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Abstract

The mixed-integer nonlinear programming, MINLP, has played a crucial role for
the chemical process design via superstructure that always involves discrete and
continuous variables. In this paper, a global optimization algorithm for the
nonconvex MINLP problem is developed by tackling the nonconvexity caused
by the nonconvex continuous functions on the basis of the convex quadratic
underestimator within a branch and bound framework, as well as the joint one
caused by the mixed natures of integer and continuous variables by virtue of a
revised General Benders Decomposition ( GBD ) method, where the latter is
designed mainly for three favorable structures, i.e. separable, bilinear, and partly
linear between the two domains of continuous and binary variables. The
convergence of the revised GBD method on the global solution of the relaxed
MINLP subprobelm over each subregion generated in above framework is
guaranteed by the convex underestimation functions in terms of the twice
differentiable assumptions of the continuous functions and above three favorable
joint structures, then the convergence of the proposed hybrid algorithm can be
established by the exhaustive partition of the constrained region, the
monotonicity of lower bound, and the reliable infeasibility detecting. Finally, a
very simple example for process design is used to verify the different
implementation aspects of the proposed approach, especially the unique
underestimator construction and the infeasibility detecting in each lower
bounding problem.
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1. Introduction

Companies must design and operate chemical processes effectively and
efficiently so they may survive in today’s highly competitive world. Providing
the methods, tools, and people that allow industry to meet its needs by trying
science to engineering is a compelling aspect of process system engineering,
which is concerned with the improvement of decision-making processes for the
creation and operation of the chemical supply chain ranging from microsystems
to industrial-scale continuous and batch systems. It deals with the discovery,
design, manufacture, and distribution of chemical products in the context of
many conflicting goals ( Grossman and Westerberg, 2000). In general, the
conventional chemical process engineering has traditionally focused on the
macro level. However, with strong economical forces driving the need for
product specialization and differentiation, there is a significant incentive for the
development of synthesis and optimization tools to aid in the discovery and
design of new products. For instance, the decision-making processes that take
place during the design of new products or chemical plants can be made more
rational and efficient thanks to the use of mathematical model within a global
optimization framework ( Grossman, 1996; Floudas, 2000 ).

The most significant constribution of mathematical approaches comes from
their ability to incorporate many alternative structures within a single problem.
This is achieved through the introduction of integer variables, which leads to the
formulation of a mixed-integer nonlinear programming-MINLP ( Floudas,
1995 ). Such an approach has already been used for a wide array of applications,
such as the process synthesis of heat exchanger network, distillation-based
separation systems, reactor network, and reactor-separator- recycle systems. The
solution of many MINLPs relevant to the current science-based chemical
processes is made challenging not only by the presence of integer variables but
also by the nonconvexities in the models. As a result, the potential contributions
of MINLP to above-mentioned problems have not yet been fully realized. The
global solutions of the mixed-integer linear programming-MILP ( Nemhauser
and Wolsey, 1999 ) problems or convex MINLP problems can be located by the
Benders decomposition method ( Benders, 1962 ) or general Benders
decomposition method ( Geoffrion, 1972 ). However, those approaches cannot
be applied directly into the nonconvex MINLP problems since they always just
identify a local optimum owing to the nonconvexity of the nonlinear functions
and the joint structure. The earlier endeavors to solve the nonconvex MINLP
problems were contributed from Kocis and Grossmann ( 1988 ) and Floudas,



Aggarwal, and Ciric ( 1989 ) stimulated by the MINLP problems encountered in
the process synthesis and design. The branch-and-reduce algorithm of Ryoo and
Sahinidis ( 1995 ), and finally developed into a package named BARON, relies
on the existing underestimation techniques, such as those proposed by
McCormick ( 1976 ), and focuses on the reduction of the size of the solution
domain by using the addition of feasibility and optimality tests. The interval
analysis algorithm of Vaidyanathan and El-Halwagi ( 1996 ) used the interval
arithmetic to bound the function values within a branch and bound framework,
where the domain size is reduced by partitioning, and fathoming is performed by
applying upper bound, infeasibility, monotonicity, nonconvexity, and lower
bound tests, as well as the distrust region method. Smith and Pantelides ( 1997,
1999 ) designed a reformulation spatial branch and bound algorithm to address
functions that involve binary arithmetic operators and concave or convex
operators such as logarithms and exponentials. Westerlund et al. ( 1998 ) used a
extended cutting plane algorithm to tackle problems involving pseudoconvex
functions. Zamora and Grossman ( 1998 ) proposed more specialized algorithms
for certain classes of applications, such as heat-exchanger networks. Adjiman et
al. (1998 ) presented an excellent review of these algorithms, and two broadly
applicable global optimization approaches based on the «BB algorithm, i.e.
SMIN-a BB and GMIN-a BB, were briefly introduced in Adjiman et al. ( 1997 ).
A complete description of the theoretical basis of these two algorithms and
computational experiments are provided in Floudas ( 2000 ) and Adjiman et al.
( 2000 ) which enable the determination of the most adequate implementation
decisions.

A novel convex underestimation technique developed in the QBB algorithm
( Zhu and Xu, 1999; Zhu and Inoue, 20001; Zhu and Kuno, 2001 ), is applied
here to tackle the nonconvexities arisen by the continuous variables, then the
resulted convex mixed-integer programming is resolved by a revised General
Benders Decomposition-GBD method. The so called hybrid branch and bound
and revised GBD algorithm for the nonconvex MINLP problems goes from the
simpilical partition of the constrained region of the continuous variables within a
branch and bound framework, then the mixed natures of the continuous and the
binary variables are treated elaborately by the projection way in the GBD
method. The monotonicity of the lowing bounding functions constructed by the
quadratic function based underestimators, the infeasibility detecting, and
asymptotic convergence are presented to provide a complete theoretical
guarantee. Three kinds of mixed-integer function structure widely used in
chemical processes are analyzed and applied into above framework and a simple



but typical example is illustrated to show the convergence of the proposed
hybrid branch and bound and revised GBD algorithm on the global solution of
the nonconvex MINLP problems.

2. The hybrid branch and bound and revised general Benders
decomposition algorithm

The general nonconvex mixed-integer nonlinear programming, MINLP,
problem can be formulated as following:

(P) min f(xy)

s.kt. gi(x,y)s 0 i=12,...m

xeScR”

yeY={0,1}

where, x represents a vector of # continuous variables, and y is a vector of ¢

binary variables. S is a nonempty and convex set, which is a simplex in this
paper. And the functions

iR xR >R,
g:R" xR > R",
are continuously twice-differentiable functions for each fixed ye Y ={0,1}". Let

D, be asubset of ®" defined by

D, = {x eR": g(x,y)S 0 forsomey e Y},

and let ¥, be a subset of binary set of B? defined by

V,= {y eBY:G(x,y)<0, forsomexeS}.



It should be noted that the above stated formulation for Problem ( P ) is just a
subclass of the problems for which the General Benders Decomposition ( GBD )
of Geoffrion ( 1972 ) can be applied. However, the essential difference between
them lies in the conditions for the objective and constrained functions, that is,
those functions of Problem ( P ) in this paper are assumed to be only
continuously twice-differentiable, rather than convex in Geoffrion ( 1972 ).

The main idea of GBD is that the vector of y variables is defined as the

complicating variables in the sense that Problem ( P ) is a much easier

optimization problem in x when y is temporarily held fixed. However, the

objective and constrained functions in Problem ( P ) are assumed to be only
twice-differentiable, rather than convex, then we have to handle the

nonconvexities arisen not only by the joint x-y domain structure, but also the

continuous variables x even after the binary variables, i.e. the complicating

variables y, are held fixed. In this paper, a hybrid branch and bound and GBD

framework is constructed to treat with above stated complications, in fact, the
mixed natures of Problem ( P ) is resolved by the GBD approach, before that,
the nonconvexities caused by the continuous variables are removed by a convex
- quadratic function underestimation techniques developed in the QBB algorithm
( Zhu and Xu, 1999; Zhu and Inoue, 2001; Zhu and Kuno, 2001 ).

2.1 Convex relaxation of the MINLP Problem

Since the vector of y variables is defined as the complicating variables in GBD

method, then we have the following definition to characterize its use in a branch
and bound framework:

Definition 2.1 Given any function f(x,y), f:R"xR? >R and x represents a
vector of n continuous variables and y a vector of q binary variables, is

continuously twice-differentiable for each fixed yeY={01Y, the function
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F(xy), F:R"xR'>R for xeScR" and yeY={01) is defined as the
convex relaxation of f(xy) if F(x,y) is convex and F(x,y)< f(x,y) Vx eSfor

each fixed yeY ={01}.

In above definition, since the relationship between the continuous and binary

variables in function f(x,y) is implicit, then the specific structure of its convex

relaxation in terms of above definition is unknown. However, for most of the
chemical engineering processes, the relevant MINLP problems ( Duran and
Grossman, 1986; Floudas, 1995 ) can be formulated as a much explicit form, as

(P(CRE))  min f(x)+c'y

st. g,(x)+Cly<0 i=1,..,m
xeScR”

yeY={01}

where, f(x) and g,/(x) for i=1,.,m are continuously twice differentiable

functions. And ¢ is a constant vector belonging to ®¢ as well as C being a
constant matrix belonging to ®". Hence, the binary variables appear only in
the objective and constrained functions in linear forms without nonlinear terms
getting involved in the continuous variables. In fact, most applications described
by Grossmann ( 2001 ) can be taken as the special cases of above formulation by
enforcing the continuous functions being convex. Since binary variables are
separable from the continuous one, then the valid relaxation of the objective and
constraint functions are only dependent on the valid underestimation
construction of the twice differentiable functions appeared in above formulation.
First, the following theorem tells that there exists a valid convex
underestimation function over a simplex for any twice-differentiable function.



Theorem 2.1  There exists a convex underestimation function for any
continuously twice-differentiable function over a simplex.

Proof. If, without loss of generality, assume that f(x) is a continuously

twice-differentiable function over a simplex S, then all elements of its Hessian
matrix are continuous and bounded over S. Let & be a large enough positive

scalar such that H,(x)+ol is a positive semi-definite matrix for any xeS,
where H,(x) stands for the Hessian matrix of f (x) at each xeS. Then,

f&)+afx|* is convex, and the function f(x) can be rewritten as

()= 7 () + el - ]

Obviously, this is a D.C. ( Difference of two Convex functions; Tuy, 1998 )

formulation of f(x). Since the second term in above formulation, i.e. ~alx|’, is

concave over the simplex §, then its convex envelope can be expressed by an
affine function ¢'x+5 forall xeS ( Horst, Pardalos, and Thoai, 1995 ). Then

we have the following function F(x), as
F(x)= fx)+afx| +c"x+b

which is obviously convex, and a valid underestimation function of £(x), i.e.

F(x)< f(x) forall xeS since ¢’x+b<-afx|" by virtue of the definition of the

convex envelope. L]

In fact, above theorem implies a way to construct the underestimation
function for any continuously twice-differentiable function over a simplex.



Geometrically, above theorem uses a very convex quadratic function to
compensate the concave part for any twice-differentiable nonconvex function.
However, there is a more straightforward way to do this, in fact, we can directly
approximate the convex part by using a convex quadratic function, as that
presented in the QBB algorithm for any twice-differentiable nonconvex
optimization problem ( Zhu and Xu, 1999; Zhu and Inoue, 2001; Zhu and Kuno,
2001 ). That is to say, there exists a convex quadratic function for any twice
differentiable function over a simplex, which is also its valid underestimator, as

Definition 2.2 Given any nonconvex function f(x):S—>®R,xeScR"

belonging to C?*, the following quadratic function is defined by

F(x):iaixf+zn:b,xi+c (1)
i=] i=1

where, xeSc®R" and F(x)=f(x) holds at all vertices of S. a s are

nonnegative scalars and large enough such that F(x)< f(x),VxeS.

The determination methods of the quadratic, linear, and constant coefficients of
Eq.1 are presented simply in the Appendix of this paper, but a detailed
introduction can confer to Zhu and Kuno ( 2001 ). Note that a simpler form of
above quadratic function uses an uniform quadratic coefficient, then Eq.1
becomes a single parameter underestimator. By replacing all the twice
differentiable functions by their corresponding convex underestimators over the
simplex in Problem ( P(ChE) ), we get its relaxed formulation as

( P(ChE)R ) n;(uyn F(x)+c"y

st. G,(x)+Cl'y<0 i=1..,m
xeScR”

yeY={0,1

- where, F(x) and G,(x) for i=1..m are convex functions described by a
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combination of some convex or linear functions presented in the Appendix. We
see that the objective and constrained functions are satisfied with the Definition
2.1, then above formulation can be seen as a special case of the following
Problem, as

(PR) min F(x,y)

st. G,(xy)<0 i=1,2,..m

xengiR”

yeY={0,1}

where, the functions F(x,y) and G,(x,y) hold the Definition 2.1, and let D,

be a subset of R” defined by

D, = {x eR": G(x,y)<0 forsomey e Y},

and let 7, be a subset of binary set B? defined by

Ve = {y €B?:G(x,y)<0, forsomexe S}.

Then, we observe the following conditions given for a mixed integer nonlinear
programming problem ( Geoffrion, 1972; Floudas, 1995 ), in order to apply the
GBD approach to handle the binary variables.

Conditions 1. S is a nonempty, convex set and the functions

F:R"xRT >R,
G:R"xRT > R",

are convex for each fixed yeY ={0]1}".

Remarks 1. This condition holds trivially in virtue of Definitions 2.1 and 2.2.



Condition 2: the set

A ={zeiR’" : G(x,y)<z for somexeS},

is closed for each fixed yeY.

Remarks 2. This condition holds since the simplex S is bounded and closed,

and G(xy) is continuouson x for each fixed yeY.

Condition 3: For each fixed y e Y NV, one of the following two cases holds:

Case i: The resulting Problem ( PR ) has a finite solution and has an optimal
multiplier vector for the inequalities.

Case ii: The resulting Problem ( PR ) is unbounded, that is, its objective function
value goes to —.

Remarks 3. Problem ( PR ) is a relaxation of the original Problem ( P ), which
is always overestimated, then only the above two Cases are not enough to
include all possibilities since the resulting Problem ( PR ) may be infeasible for

each fixed yeYNV. In fact, later we can see how this case will be used
frequently to remove the relaxed but infeasible region of the original problem,
but first we introduce this additional case into above condition, as

Case iii: The resulting Problem ( PR ) is infeasible.

For the practical application problems, the objective function is always bounded.
Then, in this paper, we consider only the Cases i and iii, that is to say, the
resulting Problem ( PR ) is feasible or infeasible. The following theorem tells the
relationship between the optimal solution of the relaxed Problem ( PR ) and the
original Problem ( P).

Theorem 2.2 Assume that Problem ( P ) is bounded. Then for each simplex S,

if the resulting relaxed Problem ( PR ) for any ye YNV, is infeasible, then the
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same is true for the original Problem ( P ). Otherwise, a lower bound u(S) of
f(x.y) over SAD, for any y eYNV, can be computed by u(S)=F", where

F" s the optimal solution of F(x,y) over SAD, forany yeYnV,.

Proof. For any yeY, since G,(x,y) is a convex underestimator of g, (x,y),
i.e.G,(x,y)<g,(xy), we have G,(x,y)<g (x,y)<0 for any xeD,, that is to say
xeD;. Then we get SnD, cSnD, for any yeY by noting D, cD;. By
using the same way, we get YNV, c YNV, for any xeS. If the resulting
relaxed Problem ( PR ) for any ye YNV, is infeasible, then SN D, is empty
for any yeYnV,. Obviously, we have S~ D, which is empty for any
yeYnV,.

For the second claim, by virtue of F(x,y)< f(x,y) at xeSnD, for any
yeYnV,, we have

F’ =nx1iyn{F(x,y),xeSmDG andermVG}SF(x,y),xeSmDG andye YNV,

Sf&ylxeSmDGmMerFW%Sf@ylxeSngwdermVé

It states that 4(S)=F" is a valid lower bound of f(x,y) over SnD, for any

yeyYnr,. ]

It should be noted that the original Problem ( P ) may be infeasible even when
the relaxed Problem ( PR ) is feasible since the latter is always overestimated in
practical applications. The above theorem only provides a qualitative way of
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obtaining a valid lower bound of f(x,y) over S D, forany yeYnV,. Since

the constraint set for the binary variables is implicit, and the complete
enumeration is 27 in worst case, then we can see this number grows
exponentially and becomes drastically large with the increase of the number of
binary variables. Another difficulty of using above theorem to get a lower bound

is that the resulting Problem ( PR ) is feasible for some yeYnV,, but

infeasible for the other. Then, the proposed scheme should be capable of
discriminating all feasible cases and find the optimal solution among them. In
order to overcome all these difficulties, the projection idea is used by virtue of
the dual representation and relaxation in the GBD method. But, first we give the
following theorem to ensure that the lower bound obtained by Theorem 2.2 is
always bounded from below and has a monotonic property for the continuous
variables, which is a necessary condition for the convergence of the branch and
bound algorithm on the global solution.

Theorem 2.3

(a)Let S' and S* be two simplices satisfying S* cS'. Then, y(82)2 ,u(S‘).

(b) If Problem ( P) has a feasible solution, then u(S)>-o for each ScS°.

Proof.
(a) Let D; and D} be subsets of ®" defined by

D, :{XGSR" : G'(x,y)<0 forsomey EY}

D} ={xeSR” 1 G (x,y)<0 forsomeer}

where, the underestimation functions are generated over two simplices S' and

8* , respectively. Let ¥} and 7 be two subsets of binary set B’ defined by

V= {y e BY :Gl(x,y)sﬂ, forsomexeS}
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Ve = {y eB’:G’(x,y)<0, forsomexeS}

Since S’ < §', and by virtue of the argument of the Proposition 2.2.2 of Zhu and

Kuno (2001 ), forany yeY we have

F'(x,y)<F’(x,y) and G!(x,y)<G*(x,y) for i=1,..,m
Then, we have D; 2 D;,and ¥V; o¥7. Since S* <!, finally we get
u(sz)='nxq’iyn{F2(x,y):xes2 ADLyeYnV2)z min{F'(x.y):xeS' A DY,y e Y AV }= uls')

( b ) From ( a ), we need only to show that ,a(SO)> —co . This bounded property

follows from the fact that the relaxed programming problem of Problem ( P(S))
over the initial simplex S°, i.e. Problem ( PR(S°) ) is convex for each fixed

yeYnV,. Then, this problem has an optimal solution, which implies that

,u(SO)>—oo. []

2.2 The revised GBD method for the relaxed MINLP Problem ( PR )

The relaxed Problem ( PR ) can provide a lower bound of the original Problem
( P ) over the current simplex if it is feasible. Otherwise, it can facilitate to
remove that simplex with the branch and bound algorithm progress. However,
complication arises due to the joint natures of binary and continuous variables in
the relaxed Problem ( PR ). The complete branch and bound algorithm uses
continuous relaxation with respect to the integer variables, and then solves the
continuous convex NLP to generate the lower bound. But, it is quite inefficient
if the integer variable number is slightly big. Then, a more intellectual way is to
use the Lagrange relaxation presented by Benders ( 1962 ) and Geoffrion
( 1972 ) for MILP or MINLP, respectively. In this section, the General Benders
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Decomposition, i.e. GBD method, is revised to handle above mentioned
difficulty, which consists of two basic operations, the Primal Problem and the
Master Problem, to obtain the upper bound and lower bound of the relaxed
Problem ( PR(SY)), respectively, at each iteration over the current simplex.

2.2.1 The Primal Problem of the relaxed Problem ( PR(S"))

The Primal Problem results from fixing the binary variables y to a particular

0-1 combination, which is denoted as y' where 7 stands for the iteration counter

of the GBD method. The formulation of the Primal Problem ( PRSk(yt) ), at
iteration ¢ over subsimplex S* is given as

(PRS'(y)) min Flxy)

s.t. Gi(x,y’)s() i=12,..,m

xeSF = R”

Obviously, this problem is convex due to the Conditions i in the former section.
However, we have to distinguish two possible cases, i.e. feasible and infeasible,
according to the relaxed Problem ( PR(S¥) ). If the relaxed Problem ( PR(SY) ) is
infeasible, of course the Primal Problem ( PRSk(yt) ) is infeasible too. But, the
relaxed Problem ( PR(SY) ) is also possible to be infeasible even when the Primal
Problem ( PRS*(y") ) is feasible, since unsuitable binary variable vector may be
chosen to be fixed. However, these two cases are unable to be distinguished
immediately now, then they are treated here together. When the Primal Problem
( PRSN(y") ) is feasible, then its solution provides information on x', and

F(x’,y’), which is the upper bound of the relaxed Problem ( PR(S) ), and the

optimal multiplier vector 2 for the inequality constraints. Then, the Lagrange
function for the feasible case can be constructed as

L%y, 2)= F(x )+ 4G, (x.y)

i=]
If the Primal Problem ( PRS (y") ) is detected by the NLP solver to be infeasible,
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then the perturbation theory is used to generate a maximal integer cut to remove

this combination of the binary variables. The / -minimization problem, i.e. the

sum of constraint violation, can be formulated as

(FP(2)) min Ya

st Gi(x,y’)Sai i=12,...,m
xeS* cR"

;20 i=12,...,m

Note, this minimization problem, denoted as ( FP(«) ), is convex over all
variables, and a feasible point has been determined if the minimum of the

objective function is zero, i.e. Y @ =0. The solution of above feasibility

i=1

problem provides information on the Lagrange multiplier vector for the

inequality constraints, which are denoted as u so as to distinguish from the

feasible case. Then, the Lagrange function for infeasible case can be constructed
as

Lixy, 1) => 1,G,(x,y)
i=1

2.2.2 The Master Problem of the relaxed Problem ( PR(S¥))
The derivation of the master problem in the GBD method makes use of the

nonlinear duality theory, and can be characterized as minimization of the dual
representation of the projection of the relaxed Problem ( PR(S¥) ) on the

y -space over the dual representation of V. First, we see the projection of the

relaxed Problem ( PR(S") ) onto y -space, let v(y) be defined as
v(y) =inf F(x,y)

15



s.t. G,(x,y)SO i=12,..,m

xeS" cR"

where v(y) is parametric with respect to the binary variable vector. Then, the

relaxed Problem ( PR(SY) ) can be rewritten as

(PR(y))  min »(y)

st.yeYnVy,

which is denoted as Problem ( PR(y) ). It should be noted that the definition of
v(y) is infimum with respect to x since for given y the inner optimization

problem may be unbounded, and its value corresponds to the optimal value of

the relaxed Problem ( PR(SY) ) for fixed y. Then, the Problem ( PR(y) ) is the

projection of the relaxed Problem ( PR(S¥) ) onto the y -space. It can be shown

that this projected problem ( PR(y) ) is equivalent to the relaxed Problem
( PR(SY) ) ( Geoffrion, 1972; Floudas, 1995 ). Since we always assume that the
Problem ( P ) has a solution, then the unbounded case is not needed to be
considered in this paper according to the Proposition 2.1. Then, the dual

representations of 7, and v(y) are presented as follows:

{ermVG}sier:max minL(x,y,,u)gOi ( 2 )
420 xeSF
and |
v(y) = max mgl L(x,y,/l), VyeYnV, (3)

According to the strong duality theorem ( Geoffrion, 1972 ), those two dual
representations are satisfied by virtue of the Conditions 1, 2 and 3. However, the
Lagrange functions used in above dual representations involve the maximization
over all multipliers. Hence, the relaxation of them will represent only the lower
bounds of those Lagrange functions by dropping a number of constraints. For

16



example, the Lagrange multipliers calculated in the Master problem are used
here to construct the following relaxations, as

{YmVG}g{ermVG’}Eier:mgPL(x,y,,u’)sO} (4)
and
W)z v (y)=minZ{xy, 2} vy e Y 7, (5)

Then, obviously the following optimal problem, denoted as the Problem
( PR(y") ), will produce only a lower bound of the relaxed Problem (PR(S)), as

(PR(y)) min y,

yeY.y,

st mgl L(x,y,/lp)s Yo p=L.,p'
min L(xy,x')<0 I=1..0'

xeS

where, y, is a scalar introduced to represent the lower bound of the relaxed

Problem ( PR(SY) ), and p'+I' =¢ since the primal Problem ( PRS(y") ) is

possibly either feasible or infeasible. It should be noted that the integer
constraint generated in the current iteration, no matter the primal Problem is
feasible or infeasible, will be introduced into the next iteration. Since we cannot
certainly find a feasible binary combination of the primal Problem at each
iteration, or no any feasible one exists at all for a infeasible primal Problem, then
the following feasibility problem is introduced to aim at searching a feasible
binary variable, or adding a more compact integer cut in the Problem ( PR(y") ),

(FP(5))  min p

st min L(x,y, i ) <

xeS¥

0
min L(x,y,,u’)s B

xeS

20

If the minimum objective function value is zero, i.e. =0, then the solution of
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above optimal problem, denoted as ( FP( ) ), provides a binary combination for

the next iteration. Otherwise, the iteration terminates since it tells that the
relaxed Problem ( PR(SY) ) is infeasible, then there is no need to fathom the
current subsimplex further. The following theorem ensures this relationship, as

Theorem 2.4  If the feasibility Problem ( FP(J) ) terminated at some iteration

is infeasible, then the same is true for the relaxed Problem ( PR(S") ) and vice
versa.

Proof. If the relaxed Problem (PR(SY) ) is infeasible, then the set vV, is empty.

Hence the binary subset iye Y : max min Z(x,y, z) < O} is empty by virtue of the

420 xeS¥

strong dual theory on the basis of the Conditions 1, 2, and 3. If the feasibility

Problem is always feasible, then finally we have a multiplier vector z° and a

binary variable vector y" satisfying
L(x*,y*,,u*)s()
where, x" is the optimal solution of mgl;ll,(x,y*, ,u*)so. Obviously this

contradiction implies that the feasibility Problem ( FP(g) ) will terminate

finitely and be infeasible.

Conversely, if feasibility Problem ( FP(p) ) terminated at iteration ¢ is

infeasible, then the following set

{y € YmVG’}z {y eY: IgelipL(X,y,ﬂ/)S 0,i =1,...,t;

is empty. Then, the relaxed Problem (PR(SY) ) is infeasible since its constrained

set, i.e. {y eYNV, YN VG’} is empty according to Eq.4. L]
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2.2.3 Algorithmic procedure of the revised GBD for the relaxed Problem
(PR(S")) |

The revised GBD procedure for the relaxed Problem (PR(S¥) ) can now be stated
formally with the consideration that above relaxed Problem is completely
infeasible over the current subsimplex. It should be noted here that Geoffrion
( 1972 ) did not include the infeasible case, but we assume that the relaxed
Problem always has a bounded optimal value if it is feasible.

Procedure of the revised GBD

Step 0. Initialization. Set the current upper bound UBD be a very large
positive value, and let the current lower bound LBD be the negative value of
UBD. Set the feasible and infeasible counters p=0, /=0, respectively. Then.

select the convergence tolerance &°>0 and feasibility tolerance &' >0 .

Choose an initial point y'eY and set the counter r=1.

Step 1. Solve the primal Problem. Solve the resulting primal Problem
( PRS(y") ). If the NLP solver verifies that above Problem is feasible, then set

p < p+1, and the optimal primal solution x” and the optimal multiplier vector

A7 are obtained. Compute the current upper bound UBD = min{UBD, f (xp,y")};
Otherwise, set /<« /+1, and solve the feasibility Problem ( FP(«) ), then obtain

the multiplier vector u°.

Step 2. Solve the relaxed master Problem. If p>1, solve the relaxed master

Problem ( PR(y") ), as

min y,
yeY.y

st mgp L(x,y,/?f)s Yo i=Ll..,p
mg‘l L(x,y,,uj)so j=1,.,1

]
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Note here, the second constraint vanishes if 7=0. Then we get y, and y’, and

set the current lower bound LBD =max{LBD,y,}. Check if UBD-LBD<s, yes,

then terminate the iteration and the solutions of the relaxed Problem ( PR(SY) )

are {x",y”} and UBD. Otherwise, set 1« ¢+1 and let y' =y’, return to Step 1.

If p=0, solve the relaxed feasibility Problem ( FP(3) ), as

min f
s.t. min L(x,y,yi)ﬁ 0 i=1..,1-1

xes*

min L(x,y,,u’)s p

xeS

=0

We get g and y”.If B>¢/, terminate and the relaxed Problem ( PR(SY) ) is
infeasible over the current subsimplex. Otherwise, set 7« ¢+1 and let y' =y7,

return to Step 1. ]

The following theorem ensures that above revised GBD algorithm converges
finitely no matter the relaxed Problem ( PR(SY) ) is feasible or not, as

Theorem 2.5 Assume that Y is a finite binary set, that the representations of

Ve and Wy) are held based on the strong duality theory. Then, the above

revised GBD procedure terminates finitely for any given &°>0.

Proof. If the relaxed Problem ( PR(SY) ) is infeasible, then the above GBD
procedure has finite termination thanks to the integral finiteness of Y and the

fact that no y” can repeat itself in a solution of the relaxed feasibility Problem

( FP(p) ), which is manifested by introducing a additional integer cut obtained
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from the infeasible primal Problem, i.e. the feasibility Problem ( FP(«) ), into

the constraint set of the relaxed feasibility Problem ( FP(8) ). If the relaxed

Problem ( PR(SY) ) is feasible, then the feasible y’ can not be repeated unless

the convergence criterion is satisfied ( Geoffrion, 1972 ), which is implied by
introducing a additional optimality integer cut generated from the feasible
primal Problem into the constraint set of the relaxed master Problem ( PR(S9).
Finally, the worst performance of the above procedure could be the complete

enumeration of the integer elements in Y, which is finite. (]

Remarks.

In Step 2 of the above GBD procedure, a rather important assumption is that we
can always find the solutions of the inner optimization problems for the given
multiplier vectors in the relaxed master Problem ( PR(y') ), or the relaxed

feasibility Problem ( FP(p) ). However, the determination of those solutions
cannot be achieved in general, since they are always parametric functions of

binary variable vector y obtained from the solutions of the inner optimization

problems. Their determination method in general requires a global optimization
approach, but there exist a number of special structures for which the solutions
of those inner optimization problems can be obtained explicitly as functions of

binary variable vector y. For the MINLP problem widely encountered in the

chemical engineering processes, as described by Problem ( P(ChE) ), the inner
optimization problems can be explicitly obtained by its relaxed formulation
using a further relaxation. Now, if we have got the multiplier vectors being A

or u for feasible or infeasible primal problems, respectively, then the inner

optimization problems generated in the relaxed master problems ( feasible or
infeasible ) for the Problem ( P(ChE)R ) are represented as

mxin {F(x)-k c'y+ il, (Gi(x)+ C,.Ty)} < ¥
i=1
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min {Z,u( (x)+CTy )}so

Since the binary variable vectors are separable from the continuous variables,
and the optimal multiplier vectors are always nonnegative, then we can
reformulate above two inner optimization problems into the following more
explicit forms, as

mln{ Zﬂ (x}+c y+2/1 'y <y, (6)

or

min {ﬁuzc,(x)}wuiuidyso (7)
X i=1 i=1

According to the Definition 2.2, we know that all of the relaxed continuous
functions are convex, then their minima over the current subsimplex can be
calculated by any NLP solver. Hence, by replacing those constraints in the
master problems with above further relaxations, we have the explicit
formulation with respect to only the binary variable vector. The nonconvexity
arisen by the joint continuous and binary variables need to be handled to
generate a valid and global integer cut described in Problem ( PR(y') ) for
feasible or infeasible case, respectively. Then, the following theorem ensures
that the revised GBD method proposed above can identify the global solution of
the Problem ( P(ChE)R ), if it is feasible.

Theorem 2.6 The revised GBD approach converges on the &°-global solution of
the Problem ( P(ChE)R ).

Proof. Since the Problem ( PR(y) ) can be equivalently expressed by the strong

dual representations, i.e. Eqs.2 and 3, for its objective function v(y) and

constrained set 7, and Eqs.4 and 5 are valid relaxations for above two

equations, then we only need to show that the resulting Eqs.4 and 5 are convex

or linear with respect to y for the global convergence of the revised GBD
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approach of the Problem ( P(ChE)R ), since the relaxed master problem provides
a global underestimation for the Problem ( P(ChE)R ). In fact, Eqs.6 and 7 are
the corresponding formulations of Egs.4 and 5 for the Problem ( P(ChE)R ), and

it is obvious to observe that these two constraints are linear with respect to vy.
Then, the revised GBD approach converges on the &°-global solution of the

Problem ( P(ChE)R ). []

In fact, the structure of the MINLP problem can be extended from the separable

type, i.e. f(x)+c’y, into the bilinear type, i.e. x"y, and partly linear type, i.e.

y'f(x), according to above theorem. For the latter two ceases, the inner

parametric optimization problems can be relaxed further by noting the
nonnegativity of the binary variable. If we can generalize the last two structures

as Zq: f.(x)y,, then its further relaxation is zq:min{F,. (x)ly,, where F(x) is the
i=1 X

i=1

convex underestimation function of f,(x) over each continuous domain.

2.3 Hybrid branch and bound and GBD procedure for MINLP

Before we present the full procedure of the hybrid branch and bound and revised
GBD algorithm for the nonconvex MINLP problems, the two other necessary
basic operations in a branch and bound framework should also be illustrated, i.e.
the branching procedure for the domain of the continuous variables and the
upper bound calculated over each subsimplex generated in above partition
process. For the branching procedure, the well known simplicial partition often
used in global optimization ( Zhu and Xu, 1999; Zhu and Inoue, 2001; Zhu and
Kuno, 2001 ) is applied here. In order to guarantee the convergence of the
branch and bound algorithm on the global solution of the nonconvex MINLP
problem, the exhaustiveness of the simplicial partition has to be satisfied. In this
paper, the typical exhaustive partition process, i.e. the simplicial bisection, is
used, where the longest edge of the current simplex is always divided into two
parts in terms of its length in order to construct two subsimplices for the
potential fathoms. The detailed description of this kind of partition is given in

23



Zhu and Kuno ( 2001 ), which is not given here for the sake of the space
limitation.

For the calculation of a rigorous upper bound over the current simplex, the
nonconvex MINLP is solved locally for the Problem ( P ) without any
convexification by using the GBD method ( Geoffrion, 1972 ). It should be
noted here that it is not certain to obtain an upper bound in this way, especially
when the current subsimplex is infeasible for the MINLP. But during the
progress of the branch and bound procedure, the obtained upper bounds is
updated so as to get a nonincreasing sequence to converge on the global solution

- of the MINLP, and the concerned discussion about this convergence is presented
in the latter part.

Now, we are in a position to describe the proposed branch and bound
algorithm for solving the nonconvex MINLP based on above basic operations,
especially the convexification techniques embedded in the QBB algorithm, see
the Appendix, and the revised general Benders decomposition, i.e. revised GBD,
introduced in the above sections, provided that an initial simplex is available for
the continuous variables in the original nonconvex MINLP problem. Of course,
the last condition is not necessarily given in the MINLP problem, but as we have
pointed out in Zhu and Kuno ( 2001 ), this simplex can be constructed by using
an Out Approximation ( OA ) method according to the physical or insightful
bounds of those continuous variables.

The hybrid Brach and Bound and GBD procedure for nonconvex MINLP
problems

Step 1 - Initialization. A convergence tolerance, ¢, and a feasibility

tolerance, ¢,, are selected and the iteration counter k is set to be zero. The

initial simplex with respect to the continuous variables is given as §°, which is
known a prior or able to be computed by an OA method. The global lower and

upper bounds x4, and y, on the global minimum of the MINLP Problem (P)

are initialized and an initial current point (x"’c,y"’c) is randomly selected.

Step 2 - Local solution of Problem ( P ) and update of upper bound
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The MINLP Problem ( P ) is solved locally by the GBD method within the
current simplex S. If the solution f*, of the MINLP Problem (P)is

¢, -feasible, then the upper bound y, isupdated as y, = min(yk_l, f,fca,).

Step 3 — Partitioning of current simplex

The current simplex, $*, is partitioned into the following two simplices

(r=1,2):

k,m kil
k1 £,0 gm o VAV ko
S™ = V& LV —

2

Vk,m +Vk,l
$“? = V"’°,...,————2 R N

where, (k,m) and (k.7) correspond to the vertices incident to the longest edge

)

in the current simplex, i.e. (k,m), (k,/)= argmax{“Vk’j — Vi

i<j
Step 4 —~Convexify the MINLP inside both subsimplices r=1, 2

The nonconvex functions in the objective function and constraints with respect
to the continuous variables are convexified to obtain the relaxed MINLP

Problem ( PR ) inside both subsimplices r=1, 2 according to the methods

presented in the Appendix.
Step 5- Solutions inside both subsimplices r=1, 2

The relaxed MINLP Problem ( PR ) is solved inside both subsimplices
( r=1, 2 ) by using the revised GBD method. If a solution F} is feasible and

sol
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less than the current upper bound, y,, then it is stored along with the solution

point (xi.y%;).
Step 6 — Update iteration counter k and lower bound 4,

The iteration counter is increased by one,

k<—k+1

and the lower bound g, is updated to the minimum solution over the stored

ones from the previous iterations. Furthermore, the selected solution is erased
from the stored set.

,le — Fk',r'

sol

sol sol »

where, F¥ = miIn{F,”’ r=12, I=1,...k—1}. If the set  is empty, set x, =7, and

go to Step 8.

Step 7 — Update current point (x"’c,y"’c) and current simplex S*

The current point is selected to be the solution point of the previously found
minimum solution in Step 6,

ke _keY_ | 1.F 'y
(X Y )_(Xsal > Y sol )

and the current simplex becomes the subsimplex containing the previously
found solution.

Step 8 — Check for convergence

If (y,—~u)>e., then return to Step 2. Otherwise, &,-convergence has been
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reached. The global minimum solution and solution point are given as:
f1« £, and (x*,y*)e— (xc”‘",y”’k")

where, %’ :arg,{fc” =7k}, I=1,., k. L]

Remarks: In the above proposed hybrid branch and bound and revised GBD
algorithm, the two kinds of nonconvexities are handled separately, i.e. the
nonconvexity introduced by the continuous functions is overcome by using
relaxations in the branch and bound framework by virtue of the quadratic
function based underestimators, and latter caused by the natures of the joint
continuous and binary variables is resolved in the revised GBD approach on the
basis of the relaxation by using the strong dual theory. Then, the global
convergence of above hybrid algorithm depends not only on the construction of
the valid underestimators for any twice-differentiable continuous functions, but
also the favorable structures of the MINLP problem with respect to the
continuous and binary variables. Hence, this algorithm is not universally reliable
for any kind of nonconvex MINLP problems, but for those that their special
structures can make the revised GBD converge on the global solution of each
subproblem within the branch and bound framework, such as the formulation
discussed above in the chemical engineering field, i.e. the Problem ( P(ChE)R ).
It should be noted that the current simplex can be deleted in Step 5 when either
the relaxed Problem ( PR ) is infeasible or its solution is greater than the current
best upper bound. The former is justified by solving the introduced feasibility
problem in the revised GBD approach, then that subsimplex is removed
immediately after knowing the infeasibility. The latter depletion is valid since
the global minimum can never happen in this simplex for the lower bound
computed over this simplex is already greater than the current best upper bound.

If the hybrid algorithm terminates at iteration £, then the point (x" " ) is an

optimal solution of the MINLP Problem ( P(ChE) ). In the case that the hybrid
algorithm is not finite, it generates at least one infinite sequence of simplices

{S’ } for continuous variables such that 8/*' =8/, forall ;. The convergence of

the hybrid branch and bound and GBD algorithm is guaranteed in terms of the
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following theorem, as

Theorem 2.7  Assume that Problem ( P(ChE) ) has a feasible solution. Further,
assume that the hybrid branch and bound and GBD algorithm generates an

infinite subsequence of simplices {S’} Jor continuous variables such that
S eS’, for all j, and l_ime:me:{x*}. Then, (x*,y*) is an optimal
J—>o -1

solution of the MINLP Problem (P(ChE) ), where y* is the integer solution of
the MINLP Problem (P(ChE) ) at the fixed x".

It should be noted that above theorem does not claim for any MINLP problem,
since the nonconvexity arisen by the joint natures of the continuous and binary
variables always leads to local solution in the GBD step for solving the relaxed
problem within the branch and bound framework. However, this difficulty can
be avoided by virtue of the favorable structure of the Problem ( P(ChE) ). The
proof of the above theorem can be attained by the classical convergence
conditions ( Horst, Pardalos, and Thoai, 1995; Zhu and Kuno, 2001 ) of the
branch and bound framework on the basis of the exhaustive partition of the
constrained region and the monotonicity of the lower bound stated in Section 2.1.

Finally the global integer solution, i.e. y°, can be manifested by Theorems 2.5

and 2.6 if the three kinds of favorable structures in chemical processes are
assumed in the nonconvex MINLP formulation.

3. Computational study of the hybrid branch and bound and GBD
algorithm

A very small MINLP problem for process synthesis used here has ever appeared
in the literature as a typical test example ( Kocis and Grossmann, 1988; Floudas,
Aggrwal, & Ciric, 1989; Ryoo and Sahinidis, 1995 ). To illustrate the global
convergence of the proposed algorithm in this paper, let us describe all possible
cases possibly happened during the iterations of this problem.
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min 2x+y

XYy

st. 125-x*—y<0
x+y<1.6
0<x<1.6
y={0.1}

The nonconvexities arise in two aspects from above problem, one is the joint
nature of the binary and continuous variables, the other is caused by the
continuous concave function, i.e. -x2, appeared in the first constraint. The latter
is solved by a continuous relaxation, i.e. to replace this concave function by its
convex envelope, see Appendix, over each simplex in a branch and bound
framework. And the former difficulty is overcome by the method provided by
the revised GBD in terms of the linear joint structure of the continuous and
binary variables in the relaxed problem. '

Iteration 1. £,=&,=0.001, k=0, S=[0.0, 1.6], 4,=100, y,=-100.

Iteration 2. We first fix the binary variable y being 0, we have the following
NLP problem, as

min 2x
st. 125-x2<0

x<1.6
0<x<1.6

Solve this nonconvex NLP, we get the minimum solution at x=1.118 with

/=2.236. Then, the upper bound of the branch and bound algorithm, 4, is
updated to be 2.236.

Iteration 3. Divide the interval of the continuous variable, i.e. [0.0, 1.6], into two
subintervals, i.e. [0.0, 0.8] and [0.8, 1.6].

Iteration 4. The two relaxed problems in above two subintervals are obtained by
replacing the concave functions by their convex envelopes in each subinterval,
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given in the Iteration 5 as well as their solutions solved by the revised GBD
method.

Iteration 5. Let us first see the relaxed problem in the subinterval [0.0, 0.8].

Iteration 5.1.

min 2x+y
X,y

st. 1.25-08x-y<0
x+y<1.6
0<x<0.8

y=1{0.1

Then, by using the revised GBD method, we can get the global solution of this
problem.

Stepl. 0, UBD=100, LBD=-100, p=0, /=0, £‘=¢/=0.001, and ¢=1.

Step 1.1, fix y=0, we get the resulting convex ( linear) problem, as

min 2x

st 1.25-0.8x<0
x<1.6
0<x<0.8

However, this problem is infeasible. Then, /=1, and we solve the following
feasibility problem, as

min o, +a,

st 125-08x-a, <0
x-1.6-a, <0
-a, <0
-a, <0
-x<0
x-08<0

By using the KKT condition of above problem, we get the Lagrange multipliers
2— 3, 4_ 5

as 4'=1.0, p’=p*=p'=4*=0.0, 4°=0.8.
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Step 1.2. Since p=0, then we solve the following feasibility problem

min
v.B ﬂ

st. min {1.25-0.8x—y}< fp

0<x<0.8

B>0
y={.1}

We get the solution y=1. Then go to Step 2.1, we have the resulting primal
problem, as

Step 2.1
min 2x+1
st. 0.25-08x<0
x—-0.6<0
-x<0
x—0.8<0

Solve this convex, in fact linear problem, we get the minimum solution at
x=0.3125 with f=1.625. Then, the upper bound of the GBD method, UBD, is
updated to be 1.625. And the Lagrange multiplier is A'=2.5, A2=1=4*=0.0.
And set p=1, go to Step 2.2.

Step 2.2. Since p=1 and /=1, then we have the following master problem, as

min y,
Y:Yo

st. min 2x+y+2.5x(1.25-0.8x - y)} < y,

0<x<0.8

min {1.25-0.8x—-y}<0

0<x<0.8

Yo 20

y=1{0.1}
Solve this problem, we get y=1, and y,~1.625. Then, the lower bound of the
GBD method, LBD, is updated to be 1.625. Now, since UBD-LLBD<0.001, then
the revised GBD approach terminates at {0.3125, 1} with f=1.625.
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Iteration 5.2. Now let us see the relaxed problem in the subinterval [0.8, 1.6].

min 2x+y

X,y

st 253-24x-y<0
x+y<1.6
0.8<x<16
y={0.1

By virtue of the same GBD procedures as above, we can get the global solution
of this problem at {1.054, 0} with /~=2.018.

Iteration 6. Now the iteration counter of the branch and bound algorithm
increases by one, i.e. k=1, and the lower bound of the branch and bound

algorithm, y,, is updated to be 1.625 in the subinterval [0.0, 0.8]. Since above

lower bound is less than the upper bound by a value greater than 0.001, then this
subinterval will be further fathomed by the depth-first branching rule. Here, we
neglect some detailed steps of the branch and bound, and directly jump back to
the Step 2 for deeper search. Since the subinterval [0.0, 0.8] will be divided into
two subintervals [0.0, 0.4] and [0.4, 0.8], then we describe the procedures in the
first subinterval so as to demonstrate how the algorithm can remove the
infeasible region in the GBD step.

Step 4.5. The MINLP problem in the subinterval [0.0, 0.4] is given as

min 2x+y
X,y

st. 125-x*-y<0
x+y<1.6
0<x<04

y=1{0.1}

Then its relaxed problem can be obtained as
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min 2x+y
Xy

st. 1.25-04x-y<0
x+y<1.6
0<x<04
y={0.1}

Step 4.5.1, fix y=0, we get the resulting convex ( linear) problem, as

min 2x

st. 1.25-04x<0
x<1.6
0<x<04

- However, this problem is infeasible. Then, /=1, and we solve the following
feasibility problem, as
min «a, +a,
st 1.25-04x—-¢, <0
x-16-a,<0
-o, <0
-a, <0
-x<0
x-04<0

By using the KKT condition of above problem, we get the Lagrange multipliers

as w'=1.0, p*=p*=p'=4"=0.0, 1°=0.4.

Step A.5.2. Since p=0, then we solve the following feasibility problem

min
v.p 'B

st.  min {1.25-0.4x— y} <p

0<x<0.4

B>0
y=1{0,1

We get the solution y=1. Then go to Step 2.1, we have the resulting primal
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problem, as

Step A.5.1.1
min 2x+1
st 1.25-04x-1<0
x+1<1.6
0<x<04

However, this problem is infeasible. Then, /=2, and we solve the following
feasibility problem, as

min o, +a,
X,

st. 025-04x-a, <0
. x-06-a, <0
-a, <0
-a, <0
-x<0
x-04<0

By using the KKT condition of above problem, we get the Lagrange multipliers

as p'=1.0, =’ =p'=4"=0.0, u°=0.4.

Step A.5.2.2 Since p=0, and /=2, then we solve the following feasibility problem

min
v.B 'B

si.  min {1.25 —0.4x —y} <

0<x<0.4

0
min {1.25-0.4x— y}< g

0<x<0.4

>0
y=10,1}

But, this problem is infeasible. Then, by virtue of Theorem 2.4, we know that
the original MINLP problem over the current subinterval [0.0, 0.4] is infeasible
too. Hence, there is no need to further fathom this subinterval, then it is labeled
as a fathomed node in the progress of the algorithm. Now, we still have two
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subintervals over which the further searching is needed, i.e. [0.4, 0.8] and [0.8,
1.6] in order to know the location of the global minimum. In fact, some
subintervals in [0.8, 1.6] will be removed in the following iterative steps since
they generate lower bounds, which are greater than the incumbent best upper
bound in the branch and bound framework. Finally, the algorithm terminates at
the global solution {0.5, 1} with the minimal objective function value being 2.

4. Conclusion

A hybrid branch and bound and revised General Benders Decomposition global
optimization method is proposed in this paper for some nonconvex MINLP
problems. The twice-differentiable condition for the continuous function of the
MINLP problems are used to construct the valid convex quadratic
underestimation function over a simplex in order to overcome the nonconvexity
in the continuous domain. Then, the global solution of the MINLP problems
often encountered in chemical processes can be identified provided that the
favorable structure of the combinatorial features of the continuous domain and
binary domain can ensure the convergence of the revised GBD on the global
solution of the relaxed MINLP problem generated over the continuous domain
in each iteration of the branch and bound algorithm. In this paper, the separable

structure type, i.e. f(x)+c"y, the bilinear type, i.e. x”y, and artly linear type,
yp P p y

ie. y'f(x), are analyzed to resolve the nonconvexity arisen by the joint

continuous and binary domains. Hence, the revised GBD method can not only
identify the global solution of the relaxed MINLP problem reliably when it is
feasible, but also detect the infeasibility over the current subsimplex effectively.
Consequently, that subsimplex is removed with the progress of the branch and
bound framework efficiently. A very simple, but typical example with concave
continuous function and separable combinatorial structure is presented in this
paper to demonstrate all possibilities discussed in the hybrid branch and bound
and revised GBD algorithm. The efficiency comparison of this hybrid approach
with others, especially with the complete branch and bound type, needs the
implementations for large process design and synthesis MINLP problems in the
chemical engineering field, which are still under development.
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Appendix. Underestimators for different nonconvex functions

I. Underestimator for convex/ linear function structure

For the convex/linear function structures, denoted by f¢(x) or f*(x),

obviously their convex envelopes are themselves. Then, they will preserve their
original forms in the final underestimators for the objection function and the
constraints.
II. Underestimator for concave function structure

For the concave function structures, denoted by f(x), and S being a

simplex generated by the wvertices V° , V' , .., V' , e

n+l n+l

$= {X €eR":x=> AV, 220, 4 =1} , then the convex envelope of f™(x)
i=] i=1
over 8 is the affine function L°(x)=b"x+c which is uniquely determined by

the system of linear equations 7~ (V"')z b’V +c for i=0,..,n.

III. Underestimator for general quadratic function

The general quadratic function is presented as
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Fe(x)=x"Qx+q"x+y

Since H,(x)=Q is constant matrix, then we have the diagonal underestimation

matrix, A, constructed as

a =maxl{ 0,1/1?}
2

for the uniform case, or for the non-uniform case, we get

-

Then, we have the quadratic underestimation function as

Fo(x)=x"Ax+b"x+c

where, the linear and constant coefficients, i.e. (b.c), can be uniquely

determined by the system of linear equations f Q( ! )—V'TAV" =b'V'+¢ for

i=0,..,n,and V°, V' ... V" arethe vertices of the simplex S.

IV. Underestimator for twice-differentiable nonconvex function

For the twice-differentiable nonconvex function, denoted by f (x), we

have the diagonal underestimation matrix, A, constructed as
1
a 2 maxy 0, —2-max,xES / ( )

for the uniform case, or for the non-uniform case, we get

J#E

o> max{ 0, %maxxes{ IED LA )(} }
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Then, we have the quadratic underestimation function as

F¥(x)=x"Ax+b"x+c

where, the linear and constant coefficients, i.e. (b,c), can be uniquely

determined by the system of linear equations £*(V/)=V AV =b’V' +¢ for
y y q

i=0,.,n,and V°, V' ..., V" arethe vertices of the simplex S.
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