suffer
negative consequences of automation, such as the out-of-the-loop petformance problem,
loss of situation awareness, automation-induced surprises (see, e.g., Wickens, 1995; Endsley
& Kirs, 1995; Sarter and Woods, 1995; Sarter, Woods, & Billings, 1997). Adaptive
automation may not also be free from those negative consequences. Moteovet, some types
of adaptive automation may violate the fundamental principle of human-centered
automation claiming that, “the human must be maintained as the final authority over the
automation” (Woods, 1989; Billings, 1991, 1997).



This chapter describes why and how the concept of adaptive automation was invented,
starting with clarification of concept of and drawbacks in static function allocation,
followed by description of dynamic function allocation. Levels of automation concept by
Sheridan (1992) is utilized in explaining what kind of cooperation may be possible between
human and automation in information acquisition, information analysis, decision and
action selection, and action implementation. Sharing and #rading are distinguished explicitly
to clarify the style of human-automation cooperation. Algorithms for implementing
adaptive automation are categotized into three groups, and compatisons are made among
them. Decision authority and trust-related issues are also discussed. Benefits and costs of
adaptive automation are described for better understanding and for futute research

activities.

Functional Allocation
Functions and tasks

Suppose we are to design a human-machine system. We have to ask ourselves various
questions, and careful answers must be given to reach a good design solution. The
following are some of such questions: “What atre the major functions to be petformed by
the system, whether it be by person or machine?” “What tasks must be performed?”
(Wickens, Gordon, & Liu, 1998).

What do function and task mean in the above? The term function can often be
interpreted as a goal or activities of a system. Suppose we are designing an automatic teller
system. Some major functions for the system could be defined as follows (Wickens, ez 4L,
1998): (1) Get person’s funds into bank account; (2) Get funds from bank account.

The term task is used for a more detailed description of behavior of a system to carty
out its functions. Wickens ez 2/ (1998) identify the tasks for the automatic teller system as
follows: (1) Withdraw money from bank checking (ot, savings) account; (2) Deposit money
into bank checking (ot, savings) account; (3) Determine balance of the checking (of,
savings) account; (4) Withdraw money from credit card account.

It may be said that a function gives a bit abstract description of an activity or behavior
of a system, and a task yields a more detailed description of it in a context-specific manner.
In the process of developing precise descriptions of functions, we come down to
descriptions of tasks that reflect contexts in the use of the system.

In reality, however, distinction between functions and tasks ate not always clear.
Wickens and his colleagues (1998) say, “Often it is difficult to discriminate the function list
from the preliminary task analysis list.”” In fact, the terms functions and tasks are often used
interchangeably among human factors specialists, though there are some efforts that try to
distinguish the two terms in a more rigorous mannet, see, €.g, (Scallen, 1997; Hancock &
Scallen, 1998). In the present article, the terms function and tasks are sometimes used

interchangeably.
Allocation of functions

Suppose we have identified functions that are needed to accomplish the goals of a
human-machine system. A next and vety important question to be asked is who petforms
each function. The process to assign each function to human or machine component is
called function allocation.



More specifically, “Function allocation refers to the conscious design decisions which
determine the extent to which a given job, task, function, or tesponsibility is to be
automated or assigned to human performance. Such decisions should be based upon
aspects such as relative capabilities and limitations of humans versus machines in terms of
reliability, speed, accuracy, strength and flexibility of response, cost, and the importance of
successful and timely task or function accomplishment to successful and safe operations.”
(Wickens, ez al, 1998). '

In spite of its importance, function allocation has not become a science yet, but stll a
kind of art. Sharit (1997) points out, “Many human factors and ergonomics specialists have
more or less acknowledged that systematic methods do not exist for allocating functions to
humans and -machines, especially in highly complex systems.” However that does not
exclude possibility to classify function allocation methods in a systematic manner. Rouse
(1991) gives an aspect that classifies function allocation methods that have appeared in the
literatures into three categories.

The first category is called comparison allocation. Methods in this category firstly identify
the skill requirements and performance criteria for each function, and compare relative
abilities of human and machine. Then, allocate each function to an agent (human or
machine) with ability that is superior to that of the other. The most famous list that
compares relative abilities of humans and machines may be the one edited by Fitts (1951),
see Table 1. The list is sometimes called MABA-MABA (what “men are better at” and what

“machines are better at”) list.

Table 1 The Fitts List

Humans appear to surpass present-day machines with respect to the following:
1. Ability to detect small amount of visual or acoustic energy.
2. Ability to perceive patterns of light or sound.
3. Ability to improvise and use flexible procedures.
4. Ability to store very large amounts of information for long petiods and to recall
televant facts at the appropriate time.
Ability to reason inductively.
6. Ability to exercise judgment.

d

Present-day (in 1950%s) machines appear to surpass humans with respect to the following:

1. Ability to respond quickly to control signals, and to apply great forces smoothly and
precisely.

2. Ability to perform repetitive, routine tasks.

3. Ability to store information briefly and then to erase it completely.

4. Ability to reason deductively, including computational ability.

5. Ability to handle highly complex operations, i.e., to do many different things at once.

(after Fitts, 1951; Price, 1985; Hancock & Scallen, 1998)

The second category is called Jffover allocation. Methods in this category try to automate
everything that can be automated. Humans are assigned the leftover functions to which no
technologies are available to automate them. This type of function allocation is
technology-driven, and yields so-called zechnology-centered automation (Woods, 1989).



The third category is called economic allocation. Methods in_ this category determine
function allocation from a viewpoint of costs for developing and operating the
human-machine system. Even when some technology is available to automate a function,
the function is not automated and is left to humans, if it costs too high to automate the
function.

Some problems in function allocation

The allocation scheme seems to be simple for each category of methods. However, the
resulting design may not be so simple. The design can yield complex working envitonment
that may not be very comfortable for humans. Suppose a leftover ot an economic approach
is taken. The set of functions assigned to humans may produce a strange shape that is hard

- to remember: Imagine that the whole set of functions to be performed by the

human-machine system has inherently a round shape, like a pizza. Now automations begin
to eas their favorite parts. They eat and eat lots of parts of the pizza. What remains for
human then? He or she may find odd-shaped remnants that ate hard to believe that there
was a round pizza. Once this sitvation would happen in 2 human-machine system, humans

-might get confused and ask him/herself, “Why automation is doing the task?” “Am I

expected to do this task?” and so on. Unfortunately, this sometimes happens in reality. Also,
there is no guarantee that the assigned functions can provide with job satisfaction to
humans (Lockhatt, Strub, Hawley, & Tapia, 1993). '

Comparison allocation may seem to be a bit nicer, at least for a human operator, than
economic or leftover allocation. However this approach is not free from criticisms, either.
Price (1985) and Sharit (1997) claim that the Fitts list is overly generalized and
non-quantitative. It is noted also that, even though humans are given only functions that fit
to relative advantages of humans, the sum total of allocation decisions may result in a
situation where humans are overloaded or underloaded (Sharit, 1997). Moreover, if a
function can be equally performed, or badly performed by humans and machines, the Fitts
list does not give an answer to which agent the function must be assigned. Sheridan (2001)
also points out that, “in order to make use of the Fitts MABA-MABA list, one needs data
which are context dependent, but these data ate mostly not available.”

Hancock and Scallen (1998) argue that the Fitts list has not been understood
approptiately. They give nine points to be noted. Some of the points are: (1) The goal of
the report was to improve air navigation and traffic control systems (in those days), with
little or no consideration directed toward other domains. (2) The goal in formally stating
objectives was to inspire research. (3) The report does not deal with technical feasibility,
economic, manpowet, and personnel issues (Hancock & Scallen, 1998). Sheridan (2001)
atgues, referring to the ideas of Jordan (1963), “we should throw out the idea of
comparing man and machine but keep the facts about what people do best and what
machine do best,” and “the main point of retaining the Fitts list is that people and machine
are complementary” An example for the complementary approach may be found in
KOMPASS (Grote et al., 2000), which is described in one of the chapters in this handbook.

One important point to note here is that, we have discussed so far only design
decisions that determine who does what. Such design decisions yield function allocations
that are sfazic in nature. Once a function is allocated to an agent (human or machine), the
agent is responsible for the function forever.

Static function allocations are sometimes inappropriate or ineffective. Suppose a
designer allocated a human operator a function to detect small amounts of visual energy,
according to the observation given in the Fitts list. Even though he or she may basically



surpass any machine in the function, it may not be guaranteed that the superiority shall
hold at all times and on every occasion, especially after extended operating hours. He or
she may simply get tired or bored, and some events may distract his or her attention. Or,
even if he or she may be good at a function when enough amount of time is available, it
may be very tough for him or her to perform the function under extreme time pressure. It
is thus unrealistic to assume that the MABA-MABA-type statements do not usually hold
unconditionally without imposing certain conditions or context specifications. It would be
easy to see that leftover and economic allocations are also basically static in nature, and that
they share the same drawback with comparison allocation.

Why static function allocations may not be recommended can be discussed from a
mathematical point of view. Suppose we are going to develop a human-machine system the
supposed operation petiod of which is ten yeats. Consider the following design decision
problem.

Problem 1: Find an optimal (or the best) function allocation between human and mackine so that the
performance index may be maximized subject to the Jollowing constraints:

(1) Every goal of the human-machine system is satisfred.

(2) Allocation scheme is feasible for cither humans or machines; eg. the sum total of resources that
allocation decisions impose may never violate resource constraint of any agent (human or machine) in the
Systens. : _

(3) Function allocation among agents may never be changed during the period of ten years.

In the above statement of the decision problem, performance index (o, an objective
Junction) to be maximized may tepresent various measures, such as, the expected profit the
system may produce, safety of the system. For any optimization problem, the following
two properties hold: '

Property A: The more we get constrains, the smaller a feasible region becomes, where
a feasible region refers to the whole set of decision alternatives that satisfy imposed
constraints.

Property B: The smaller a feasible region becomes, the smaller the maximum attainable
value of the objective function becomes.

Now we define a new decision problem.

Problem 2: Find an optimal function allocation between humans and machines so that the
petformance index may be maximized subject 1o the Jollowing constraints:

(1) Every goal of the human-machine system is satisfied.

(2) Allocation scheme is feasible for either humans or machines.

Problem 2 is exactly the same as Problem 1, except Problem 1% third constraint,
“Function allocation among agents may never be changed during the petiod of ten years”
has been removed in Problem 2. Noting Properties A and B, a designer can be sure that his
ot her design decision for Problem 2 will give a better result than that for Problem 1 can.

What does it mean to discard the third constraint? That means that a designer is
allowed to consider a function allocation scheme in which responsibilities for functions
may be exchanged between human and machine occasionally during the period of ten years.
The exchange may happen several times a yeat, or a month, or a week, or a day, or even an
hour, which means that the function allocation is dynamic. Static function allocation just
states who does what. However, dynamic function allocation determines who does what,
when, and how. It is worth noting that Problem 2 may give a static function allocation as its
optimal solution, because static function allocations ‘are special cases of dynamic
allocations.



Dynamic function allocation
Need of dynaniic function allocation

Dynamic function allocation is defined as a scheme in which a responsible agent for a
function may vary from time to time during the petiod of system operation. It is easy to
find such dynamic function allocations in real human-machine systems. Take a commercial
aircraft, as an example. Aircraft in recent yeats are equipped with various computers that
can perform important functions to make flights safe, smooth, and efficient. Management
of lateral flight path (LNAV) and vertical flight path (VNAV) are such essential functions
for flying. Human pilot and computer share responsibilities for these functions, and
cooperate dynamically. More concretely, human pilot usually takes responsibilities for both
of LNAV and VNAV during takeoff. In the climb phase, the pilot may take only LNAV
and ask the computer to deal with VNAV, During cruise, pilot often hands both LNAV and
VNAV over to the computer. In descending or landing, pilot may seize control of either
LNAV or VNAV back again. The two functions are allocated in different ways depending
on situations. \

What happens, if only a static function allocation was allowed in the above example?
Since no time-dependent alteration is allowed for assignment of functions, there would be
only the following four possible design alternatives: (1) No machine needs to be designed
because human pilot is to take care of both LNAV and VNAV all the time during flight; (2)

" Design a machine that can perform LNAV at all times and in every occasion; (3) Design a
machine that can petform VNAV at all times and in every occasion; (4) Design a computer
that can perform LNAV and VNAV all the time during flight. Among these alternatives,
the forth is almost infeasible or inappropriate. It is easily seen how odd and stiff a resulting
working environment can be for human pilots. :

Rouse (1976) investigated human-computer interaction in multitask situations based
on an insight that, “while some tasks are best performed by the human and others are best
petformed by the computer, there are many tasks that could be successfully performed by
either human ot computer.” The multitask situations investigated are summarized as
follows: Each task is characterized by a state vector. By scanning appropriate displays, an
agent (human or computer) can obtain the best estimate of a state vector, where
information obtained through observation may be noisy. Moreover, the agent may not scan
all of displays during every scan. Given an observation, the agent must decide whether an
undesirable event is occurring and the cotresponding task needs some countermeasure
action. If attention was not carefully distributed over tasks, thete may be possibility that the
event may be overlooked and it is too late to take a necessary action to the cotresponding
task.

The problem that has to be solved is how responsibility must be allocated between
human and computer so that a specific measure of performance defined over a planning
hotizon could be maximized subject to the constraint that human workload must be below
a specific level. Rouse (1976) and Chu & Rouse (1979) formulated the problem by applying
a queuing theory. They have derived a threshold policy for turning the computer on and off,
and have shown that the policy minimizes event-waiting cost subject to human workload
constraint. The result is a proof that dynamic allocation of function is meaningful and
effective, compared to static allocation of function.

There ate some other studies that prove mathematically that the framework of
dynamic function allocation is more natural and can give better human-computer
interaction than that of static function allocation; see, e.g, (Milot & Willaeys, 1985;



Millot, Tabotin, Kamoun, & Willaeys, 1988; Inagaki & Johannsen, 1992; Inagaki, 1993).

Needless to say, even in a dynamic function allocation, a single specific agent, human
or computer may always petrform some function. Suppose we have three functions, A, B,
and C for three agents. Let an allocation scheme be such that function A is always assigned
to agent 1, while agents 2 and 3 trade functions B and C occasionally. This scheme is
dynamic, because an agent responsible for function B (ot C) may vary, though function A is
always assigned to agent 1. This kind of dynamic allocation ‘with a partially static
characteristic can be sometimes of importance.

One of such dynamic function allocations can be seen in (Sharit, 1998) that discusses a
function allocation for visual inspection systems. The Investigated situation is as follows:
An appropriate inspection is needed to achieve high quality standards of products that
consist of computer-generated 3-D height maps of electronic circuit boards. Human
inspector may not have perfect capabilities for detecting flaws, such as missing components,
wrong-sized components, and misaligned components. However, an automated inspection
system can be worse than human inspectors depending on the product. Thus a hybrid
inspection system may be the third possibility, in - which human and machine capabilities are
utilized jointly. An inspection task has two ptimary functions: search and decision making that
are performed sequentially. Each of the two ptimary functions may be allocated to human,
computet, or hybrid. Among nine possible design alternatives, Sharit (1998) discarded five
of them by taking into account “the relative advantages of computers in petforming search
functions and of humans in performing decision-making functions™ (Sharit, 1998). The
following four systems are selected for further investigation. (1) Pure human inspection.
The computer only presents the images to the human inspector; (2) The computer
petforms the search task. When it detects flaws, they ate shown to the human inspector
who decides on their status; (3) The computer performs both the search and
decision-making functions. When the computer is uncertain about its decision, the human
intervenes in the decision-making process; (4) Fully automated inspection.

Sharit (1998) investigated, with three subjects, 27 inspection scenarios in which each of
the following three factors may take three different levels: product complexity represented
in terms of the number of components on the circuit board, contrast level between circuit
board and background, and visual noise in the displayed image. The four design alternatives
(1) - (4) were compared in terms of speed (seconds per board inspected) and accuracy (hits
and false alarms), where the two viewpoints wete combined into a single objective function
(o1, performance index) that expresses the inspection cost per board. The conclusion
obtained was that “the computer-search human-decision hybrid system was faster and
more accurate than either the purely human or the joint human-computer decision-making
inspection system” (Sharit, 1998).

Choosing levels of antomation for each Junction

In the example of Sharit (1998), we have seen descriptions (1)-(4) stating what human or
computer does and when, which are context-specific statements for the roles of human
and computer. Context-free descriptions may be found in the lists of levels of automation
(LOA), the concept of which was originated by Shetidan & Verplank (1978). Table 2 gives
a compact list of LOA, a bit simplified by Sheridan (1992) based on that given in (Sheridan
& Verplank, 1978).



Table 2 Scale of levels of automation |

1. The computer offers no assistance, human must do it all.

2. The computer offers a complete set of action alternatives, and

3. narrows the selection down to a few, or

4, suggests one, and

5 executes that suggestion if the human approves, or _

6 allows the human a restricted time to veto before automatic execution, or
7 executes automatically, then necessarily informs humans, or

8. informs him after execution only if he asks, or

9. informs him after execution if it, the computer, decides to.

10. The computer decides everything and acts autonomously, ignoring the human.

(Sheridan, 1992)

In terms of LOA, we may be able to say that Sharit (1998) tries to select an
appropriate LOA for two sequentially performed primary functions, searching and decision
making. A bit more extended argument on design decisions for complex-human machine
systems can be found in (Parasuraman, Sheridan, & Wickens, 2000; Shetidan, 2001).

Parasuraman e/ a/. (2000) and Sheridan (2001) give a model for describing various types
and levels of human interaction with computer. They distinguish four classes of functions
in complex human-machine systems: (1) Information acquisition: (2) Information analysis:
(3) Decision and action selection: (4) Action implementation. The distinction of these four
classes of functions is a reflection of a fout-stage view of human information processing,
which is depicted in Figure 1. The functions (1) - (4) have been extracted as those that may
be automated in the human information processing,.

Sensory Perception/ Decision Response
processing Working memory making selection
Figure 1 Simple four-stage model of human information processing

(Parasuraman, ¢f al., 2000)

As . was the case of the visual inspection systems investigated in (Sharit, 1998), thete
can be various design alternatives regarding to what extent each of the four functions
(1)-(4) may be automated. In other words, a designer has to select an appropriate LOA for
each of functions, (1)-(4). LOA may differ from function to function. According to
(Parasuraman, ef 4/, 2000), automated forms of functions (1)-(4) ate called fespectively as
acquisition automation, analysis automation, decision automation, and action automation.
Characteristics of each of automation will be described next.

Aequisition antomation. When LOA is set at the lowest, human must collect every piece of
information all the time by him/herself. An example of automated system for information
acquisition may be radar for automobile or aircraft, or sonar for ship. Sometimes these



systems simply collect information and display on the screen. When the computer involves
more, certain type of acquired information may be highlighted to attract human’s attention.
Filteting is another important capability for acquisition automation. It is well recognised
that transmitting every piece of information to human may lead to undesirable events. For
instance, due to lessons learned in the accident of the Three Mile Island nuclear power
plant, some alarms may better be suppressed in certain citcumstances. This is also the case
in commercial aircraft. Suppose an engine got a fire during takeoff. Even if the sensors
detected the fire successfully, the acquired information may be filtered. The fire bell will
not ring until aircraft climbs up to a certain radio altitude (e.g, 400 ft), or until some
amount of time (e.g, 25 seconds) has passed after V1 (the takeoff decision speed). Until
then, Master warning lights are inhibited.

Filtering is usually useful for human to keep concentrate to some other important tasks.
At the same time, filtering has some costs.  Filtering may mislead operator understanding
on the situation. There is an aircraft incident in which rapid decompression occurred in the
cabin due to an explosion of a grenade. The explosion caused some failures of
mechanisms for control wings. Warning messages appeared immediately on the cockpit
display to let the pilots know failures of some mechanisms. Pilots took at once necessary
countermeasure actions. However, they did not give oxygen masks to passengers in the
cabin for a while, because the information “decompression” was not displayed to the pilots.
The priority of the message for cabin decompression had been set at much lower values
than those of messages announcing control system failures that may threat aircraft safety
directly and immediately.

Analysis antomation. If the LOA is set at some moderate level, the computer may be able
to give humans some information by processing available raw data. One of such processed
information may be prediction of the future state of a system. There are vatious examples of
this kind. For instance, in central control rooms of recent nuclear teactors, a large-screen
shows trend graphs for vatious parameters with their predicted values. On our notebook
computets, battery information is shown on the display that can tell, when we click its icon,
how long the battery will be alive. In the cockpit of aircraft that is at a level flight, its
navigation display may indicate an arc that shows at which point the aircraft is to begin a
descend (o, a climb). If the pilot supplies an input to let the computer know a change of
the flight plan, the computer replaces the old arc with a new one. For implementing
capabilities of petforming prediction, the computers must be given system dynamics
models of the object (e.g, a nuclear reactor, battery on a notebook computer, aircraft).

Another type of analysis automation may be the one that can integrate
multidimensional information into an easily understandable form. The resulting form may
be a single value, or may be a graph. Graphical fusion of multidimensional information has
been already seen in Chernoff’s faces (Chernoff, 1973). The DURESS-like ecological
interface (Vicente & Rasmussen, 1992) is also a good example of analysis automation. A
more recent example may be the enhanced ground proximity warning system (EGPWS) for
aircraft. The EGPWS is designed to complement the current GPWS functionality with the
addition of look-ahead terrain alerting and terrain display. The EGPWS has wortldwide
airport and terrain databases and they are used in conjunction with aircraft position,
barometric altitude and flight path information to determine potential terrain conflict. The
terrain is shown on the navigation display, or it equivalents, in dotted patterns of red,
ambet, and green, where the colors indicate the height of the terrain relative to the current
aircraft altitude (Bresley & Egilsrud, 1997).



Decision automation. Automation for decision and action selection may be already easy to
imagine. However, if we distinguish two classes for decision, our discussion might become
a bit clearer. Researchers in naturalistic decision making distinguish situation-diagnostic
decisions and course of action selection decisions (Klein, Orasanu, Calderwood, & Zsambok, 1993;
“Zsambok, 1997; Klein, 1998). A situation-diagnostic decision refers to identify “what is
going on,” of, to pick up the most appropriate hypothesis among a set of diagnostic
hypotheses. A course of action selection decision means to select the most appropriate
action among a set of action alternatives. Among traditional expert systems, MYCIN
(Shortliffe, 1976) is a typical example for automating situation-diagnostic decisions. When
inference has to be done with imprecise information, an expert system may give humans a
set of plausible diagnostic hypotheses with degree of belief information. The LOA of the
expert system is positioned at levels 2 or 3 in Table 2. If, on the other hand, the expert
system shows humans only a single diagnostic hypothesis with the largest degree of belief
among all, the LOA is set at level 4. Traffic alert and collision avoidance system (TCAS) is a
typical example of automation for course of action selection decision. The TCAS gives
pilots a resolution advisory (RA), such as “Climb, Climb, Climb,” when a mid-air collision
may be anticipated if no resolution maneuver is taken. Pilots are supposed to initiate the
suggested maneuver within five seconds. It is known, however, that the TCAS can produce
unnecessary RA, though such cases do not happen frequently. Pilot may disregard RA of
the TCAS when he or she is definitely sure that no resolution maneuver is necessary. In this
sense, LOA of the TCAS RA is positioned at level 4. There is also automation with very
high LOA for action selection. Computer software is often too dignified. Many of us have
experience in which computer never allows us to escape from supplying information one
after another till the end, even when we have lost interest in doing so at some point in the
middle of the long sequence of actions.

Action automation. Automation for action implementation is easy to imagine. A photocopy
machine, described in (Parasuraman, ez a/., 2000), is a good example to illustrate that various
LOA can be chosen in a single machine. Suppose a man was asked by his boss to
photocopy documents of ten pages for five people. His boss needs them as soon as
possible for distribution at an important meeting in progress. He must decide which mode
to use, automatic sorting without automatic stapling, automatic sorting with automatic
stapling, or manual mode to make five copies for each sheet. In the last case, he himself
must sort and staple sheets manually. Time required for giving necessary directive to the
machine through a touch sensitive panel differs from mode to mode. Time needed to finish
the task differs also from mode to mode. Once he has chosen one of the modes, operation
starts at one of three different levels of automation.

In aviation, LOA of action automation is not set high. From the viewpoint of action
automation, LOA of the TCAS is positioned at level 4, because the TCAS itself has no
mechanical subordinate to initiate a collision avoidance maneuver. The GPWS does not
have capability for such a maneuver, either. It may be worth considering whether high LOA
should never be allowed for automation to implement an action. Take as an example the
crash of a Boeing 757 aircraft that occurred near Cali, Colombia, in 1995. The pilots
petformed a terrain avoidance maneuver immediately upon a GPWS alert. However they
failed to stow the speed brake that they had extended some time before under their
previous intention to descend (Dornheim, 1996). The crash could have been avoided if
there had been an automatic mechanism to retract the speed brake if it had not yet been
stowed when the pilot applied the maximum thrust. It is almost impossible to imagine a
situation where one would apply the speed brake and the maximum thrust simultaneously.
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When automation detects such a contradiction, it may be reasonable to allow the
automation to adjust the configuration automatically (i.e., to stow the speed brake) so that
the new configuration may fit well to the pilot’s latest intention.

Appropriate levels of automation. Parasuraman et al. (2000) argues that LOA may differ
between automation for information acquisition, information analysis, decision and action
selection, and action implementation. A committee of U.S. National Research Council has
discussed appropriate levels of automation for new civil air traffic control systems
(Wickens, Mavor, Parasuraman, & McGee, 1998). Sheridan (2001) reports, “After much
debate the committee decided that acquisition and analysis could and should highly
automated — in fact they already are (radar, weather, schedule information, etc.) However
decision making, except for certain decision aids now under development, should be done
by human air traffic controllers. Implementation is in the hands of the pilots, which in turn
is largely turned over to autopilots and the other patts of the flight management system.”
- Their recommended LOA for each function is depicted in Figure 2.

Information Information Decision Action
Acquisition Analysis Selection Implementation
Automation Automation Automation Automation
Level Level Level Level
High High High High
— >
—p| For reliable ] sk >
For reliable automation For (.)w-rzs
automation Junctions
—>
For high-level
decision
—P automation and,
For high-risk high-risk
Junctions Sfunctions
Low Low Low Low

Figure 2 Recommended types and levels of automation for future ATC systems
(Parasuraman et al., 2000)

Morgan, Cook, & Corbridge (1999) have investigated a potential design option in
future Naval Command and Control Systems, the model of which has some similarities
with that of Parasuraman ez 4/ (2000). The investigators formulate a dynamic function
allocation problem in which functions are distributed variably in real time between the

~ human and the system to achieve optimal system performance on counteting all incoming
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threats to ensure own force safety. Three-stage model is adopted to describe naval
command and control tasks: (1) Compilation of the tactical picture; (2) Situation
assessment and threat prioritisation; (3) Allocation of resources to meet the assessed threat.
The first and the second stages are already highly automated, which is compatible with the
suggestion of Parasuraman ez 4i. (2000). For the third stage, various LOA can be adopted.
Motgan ez al. (1999) have shown, through an experiment with realistic scenarios, that the
overall system performance was much better when human decision maker was able to
allocate resource allocation task to the computer dynamically, compated to the cases in
which he or she was required to perform the task manually throughout the experiment.

It must be noted that choosing different LOA between four functions does not
necessarily mean that function allocation is dynamic. For instance, function allocation
between human and computet is static if the selected LOA is fixed at either one of levels 1
to 4, or 7 to 10. Human and computer may exchange responsibility for a function only
when level 5 or 6 was chosen. As long as one of the levels 5 and 6 may be selected for
some function, it is necessary for us to classify the above model into dynamic function
allocation. Also, the model does not exclude possibilities that LOA may be changed from
one position to anothet, depending on the situation encountered. The resulting function
allocation can be dynamic in general. For instance, there can be useful cases in which
computer makes a decision and implements its associated action when human does not do
so. Further discussions on this point will be made in later sections.

It is also important to note the inter-dependence of automation for decision and
action selection and automation for action implementation for high-tisk functions
(Parasuraman ef al, 2000). Moteovet, automation for information analysis may not be
chosen independently from automation for decision and action selection, because it has
‘been shown that there exist cases in which an information processing algotithm and an
control action may not be selected independently with each other when safety of the
system is a factor (Inagaki, 1991).

Some readers might think that the four-stage model in Fig. 1 may be overly simplified,
compating with real information processing that can occur in the human brain. One of
critical comments might be that human information processing does not always proceed in
. a strict serial sequence. Suppose an operator noticed, while monitoring a plant, that one of
plant parameters started to deviate rather swiftly from a nominal value. Something is
definitely wrong, but the operator fails to figure out what is going on in the plant. If a
serious failure has occurred in the plant, she must shut the plant down immediately.
However, she hesitates to do so, because it is only a single parameter that is drifting, and
thus there is possibility of failure at a sensor or simply at an indicator. The operator must
not cause an unnecessary shutdown, but must not be late in taking a necessary
countermeasure action to avoid a disaster. In order to identify the cause of the strange
phenomenon, the operator may iterate stages of information acquisition, information
analysis, and situation diagnosis (or, hypothesis generation) repeatedly until she reaches a
final situation-diagnostic decision. Only after that, she will be finally ready to come to the
action implementation stage.
~ If ouraim is to give 2 model that describes how human process information to make a
decision, then a non-serial model, such as the cyclical model by Neisser (1976), might be
the one that we have to seck for. A considerable part of human activity is cartied out in
anticipation of something that may happen in the future (Hollnagel & Bye, 2000). However,
if our aim is to give a device for design decision on human-computer cooperation, the
simple four-stage model may be reasonable. We have seen how the simple model can
contribute well to distinguish automation for four classes of functions. Moreover, it is
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worth noting that the discussion on selection of LOA for each class of automation holds
in principle for a more complex model of information processing. As long as a dual-contro/
like policy will not be taken for situation-diagnosis, automation for information acquisition,
information analysis, and decision and action selection do not affect the state of the system
even when the stages in Fig.1 appear repeatedly in a non-serial manner before entering the
stage of action implementation.

Sharing and Trading

In the discussion of function allocation, it is sometimes useful to distinguish two classes of
cooperation between human and computer: Sharing and trading (Sheridan, 1992, 2001).

Sharing refers to the cooperation in which the human and the computer work together
at the same time to share the load for a single task. Some types of sharing are possible. In
the first type, the computer may help the human so that human’s capability may be
extended. The power steering and the power braking systems for an automobile are typical
examples. It is also possible for human to extend computer’s capability. Supervisory
override for some types of aircraft is such an example, in which the pilot can add control
force when he or she judges the control by the autopilot 1s insufficient.

In the second type, the computer may help human so that human’s burden may be
relieved. An example of the second type of sharing is seen in a lane-keeping system
developed for an advanced automobile. The lane-keeping system has been designed to
reduce driver’s workload. It detects white lane markers on the road, and generates torque to’
assist the driver’s steering action for keeping the host vehicle approximately on the center
of the lane (Kawazoe, Murakami, Sadano, Suda, & Ono, 2001). In the examples of the first
and the second type of sharing, the human and the computer cooperate in controlling the
system on the same degrees of freedom. In the following type of sharing, however, the
human may deal with some degtees of freedom, and the computer the remaining degrees
of freedom. _

The third type of shating is partitioning, in which a given task is divided into portions
so that human and computer can only be responsible for mutually complementary parts.
We have seen such an example already, in which the human pilot controls the lateral flight
path, and the computer the vertical flight path. When driving a car, human may want to be
responsible only for steering by letting the computer control the velocity, which is also
partitioning. Shating by partitioning is one form of complementary cooperation between
human and computer.

Trading refers to the cooperation m which either one of human and computer is
responsible for a task, and an active agent changes alternately from time to time. Suppose
we ate driving a car equipped with an adaptive cruise control (ACC) system. If we want to
keep certain distance to a car running ahead, we may let the computer do it. When we
notice that a car running on our right side is trying to cut in, we may disengage the ACC to
seize control back from it to slow down manually before the ACC may make rather a steep
deceleration. In cases of aircraft, the pilot manages the flight path in a very early stage of
the flight. He or she hands the control over to the computer shortly after the takeoff, and
may seize it back to him or her occasionally later during the flight.

In order to implement trading control, it is necessary to decide, when the control must
be handed over and to which agent. At the same time, it is also important who makes the
decision. In the above two examples, the decision was made by human, and trading of
control was initiated by human. However, it is not always human who is given right to do
so. The computer may step in to the decision and trading control implementation on a
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temporaty basis. This kind of autonomous behavior of the computer can be seen in a
system that are used in a highly risky environment under high time stress. One of such
examples is the automatic ground collision avoidance (auto GCAS) system for combat
aircraft. When a collision against the terrain was anticipated, the computer gives a “pull-up”
warning. If the pilot took a collision avoidance maneuver aggressively, then the computer
will not step in any further. If the pilot did not respond to the warning, the computer takes
control back from the human pilot and executes an automatic collision avoidance action. It
is not easy to judge, as a design decision, whether the computer may be given authority to
decide when to seize control back from human and to implement an associated action.
This issue will be discussed latet. : ,

Sharing and trading of control are essential notions in dynamic function allocation.
The notions are inherently indispensable for the adaptive automation discussed in the next

section.

Adaptive Automation
Definition

Suppose human and computer are requested to perform assigned functions for some
petiod of time. Operating environment surrounding the system may change as time passes
by, or performance of the human may degrade gradually due to psychological or
physiological reasons. If the total performance or safety of the system is to be maintained
strictly, it may be wise to re-allocate functions between the human and the computer
because the situation has deviated from the original one. A scheme that modifies function
allocation dynamically and flexibly depending on situations is called an adaptive function
allocation, and automation that operates under an adaptive function allocation scheme is
called adaptive automation. The term adaptive aiding is used in some literatures; see, e.g., (Rouse,
1988). We treat in this chapter the terms adaptive aiding and adaptive automation as
synonyms.

An adaptive function allocation scheme assumes criteria to determine whether
functions need be reallocated, how, and when. The criteria reflect various factors, such as,
changes in envitonmental factors, task loads or demands to human, petformance of
human. Adaptive function allocation is inherently dynamic in nature. Note that, however,
the concept of adaptive function allocation is not exactly the same as that of dynamic
function allocation. Suppose no ctriteria wete violated one day during the operation of a
system. No functions were re-allocated, and thus the functon allocation might look
completely static. Suppose that one of critetia was violated several times on the following
day. Functions were reallocated every time the criterion was violated, and thus the
allocation scheme would look very dynamic. If we had applied different threshold values to
the criteria, function reallocation might have been done in a completely different manner.
Thus, dynamic characteristics of adaptive function allocation depend on the situations
encountered. On the other hand, dynamic function allocation is not always adaptive.
Suppose human and computer exchange responsibilities for functions randomly at random
time points. Such a (rather odd) function allocation scheme is dynamic, but is definitely not
adaptive in any sense.

The notion of adaptive allocation is not quite new. We can trace its origin back to
1970’s. Rouse (1988) states, “The concept of adaptive aiding ... emerged in 1974 in the
course of an Air Force Systems Command-sponsored project at the University of Illinois
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that was concerned with applications of artificial intelligence (AI) to cockpit automation.”
The investigators of the project were initially concerned with “getting the technology to
work, rather than with how pilots were going to interact with this system” (Rouse, 1994).
During the research project, the investigators found situations in which pilot and computer
chose reasonable but mutually conflicting courses of action. “The desite to avoid
conflicting intelligence and Create cooperative intelligence quickly lead to questions of
function allocation as well as human-computer interaction” (Rouse, 1994). At that stage,
they found inadequacies, as we did in the previous section, in making design decisions on
function allocation based on the Fitts List. Rouse (1994) says, “Frustration with the
"~ MABA-MABA approach led to a very simple insight. Why should function, tasks, etc. be
strictly allocated to only one performer? Aren’t there many situations whether either human
or computer could perform a task acceptably? ... This insight led to identification of the
distinction between static and dynamic allocation of functions and tasks. Once it became
appatent that dynamic invocation of automation might have advantages, it was a small step
to the realization that the nature of computer assistance could also be varied with the
situation” (Rouse, 1976, 1977). :

Dmplementing Adaptive Automation

In adaptive automation, functions can be shared or traded between human and machine
flexibly and dynamically in response to changes in situations or human performance. How
can such sharing or trading capability implemented? Currently available logic for adaptive
allocation or automation invocation can be classified into three major classes: (1)
Critical-event logic, (2) Measurement-based logic, and (3) Modeling-based logic.

Critical-event logie.  Automation invocation methods of this class change function
allocations when pre-defined specific events (called wifical-events) occur in the
human-machine system. An implicit assumption made here is that human workload may
become unacceptably high when critical-events happen. Allocation of functions would not
be altered if the critical-events did not occur during system operation. In this sense,
function allocation with critical-event logic is not only dynamic but also adaptive.

Three types of critical-event logic are distinguished (Barnes & Grossman, 1985;
Parasuraman, Bahri, Deaton, Morrison, & Barnes, 1992): (1) Emergency logze, in which a
control process is executed without human initiation or intervention. (2) Executive logic, in
which the sub-processes leading up to the decision to activate the process ate automatically
invoked, with the final decision requiring the human’s input. (3) Automated display logic, in
which all non-critical display findings are automated to prepare for a particular event, so
that the human can concentrate on the most important tasks. Levels of automation LOA)
differ among the three types of critical-event logic. The LOA for the emergency logic is
positioned at level 7 or higher, which means that human may not be maintained as the final
authority (see, Table 2). In case of executive logic, the LOA is positioned at level 5, in
which function allocation is never altered if human disapproves the computer’s suggestion.
The automated display logic assumes sharing (of, partitioning) of tasks. The computer
distinguishes “non-critical” portions of the tasks from the “the most important” ones, and
allocates the former to machine so that the wotkload of the human may be reduced or
maintained within reasonable levels. The LOA of the automated display logic is set at level
7 or higher, because it is the computer that judges whether a task is non-critical or the most
important, and human is not usually involved in the judgment. Adoption of high level of
automation, such as level 7 or above, can be beneficial for reducing task-load of the human
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or for buying time. However, it may bring some costs, such as degradation of situation
awareness, automation-induced surprises. The issue will be discussed in a later section.

It is possible to design adaptive automation with ctitical-event logic so that it may have
several operational modes with different LOA. For instance, the AEGIS system has a small
tule base that determines how the AEGIS system will operate in a combat environment.
The following three modes of operation are available (Parasuraman, ef 4/, 1992): (1)
Manual, in which the system is fully controlled by the operator: (2) Automatic special, in
which a weapon-delivery process is automatic, but the fire button needs to be pressed by
the operator: (3) Fully automated, in which the ship defensive actions are automattcally
implemented without operator intervention, because of the need for a short reaction time
within which the operator may not complete the required actions.

The critical-event logic takes into account human wotkload in an implicit way. The
measurement-based logic, described in the next section, reflects the workload aspect in an

explicit manner.

Measurement-based logic.  Automation invocation logic of this class emerged at the very eatly
stage of adaptive automation research. Rouse (1977) proposed an idea to allocate tasks
dynamically between human and machines so that moment-to-moment workload of the
human may be regulated around some optimal level. Workload levels of operators in
complex systems fluctuate from moment to moment and at different mission phases.
Operatots may be able to achieve very high performance levels but only at the cost of high
mental workload by neglecting “less critical” tasks. If the situation that requires high level
of workload lasts long, performance degradatlon may result. Performance may also
deteriorate when the addition of other minor tasks is made. These observations give a
rationale to adjust function allocation dynamically by evaluating moment-to-moment
workload.

However, that does not mean that a single algorithm can be effective to all individuals.
In fact, different operators will use different strategies to cope with the demands of.
multiple tasks under time pressure. Thus it is necessaty to develop custom tailored adaptive
automation algorithms if the system is to be compatible with, and complement, the
strengths and weaknesses of individual operators (Parasuraman, e @/, 1992). Moreover,
individual differences in human operator capabilities will influence the response to multiple
task demands: Some operators may have sufficient resoutces left to cope with other tasks,
whereas some other operators may be operating at peak workload, which means an
algorithm developed for an “average” operator will not be suitable to either class of
operators. For an adaptive system to be effective in maintaining mental workload at an
appropriate level in dynamic real-time envitonments, it must be equipped with the
workload measutement technology that has high sensitivity and diagnosticity. The
sensitivity refers to the capability to detect changes in workload levels, and the diagnosticity
the ability to identify what component of mental workload is under or over-stressed.

An example of adaptive automation with a measurement-based logic is proposed by
Hancock and Chignell (1988). The adaptive automation works as follows: First the task is
defined, structured and subtasks allocated to either an automated subsystem or to the
operator. Next, the operator’s effort is compared with the task difficulty so as to assign a
criterion for adaptivity. The criterion can be expressed as a measure of mental workload, 2
measure of primary task performance or a combination of both. Once the criterion is
- defined, an adaptive policy is Jmplernented In other words, the criterion remains dynamic
and changes every time thete is an alteration in the operators perforrnance and /or task
complexity. The adaptive system trades task components in order to improve future
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measurement of the criterion. According to the workload-based measurement method,
adaptivity can be achieved through three main procedures: by adjusting the allocation of
subtasks between human and automation; by adjusting the structure of the task; and by
refining the task.

Psychophysiological measutes, such as papillary dilation, heart rate, can be used in
adjusting allocation of functions. Psychophysiological measutes offer two main advantages
over the other measures. First, psychophysiological measures can be obtained continuously.
In many systems where the operator is placed in a supervisory role, very few overt
responses may be made even though the operator is engaged in considerable cognitive
activity. In such a situation the behavioral measure provides an impoverished sample of the
mental activity of the operator. Psychophysiological measures, on the other hand, may be
recorded continuously without respect to overt responses and may provide a measure of
the covert activities of the human operator. Second, in some instances, psychophysiological
measures may provide more information when coupled with behavioral measures than
behavioral measures alone. For example, changes in reaction time may reflect contributions
of both central processing and response-related processing to workload.

A psychophysiologically based adaptive system would wotk as follows: It is presumed
that pre-existing profiles can be established for each operator indicating the correspondences
between a specific operator state (such as reduced vigilance, increased workload, etc) and
the measured physiological signals. A psychophysiological adaptive system would assess
these states “on-line,” feeding this information to a secondary logic system (e.g,, an expert
system) that would determine whether adaptive changes are required.

Modeling-based logic. Operator performance models may be used to decide when function
allocation must be adjusted. If a good model is available, it is possible to estimate current
and predicted operator state and to infer whether workload is excessive or not. Operator
performance models are often categorized into three groups: Intent inferencing models,
optimal (or, mathematical) models, and resoutce models.

If operator’s intention could be inferred, it would be possible to identify what tasks
must be done for achieving the operator’s goal. Information on resources available to the
operator would also make it possible to decide whether machine intelligence must
intervene to support the operator, and when. Intent inferencing models work as follows (Rouse,
Geddes, & Curry, 1987-1988): Operator actions are decoded and compared with the set of
scripts. If at least one script matches, the actions are resolved. If no match is found, the
unresolved actions are analysed to identify plans. If one or more plans are found that are
consistent with known goals, the actions are resolved and the scripts associated with these
plans (if any) are activated. If no match is found, the untesolved actions are put into the
error monitot.

Optimal models include those based on queuing theory (Walden & Rouse, 1978; Chu
& Rouse, 1979), pattern recognition (Revesman & Greenstein, 1986), regression (Mottis,
Rouse, & Ward, 1986). For example, Walden & Rouse (1978) investigated multitask
performance of a pilot, whete time sharing is required between monitoring, control, and
other tasks, where they modeled the monitoring task as a queuing system which can be
modeled as a “single server” with subsystem events called “customers” and with the
control task incorporated as a special queue. The adaptive system with optimal models
works as follows: Once the customers atrive at the control task queue they can control the
service of a subsystem event. From what proceeded, a customer in this case can be defined
as a “significant amount of display error.” Therefore, when a major error is displayed, the
subsystem service is preempted and a control action is taken to eliminate the error.
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Resource models, such as multiple resource theory by Wickens (1984) try to estimate
the operator’s current and projected resource utilization. The models describe how
performance intetference occurs in information processing. Suppose an operator are trying
to perform two different tasks, in which the task compete for the same human information
processing resource. If the two tasks require different resources, say verbal and spatial
codes, then there will be no difficulty in performing them efficiently. However, if the two
tasks require the same resources, then some conflict can occur and petrformance of the
tasks may suffer significantly. The multiple resource model is used to evaluate whether
function allocation is appropriate ot not, or to assess the impact of possible competition
that may be caused by tasks requiring the same resource. With the similar reason, the
multiple resource theory has been recognized as an important tool for human-machine
system design. For example, the multiple resource theory has been implemented in a
discrete event simulation-modelling tool, WinCrew (a computer software) that has the
capability to change function allocation dynamically based on the moment-to-moment
workload values (Archer & Lockett, 1997; Laughery, 1999). Application of WinCrew to
one of realistic problems can be found in (Archer, Lewis, & Lockett, 1997), where activities
of bridge personnel on a Navy Guided Missile Destroyer were described as a task network,
and moment to moment workload values were assessed for four different manning,

- automation, automation, and task allocation configurations under several scenatios.

We have discussed so far in this section how the performance models may be utilized.
If performance models are good, it is sometimes possible to extract “leading indicators.”
The leading indicators refer to precursor the observation of which implies the occurrence
of some subsequent events. Kaber & Riley (1999) have demonstrated the benefits of
adaptive aiding on a primary task (a dynamic cognitive monitoring and control task) that is
based on degradation of an automation-monitored secondary task, in which degradation
of the secondary task is a precursor of that of the primary task.

Comparison of three types of Ingic. Among three types of logic, the critical-event logic may be
the easiest and most straightforward to implement, if there is 2 consensus that a specific
event is actually a “critical-event.” No investigations are needed regarding how human
cognition or behavior could be modeled, what parameters must be measured to infer
human state, and how. Once a critical-event is defined, occurrence of the event can be
detected via objective information that is usually available even in a conventional human
machine system. A possible disadvantage of the critical-event logic is that it may reflect
human workload or performance viewpoints only partially. Though the critical-event is
regarded as an event that requires high human wortkload, the recognition may not always be
true for everybody at all circumstances.

From a viewpoint of adapting to an individual who is facing with a dynamically
changing environment, measurement-based logic may be the most appropriate. It can
change function allocation by reflecting explicitly the mental status of an operator at a
specific citcumstance. There is no need to predict in advance how mental status of the
operator may change. However, there are some points to be noted. One is that not all
operators may welcome situations in which they are monitored by sensing devices all the
time. The second point is that sensing devices are sometimes expensive and/or are too
sensitive to local fluctuations in operator workload or physiological states.

If good performance models are available, they can contribute well to successful
design of interaction between human and automation. Comparing with the
measurement-based logic, the model-based automation invocation logic is easier to
implement, because no measurement technologies or devices will be needed. However, as

18



can be easily imagined, it is not possible in general to develop a petformance model
teptesenting the reality perfectly. For instance, a mathematical model needs assumptions to
make the model mathematically tractable. In case of modeling in terms of production rules,
it is not obvious whether such a model can be constructed for human behavior in a
complicated task environment.

Who bas decision authority?

We have seen, in Section 4.2, three types of automation invocation methods for changing
function allocation dynamically in a situation-adaptive manner. Who is supposed to make
decisions when function allocation must be altered? Human operator, or machine
intelligence? Each method in Section 4.2 can be expressed with production rules: For
instance, “If critical-event A is detected, then function B must be handed over to the
automation, if the function was dealt with by the human at that time moment.” Ort, “If the
estimated human workload becomes lower than a specified threshold value, then function
C must be returned from the automation to the human.” Once an automation invocation
scheme is written as a production rule, it is basically true that the scheme can be fully
automated, and thus machine intelligence (or, the computer) can manage adaptive function
allocation without any aid of the human operator. However, the reality is not so simple.
There are some reasons for why the computer is not given authority to decide when to
change function allocation. '

One apparent reason is reliability. It is unrealistic to assume that the computer never
fails. The failure may be due to hardware malfunction, or may be caused by some errors or
“bugs” in the program, or may stem from input data with undesired characteristics (such as,
lack of precision, corruption with noise, lack of the very data). Even with such possibilities,
if the computer is assigned a task to make an automation invocation decision, the human
will have to monitor the computer carefully all the time, which produces burden on the
human in addition to his or her original tasks.

A second reason is philosophy in human-machine systems. From a viewpoint of
human-centered automation (Woods, 1987 Billings, 1991,1997; Billings & Woods, 1994),
human operator must be maintained as the final authority, and only he or she may exercise

“decisions how function allocation must be changed and when. In aviation, for instance,
pilots decide when to use various automation, such as the autopilot, the auto-throttle.
However, is it always the best for the human operator to bear the final decision authority at
all times and in every occasion? Rouse (1988) says, “...when an aid is most needed, it is
likely that humans will have few resources to devote to Interacting with the aid. Put simply,
if a person had the resources to instruct and monitor an aid, he or she would probably be
able to perform the task with little or no aiding.” There may be cases in which it is rational
that “vatiations in levels of aiding and modes of interaction will have to be initiated by the
aid rather than the human whose excess task demands have created a situation trequiring
aiding” (Rouse, 1988). As a matter of fact, Hancock & Scallen (1996) Investigates an
invocation scheme that machine intelligence may have authority for automation invocation;
“A human operator would perform a continuous control task until some performance
critetia was violated as might be expected after an extended period of performance. After
critetion violation the machine would assume control of the task and return control to the
operator after a rest petiod. If the performance criteria were never violated, automation
would never assume control.”

As has been mentioned earlier, 2 better solution to an optimization problem may be
found if the constraints for the problem could be made looser. Therefore, theoretically

19



- speaking, an ideal configuration of adaptive automation is the one in which either human
or computer may make a decision on automation invocation. If we assume either that only
human may decide when to change allocation and how, or that only computer may do so,
then the resulting automation invocation scheme may be too stiff and fail to attain an

optimal performance.
There are experimental and mathematical evidences that show that whether

human-initiated invocation of automation is beneficial or not heavily depends on the
situation encountered. Harris, Hancock, Arthur, and Card (1991) have conducted an
experiment in which subjects ate given multiple tasks (a resource management task, a
system monitoring task, and a compensatory manual tracking task). The investigators
compared the following three conditions: (1) The subjects must perform all tasks manually;
(2) The tracking task is performed by the automation; (3) The subjects can decide whether
to invoke the automation for tracking task. The investigators have obtained the result that
the subjects were more efficient at the resource management task in the third condition in
which automation invocation is human-initiated. Hilburn, Molloy, Wong, and Parasuraman
(1993) have obtained a similar result through a series of experiment under the multitask
environment as in the case of Hartis, ef al. (1991). In one of the experiment, the
mnvestigators have compared executive and emetgency logic in the critical-event logic
category, and have found a slight automation cost under either automation invocation logic.

On the other hand, Harris, Goernert, Hancock, and Arthur (1994) have found a
condition in which computer-initiated invocation of automation is beneficial. The
investigators conducted an experiment with the multiple task environments as described in
the above. Performances of the tasks are compared between operator-initiated and
computer-initiated invocation of automation. The investigators have found the following
insights: (1) When subjects received written warnings that workload increases were likely to
occur, performance during human- and computer-initiated invocation of automation did
not differ; (2) When subjects were not warned before workload increases, resource
management error was greater during periods of human-initiated invocation of automation.
The observations suggest that human-initiated invocation of automation may be less
beneficial than computer-initiated invocation when changes in wotkload may be abrupt or
unexpected for the human operator. Harris, Hancock, and Arthur (1993) have also shown
that, when subjects became fatigued under multiple-task environment, they became less
likely to engage automation even when it is supposed to be used. That means benefits of
automation may not be fully appreciated if human-initiated invocation of automation is
adopted.

There is also a mathematical argument proving that which agent (human or computer)
must be in charge of deciding invocation of automation cannot be fixed but strongly
depends on the situation. Inagaki (1997, 2000a) has discusses a rejected takeoff (RTO)
problem when an engine failute may be suspected. A mathematical analysis with a
probabilistic model has proven that Go/NoGo decision should neither be tully automated
nor be left always to a2 human; i.e., the decision authority of automation invocation must be
traded dynamically between human and computer. More concretely, (1) Human pilot must
be in authority when the aircraft speed is far below V1 (the takeoff decision speed); (2)
Computer must be in authority, if the aircraft is almost at V1 and if there is possibility that
human pilot may hesitate to make decisions when he or she failed to decide whether the
engine became faulty or not; (3) When the aircraft speed locates between (1) and (2), which
agent must be in authority depends on the situation.



Benefits and costs of adaptive automation

One of major motivations for introducing adaptive automation was to regulate operator
workload, where an opetator “can control a process during petiods of moderate workload,
and hand off control of particular tasks when workload either rises above, or falls below,
some optimal level” (Hilburn, Molloy, Wong, & Parasuraman, 1993). Another major benefit
of adaptive automation lies in its ability to keep the operator in the control loop, which is
done by altering levels of automation (LOA). The charactetistic contrasts with the static
allocation. When the LOA for a task is always positioned at high levels, the operator is
likely to suffer from the out of the control loop phenomena that lead to degradation of
manual skill, vigilance decrements, and loss of situation awareness for the task (Wiener,
1988; Pérasuraman, Bahri, Deaton, Motris, & Barnes, 1992; Gluckman, Carmody, Mottison,
Hitchcock, & Warm, 1993; Endsley & Kiris, 1995; Endsley & Kaber, 1997; Kaber, Omal, &
Endsley, 1999). For instance, Hilburn, Molloy, Wong, & Parasuraman (1993) conducted a
series of experiment under multiple task environment with compensatory tracking, system -
monitoring, and fuel management tasks, and have found the phenomenon in which
humans exhibited inefficient monitoring performance after only 20 minutes of automated
monitoring control. When automation or the system is perceived as being “highly reliable,”
automation-induced “complacency” may arise (Parasuraman, Molloy, & Singh, 1993),
where the word complacency has been introduced to mean, “self-satisfaction which may
result in non-vigilance based on an unjustified assumption of satisfactory system state”
(Moray and Inagaki, 2000).

In case of adaptive automation, even if it may adopt high LOA at one time point, the
LOA will be altered at other time point, which may be useful to avoid the out of the
control loop phenomena. However, what happens if LOA is altered too frequently? We
have seen in section 4.2 some types of logic that alter LOA. If the algorithm wete highly
sensitive, LOA would be changed by even a small perturbation in the input value to the
algorithm. In extreme cases in which only manual control and full automatic control are
available, frequent cycling between automated and manual control may occut, which can
lead to performance degradation. The short cycling is a possible byproduct of adaptivity in
function allocation. Some researchers have investigated the effects of short cycling on task
performance. By using a Multi-Attribute Task battery (Comstock & Arnegard, 1990) that
includes tracking, monitoring, fuel task management, and ATC communications,
Parasuraman, Bhari, Molloy, & Singh (1991) have demonstrated both benefits and costs of
short-cycle automation on the manual performance of tasks and on the monitoring for
automation failure. Glen, Barba, Wherry, Motrison, & Hitchcock (1994) have investigated
adaptive automation effects on flight management task performance under multiple task
environment with compensatory tracking, tactical assessment, and communication tasks.
The investigators have demonstrated no automation deficits, and have found automation
benefits for reaction time in the tactical assessment task. Scallen, Hancock, & Duley (1995)
have investigated the rapid cycling of automation under multiple task environment with
tracking, fuel management, and system monitoring tasks, where tracking task cycled
between manual and automated control at fixed intervals of either 15, 30, or 60 seconds.
The investigators have found that excessively shott cycles of automation prove disruptive
to performance in multi-task conditions.

Another major concern in adaptive automation would be possible conflict between the
human and the computer, whete conflict can be classified into two groups. The conflict of
the first type refers to the case in which human and computer share the same goal but do
not share courses of action to achieve the goal. The conflict of this kind occurs when
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human fails to maintain appropriate mode awareness. An example can be seen in the crash
of an Airbus 320 aircraft at Strasbourg, France, in 1991. The pilots thought that the aircraft
was making an approach using a flight path angle mode of —3.3 degrees. However the
computer, that was an active agent at that time moment, was actually making an approach
by using a vertical speed mode of —3,300 ft/min (Sparaco, 1994; Billings, 1997). There are
many incidents and accidents due to mode confusion (see, e.g,, Dornheim, 1995; Hughes,
1995a; Sarter & Woods, 1995).

The conflict of the second type refers to the case in which the human and the
computer do not share the same goal. An example can be seen in the crash of an Airbus
300-600R aircraft at Nagoya, Japan, occurred in 1994. At some point during the final
approach, the pilot flying gave a Go-Around directive to the computer unintentionally. The
computer started its maneuver for going around. However the pilot decided to descend for
landing. The pilot knew that the autopilot was in the Go-Around mode, but he did not
follow an appropriate procedure to cancel the mode. Thus intentions between the pilot and
the computer became completely contradictory. Once the computer was ordered by the
human to go around, it tried to achieve the go-around at any cost. For the computer, the
human’s input to descend was simply a disturbance that must be cancelled out by applying a
stronger control input. From the viewpoint of the pilot, the aircraft did not descend
smoothly and thus he applied a stronger control input. Thus the aitcraft was subject to
completely contradictory controls by two agents with opposite intentions.

One way to avoid conflict is communication between the human and the computet.
Revesman & Greenstein (1986) distinguish two types of communication: (1)
dialogue-based communication and (2) model-based communication. In the dialogue-based
communication, the human provides the computer with information regarding his or her
action plans. The dialogue-based communication is advantageous in attaining precise
understanding and high level of situation awareness. Howevet, the dialogue may increase
human workload, or may “detract from the human’s ability to petform the primaty task”
(Revesman & Greenstein, 1986). The model-based communication assumes. no explicit
dialogue between the human and the computet. In the model-based communication, “the
computer employs a model of human petformance to predict the actions of the human.
Using these predictions, the computet selects its own actions so as to minimize some
measure of overall system cost” (Revesman & Greenstein, 1986). The investigatots have
proposed a model and have proven validity of the model-based communication through a
simulation study by showing that “the model is a consistent and accurate predictor of
human performance, correctly predicting over 80 percent of the subjects’ actions over a
range of situations” (Greenstein & Revesman, 1986).

Interface design may contribute in reducing conflict between human and computer.
While LOA is positioned at a high level, human may often fail to recognize what the
computer’s intention is. If the computer’s intention or its goal is explicitly shown on a
display, possibility of conflict may be reduced. Suppose the human did not like the
computer’s goal or intention. Only he or she has to do is give a new directive to the
computer or disengage the automation to seize back the control to him or her. An example
of interface design that displays computer’s intention by means-ends relation can be found
in Furukawa & Inagaki (2001). Appropriate interface design to support situation awareness
or recognition 1s important, especially when it may not be possible to assume that every
operator has been trained substantially.

Trust in adaptive antomation
It has been observed that a dynamic function allocation suffets from various types of
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automation surprises (Wickens, 1994; Hughes, 1995b; Sarter, Woods, & Billings, 1997).
Since adaptive function allocation adopts a sophisticated algotithm for triggering
automation, it may have to face with difficulties that are severer than a standard dynamic
function allocation. Lee & Moray (1992) distinguishes four dimensions of #uss )
Joundation that represents the “fundamental assumption of natural and social order that
makes the other levels of trust possible,” (2) performance that trests on the “expectation of
consistent, stable, and desirable petformance or behavior,” (3) process that depends on “an
understanding of the undetlying qualities or characteristics-that govern behavior,” and (4)
purpose that tests on the “underlying motives or intents.”

It would not be hard for a human operator to recognize that the designer’s purpose or
intention in creating adaptive automation lies in regulating operator workload at some
optimal level. Respecting the second and the third dimensions may not be straightforward.
Since adaptive automation is designed to behave in a situation-dependent manner, its
behavior may look inconsistent. Suppose there are two circumstances, A and A*, that differ
only slightly. The automation invocation algorithm may detect the difference of A and A*.
Then it will behave differently. However, the human may fail to recognize the difference.
Then the human would be surptised when he or she saw the automation behaved
differently. Human’s understanding of the automation invocation algorithm may be
imperfect if the algorithm is sophisticated or complicated. When the human failed to be
certain of the second and the third dimension of trust, he or she would fail to establish
trust in the adaptive automation. Human’s distrust ot mistrust in automation can cause
Inappropriate use of automation, as has been pointed out by Parasuraman and Riley (1996).

Concluding Remarks

This chapter has desctibed necessity, efficacy, and significance of the design framework in
which functions are allocated dynamically and adaptively between human and machine (o1,
computet). Adaptive function allocation offers wider and more flexible design decisions on
human-automation cooperation than static function allocation does. Therefore, from an
optimization theoretic viewpoint, a design decision obtained in the framework of adaptive
function allocation can never be worse than that obtained in the framework of static
function allocation. However, reality is not so simple. Various difficulties and
Inconveniences may atise in adaptive automation, which stem from highly dynamic and
flexible characteristics of adaptive automation. It is not sensible to claim that adaptive
automation is always more effective and useful than any other form of conventional
automation in any application area. Adaptive automation determines its behavior by
reflecting various factots, such as human workload, human performance, state of the
controlled process, time-criticality, risk associated with action or non-action in dynamically
changing environment. There are enormous numbers of possible combinations of states
or values that the above factors can take. An important point to note is that adaptive
automation inhetently requires custom tailored design decisions. Through careful examination
of the possibilities, we can decide which function allocation scheme must be adopted, static,
standard dynamic, or adaptive.

~Although various concerns have been pointed out on adaptive automation, significance
and efficacy of adaptive automation have also been proven theotetically or expetimentally.
Human-centered automation usually assumes that the human must be at the locus of
control (Woods, 1989; Billings, 1991, 1997), while some type of adaptive automation may
violate the principle. However, it is proven that such adaptive automation can play an
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essential role in attaining system safety under time-critical situations (Inagaki, 20002, 2000b).
Research of adaptive automation has its origin in aviation and vatious studies have been
conducted in the context of aviation applications. Rouse (1988), Parasuraman ef 4/, (1992),
Scetbo (1996), Wickens & Hollands (2000), and Scallen & Hancock (2001) give good
survey of those efforts. However, real systems with adaptive automation concept are now
being implemented or investigated also in other fields, including military (Bonner, Taylor, &
Fletcher, 2000; Corbridge, Stmpson, Cook, & Turpin, 2000), passenger carts ‘in the
Advanced Safety Vehicle (ASV) project in Japan. Although it is sometimes said that
adaptive automation is still in its infancy, the concept is applied explicitly or implicitly in the
design of vatious human-machine systems.
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