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Abstract

Distributed and networked computers can share job processing in the event of
overloads. Load balancing involves the distribution of jobs throughout a system of
networked computers, thus increasing processing capacity of the system without hav-
ing to obtain additional or faster computer hardware. Load balancing policies may
be either static or dynamic. In general, dynamic policies are more complex and have
more overhead than static ones, and truly optimal dynamic policies are known only
for special systems. This study focuses on performance comparison between static
and dynamic load balancing policies in a distributed computer system where truly
optimal solutions of both dynamic and static policies have been characterized. The
system consists of two types of service facilities, a Mainframe node and an unlimited
number of Personal Computer nodes. Overheads due to the policies are assumed to
be negligible. We investigate the [L, ] threshold rule that has been already proposed
as a dynamic load balancing policy. The results show that, in the model examined,
the dynamic load balancing policy outperforms the static one in the system mean
response time, at most about 30 percent. In addition, we see that, the minimum sys-
tem mean response time is obtained by the dynamic load balancing policy, i.e., the
[L, q] threshold) policy with ¢ = 0 and the suitable selection of the other threshold
parameter L. '

keywords Communication Networks, Distributed/Parallel Computer Systems, Computer
Systems Performance, Queueing Theory, Optimization, Load Balancing Policies.

1 Introduction

Distributed computing systems, such as networks of workstations or mirrored sites on the
World Wide Web, face the problem of using their resources effectively. If some hosts
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lie idle while others are extremely busy, system performance may fall significantly. To
prevent this, load balancing is often used to distribute the workload [21]. A large num-
ber of load balancing policies have been proposed to improve the performance of dis-
tributed/parallel systems (e.g., to minimize the mean response time of a job, to maximize
the processing capacity of the system) by efficiently utilizing the processing power of
the entire system. This is done by redistributing the workload among nodes. Although
a communication delay is incurred in transferring a job from one node to another, the
performance of a distributed computer system can generally be improved by an effective
load balancing policy [2, 12, 13, 14, 15]. Load balancing policies may be either static or
dynamic. ’

Static load balancing policies [3, 4, 6, 9, 10] use only the statistical information on
the system (e.g., the average behavior of the system) in making load-balancing decisions,
and their principal advantage is lower overhead cost needed to execute them and their
simplicity in implementation and their mathematical tractability. They do not, however,
adapt to fluctuations in workload. Under a situation where the system workload is statisti-
cally balanced, some computers may be heavily loaded at a given instant (hence suffering
from performance degradation), while others are idle or lightly loaded.

On the other hand, dynamic load balancing policies [2, 3, 10, 16, 17, 18, 19, 20]
attempt to dynamically balance the workload reflecting the current system state and are
therefore thought to be able to further improve the system performance. Thus, it would
be thought that, compared to static ones, dynamic load balancing policies are better able
to respond to system changes and to avoid those states that result in poor performance.
Obviously, the disadvantages of dynamic load balancing policies is that these policies are
more complex than their static counterparts, in the sense that they require information on
the runtime load and activities of state collection. The effect of occasionally poor load
balancing decisions and the potential for instability in dynamic load balancing because of
the inherent inaccuracy of system state information have been studied in [21].

In this paper, we consider dynamic and static overall optimal policies whereby job
scheduling is determined so as to minimize the system mean response time. The goal
of this paper is to examine to what extent the optimal dynamic load balancing policy
outperforms the static one by an exhaustive numerical investigation on a model for which
both policies are analytically studied. Optimal static load balancing policies have been
analytically studied in a variety of models for distributed computer systems [4, 5, 6, 7, 9].
On the other hand, as far as we know, optimal dynamic load balancing policies have been
studied only in very specific models: one is that of using an M/M/m queueing model [2],
and another is what is analytically studied in [1]. The latter is the model studied here that
consists of a Mainframe node Qpr and an unlimited number of Personal Computer nodes
Qpc. The dynamic load balancing policy considered in the model is the [L, q] threshold
rule whereby a job arriving at the Qpc node is forwarded to the Oy with probability 1
if the number of jobs staying at the Qur node is less than L, with probability ¢ if the
number equals L, and otherwise is processed by the Qpc node. The model allows us to.
have exhaustive numerical investigation to gain insight into the problem. The objective
of both policies is to minimize the overall system mean response time. We do not take
account of the difference in the overheads due to the policies.

While there have been some studies of performance comparison between dynamic and
static load balancing policies in more sophisticated models where overheads are consid-
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ered, the truly optimal dynamic policy is not accurately obtained in contrast to the model
considered here [3, 9]. The results obtained here show that, in the model examined, the
dynamic load balancing policy outperforms the static one in the system mean response
time, at most about 30 % and for the range of parameter values such that the arrival rate
is close to the processing rate of the Mainframe node. Another remarkable finding is that
the minimum system response time is achieved by the [L, g] threshold rule with g = 0.
That is, we need to choose only the proper value of L with ¢ fixed to be 0 in finding the set
of parameter values of the threshold rule that gives the minimum mean system response
time. :

This paper is organized as follows. Section 2 describes the system model of this paper.
Section 3 presents two optimal load balancing policies: static and dynamic. Section 3.2
shows that the minimum mean system response time is achieved by the dynamic load bal-
ancing policy, i.e., the [L, g] threshold policy with g = 0, and presents the algorithm used
to obtain the optimal threshold parameter L. Section 4 describes the results of numerical
examination. Finally, Section 5 summarizes this paper.

2 The System Model

We consider the model of a distributed computer system that consists of two types of
service facilities, a Mainframe node Qur and unlimited number of Personal Computer
nodes Qpc, both of which are connected by a communication network. We call this Sys-
tem model an MF-PC network model. We assume that the expected communication delay
between the Oy node and the Opc node is negligible. Jobs arrive at the system according
to a time-invariant Poisson process, i.e. inter-arrival times of jobs are independent, iden-
tically and exponentially distributed with mean 1/A. Simultaneous arrivals are excluded.
A job arriving at the system may be processed either by the QO node or by the Qpc node
according to load balancing policies. We assume that the service rate at Qy is u and that
its service discipline is first-come-first-served (FCFS), or processor sharing whereby the
service rate for each job equals v(n) = p/n when the number of jobs in the Qpr node
is n. The Qpc node offers a fixed expected service time 6~'. In the Qpc, service starts
immediately upon admission, and thus the mean response time is identical to the service
time. We assume that at both Qyr and Qpc, service times are independent, identically
and exponentially distributed.

3 Two Optimal Load Balancing Policies

In the following two subsections, we present optimal static and dynamic load balancing
policies and their solutions.

3.1 Optimal Static Load Balancing Policy

In this policy, the decision of transferring a job from one node to another does not depend
on the state of the system, and hence is static in nature. Also, we assume that a job trans-
ferred from one node to another receives its service there, and is not further transferred.
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Figure 1: A model of an MF-PC network system

In this section, we consider an optimal static load balancing policy that determines the
optimal load at each node so as to minimize the mean job response time in our system
model.

We use the following notation:

e Bur: Job processing rate (load) at the Q) node.

o Fuyr(Bur): Expected delay of a job processed at the Qyr node.

P
Fuus(Gu) < { B <

otherwise.
The problem of minimizing the mean system job response time is expressed as
minimize D(Byr)

= %[BMFFMF(ﬁMF) + (A= Bur)f'] M

with respect to By such that 0 < Byr < A.

Define By (0 < By < ) such that

_H
(1 — Bo)?

The optimal By is given as follows:

,BMF={’B° if Bo<A4,

=0

A if 1< Bo.



3.2 Optimal Dynamic Load Balancing Policy

By this policy, each arriving job may observe the current load in the Oy node, and then
choose whether to join the shared mainframe or to remain at the Qpc node. Also, the goal
is to minimize the mean system response time per job. Observing that the mean system
response time does not depend on the service discipline in the Qr node (PS, FCFS, etc.),
the problem reduces to that of a standard queueing control.

A class of threshold load balancing policies have been shown to be useful when jobs
are completely independent and consists of single threads of control. This situation is
fairly common in networks of workstations. Such threshold policies contain control pa-
rameters (e.g. threshold values and transfer probability for every host), that require fine-
tuning in order to yield optimal or near optimal performance. For the work on threshold
policies, the reader is referred to [2, 11, 12].

We use the [L, g] threshold rule as the dynamic load balancing policy. In this rule,
an arriving job will go to the Qur node with probability of, respectively, 0, g, and 1,
if the job finds that the Qyr node has, more than, equal to, and less than, L jobs. We
consider a formula E [W[L,q]] for the mean response time of the system with respect to

[L, q] threshold rule and minimize E [W[L,q]]. The mean response time of a job arriving
at the system with threshold [L, g, E [W[ L q]], is obtained as follows:

E|Wpg| = Po'+0a7,
where, if p # 1 (i.e. 1 # ),

P = Py(1-q+gp)h,
0 = Pop(—(L+ DPY(1 - p) + (1 = p**1)
(1-p)y?
+(L + 1)Pygp™!,
l1-p
1-pti(1 - q) - gp**?’

P0=

andif p =1 (i.e. 1= p),

1 L+ 1D(L+29)
T L+l+qg 7 2L+1+q)

(For the derivation of the above, see Appendix A.)

Proposition 1 The mean system response time is minimized by the threshold policy with
the value of threshold parameter q = 0.

proof: Note that the [L, 1] threshold policy is identical with the [L + 1, 0] threshold policy.

It is sufficient to show that, given A, u, #and L, E [W[L,q]] is monotonically non-decreasing
0

or non-increasing in g € [0,1]. That is, either %E [W[L,q]] > 0 for all g € [0,1],

0

8
%E [WLq] < 0forallg o, 11, or gl«: [WiLq|=0forallgeo,11.
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It can be shown as follows. Given 4, u, 6 and L, we have the following two distinct

Cases.

e Case (1): p=1(@G.e.A=pu)andg € [0,1)
e Case (2): p#1(G.e. A #u)andg € [0,1)
Case (1): p=1(.e.A=pu)and g € [0, 1]

1 L L+ DIL+29)
E = ! A
[Wq] CT+1+9. T Tal+1vg b
0E =22+ (Q2+3L+L*»9
dqg — 220(L+1+q)?

Case (2) p#1(.e. 2 # u)and g € [0, 1]

E[Wpg] = Po'+017",

where
l1-p
Py = :
’ 1-pH(1 - q) — gp™*?
—(L+ D1 = p) + (1 — pt*!
Q:P()p(( PN p)z( P
(1-p)
+(L + 1)Pogp™*',
P = Py(l-q+qp)p".
Hence,
OE PHCy - Cy)
dq — A6(1+ptti(g - 1) - gpt*2)>’
where

Ci = 6p(1+L-2p—Lp+p?),
C, = Ap-1)>~

@

3)

In both of the above two cases, the numerators of (2) and (3) are independent of g whereas
the denominators of (2) and (3) depend linearly on ¢ and remain positive for all ¢ € [0, 1].
We therefore see that E [W[ L,q]] is either monotonically non-increasing or non-decreasing

ing € [0, 1], given A, u, 8 and L.

Proposition 2 Given A, u, and 6, there exists L such that E [W,0,] — E[Wz_107] < O for

L<L ,
and E [Wi1] — E [Wiz_10] > O for L > L.

That is, the response time function decreases in L for 0 < L < L and increases in L

forL > L.



Proof: See Appendix B.

From the above two propositions, we easily see that, given A, u, and 6, the following
algorithm gives the minimum mean system response time and the minimum value of L
with g = 0 for the threshold parameters:

Starting from L = 0, while E [W,o] > E [W{1,1,0)], increase L by 1, and otherwise
stop. Then the [L, 0] threshold policy brings the minimum mean response time £ (WiLal-

Job processing rate at Q pc Node () is 1 : Fixed parameter

Mean response time Tg
COO0O0O0O~
ONM_O®O
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Job processing External job arrival
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Figure 2: The mean response time T by the static optimal policy for each combination
of the values of A and p. ‘

Job processing rate at Q PG node (0) is 1 : Fixed parameter

Mean response time T,

Job processing External job arrival
rate at MF node rate to the system
Log,( ) Logz(k)

Figure 3: The mean response time T by the dynamic optimal policy for each combination
of the values of 1 and pu.

4 Results and Discussion

We estimate the mean response time of the MF-PC network system for each combination
of the values of job arrival rate A to the system, job processing rate u at the Q. node,
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Figure 4: The improvement ratio in the mean response time by the dynamic policy over
the static policy for each combination of the values of A and p.

and job processing rate 6 at the Qpc node. Since we have only three system parameters
A, i and 6, we scale down @ to 1 and thus we have only two independent parameters. We
denote by Tp and T, réspectively, the mean response times of the dynamic and static
policies. ~

Figures 2 and 3 show the mean response time of the system by the static and dynamic
policies, respectively, for various combinations of the values of A and u. Define the im-
provement ratio in the mean response time to be the ratio of the mean response time of the

Ts-T
dynamic policy over that of the static policy, i.e., %. Figure 4 shows the improve-

ment ratio in the mean response time with respect to A and u. Figure 5 shows, for each
given value of 4, the improvement ratio that is maximum with respect to x The results
naturally confirmed our forecast that the dynamic load balancing policy is more effective
than the static one. On the other hand, we see that the mean system response time is
improved by the optimal dynamic policy over that of the optimal static one at most about
30% in the range of parameter values examined. Note that the difference in the overheads
of the two policies are not taken into account. Figure 6 shows the corresponding value of
u that gives the maximum improvement ratio for each value of A. From this figure, we
see that the maximum improvement ratio is achieved for the cases where A ~ u for rather
large values of both A and p.

Another remarkable observation is that if the [L, g] threshold rule is used as the dy-
namic load balancing policy, the minimum mean system response time is achieved by an
[L, O] threshold rule, that is, the mean system response time can be minimized only by
suitably selecting the threshold parameter L and the other threshold parameter ¢ is not
effective. Since L is an integer and g whose region is [0, 1) (note that [L, 1] is identical
to [L + 1,0]), superficially it might look that the dynamic optimal threshold policy has a
continuous parameter L+ g to control. The dynamic optimal policy, however, has only the
discrete parameter L as the effective parameter to control (see, e.g., Fig. 7) whereas the
the optimal static policy has a continuous parameter By to control. Three figures, 4, 5
and 6, show seemingly peculiar behaviors concerning the improvement ratio as the values



of system parameters change. This peculiarity is thought to come from the contrast be-
tween the continuity in the control variable 8y for the static policy and the discreteness
in the threshold parameter L for the dynamic policy.

5 Conclusion

We have studied two optimal load balancing policies, static and dynamic, for a system
consisting of a single-server central node (Qyr) and an infinite-server satellite node (Qpc)
connected by a communication network. By numerical examination, we have estimated
the difference in the effects on the mean response time between an optimal dynamic load
balancing policy using threshold [L, g] and a static optimal load balancing policy. We have
observed that the improvement ratio in the mean response time by the dynamic optimal
policy over the static one is at most about 30% in the model examined while overhead
due to the policies are not taken into account. The difference is of a certain magnitude
for the cases where 4 ~ u for rather large values of both. Another result is that, the
minimum mean response time is achieved by the dynamic load balancing policy ([L, g]
threshold rule) with threshold parameter ¢ = 0 and depending only on the other threshold
parameter L.

As the problem in the future, we would like to compare static vs. dynamic individually
optimal load balancing policies.

O+ 5 5 4 5 6 7 & 9 o
External job arrival rate to the system
Log,(A)

Figure 5: The maximum improvement ratio in the mean response time (with respect to x)
by the dynamic policy over the static policy for each value of 1.

Appendix A: Derivation of E [W[ L,q]]

We derive here the mean response time of a job arriving at the system with threshold
[L.q), E [W, ;1| Let Py be the probability that the number of jobs in the Qs node is .
The state transition diagram is shown in Figure 8. With this state transition diagram we
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Figure 6: The value of 4 that gives the maximum improvement ratio in the mean response
time by the dynamic policy over the static policy for each value of A.

have the following equations:

/lP() = ,uP1
/lPl = ,UPZ
(A.1)
APy = uPp
AgPp, = uPr,.
Let p = A/u. From (A.1), we can easily have the recursions:
Py = pP
P2 = p2P0
(A.2)
P, = phP
Pray = ptlgp,
andifp = 1,
Pi=Py=---=P, =Py, Pr,  =qP (A.3)
From (A.2), we have
Pi+Py+--+P, = Pylp+p>+---+ph)
o __pL+1
= P 1 . (A4)
-p

L+1

Note that Z P; = 1. We have
=0
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L+q

Figure 7: The mean response time by the dynamic policy for each combination of L and
q for the case of A = 1.4142135 and u = 2.2028464.

Ao A A g
T n m n

Figure 8: State transition diagram

1 - .

. l_dﬂa_;_wuzﬁp¢L (A.5)

0= 1 )

L—-Fl—-l-—q if pP= 1.

Substituting relation (A.5) to (A.2) or (A.3), we can have the probability that the number
of jobs in the Quyr node is k, P,(0 < k < L). With the above relations, we proceed to
calculate the mean response time of a job arriving at the system. Let P be the probability
that a job arriving at the system goes to the Qpc node. With [L, g] threshold rule, the
arriving job will go to the Qpc node with probability of 1 if the job finds the Qur node
with states L + 1,L + 2,- - -, and with probability of 1 — g if the job finds the Qr node
with state L. Then P is expressed as

P=(1-q)PL+Ppry. (A.6)

The mean response time of a job that goes to Qpc node is 8~'. Let Q be the expected
number of jobs (which includes the jobs in service) in the QO node from state 0 to state
L + 1 in the state transition diagram. By the Little’s Law, the mean response time of a job
arriving at the system goes to the Qpr node is

ov,
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where, V is the actual load rate to the Qyr node, and is given by V = A(1 — P). Therefore,
the mean response time of a job arriving at the system with threshold [L, g], E [W[L,q]], is

E [W[L,q]]

PO + (1 -P)QV! (A.7)
= PO+ QA

From (A.4), Q can be calculated as follows:
L
Q=) iP;+(L+1)Pp. (A.8)
i=1

By substituting relations (A.6) and (A.8) into (A.7), we obtain the mean response time of
a job arriving at the system with threshold [L, g], E [W[ L’q]]. The relation is as follows:

E[Wi )= (1 -@PL+Pr) + 0147, (4.9)
where, if p # 1,
PL = pLP09
Pry = gp"t'Py,
L

Q = >liPi+(L+ 1P

i=1

p(—(L+ DM = p) + (1 = p™*1)

= P
’ (1-pp
+(L + 1)Pogp™*",
l1-p
Py =
’ 1 - p*(1 - gq) — g™’
andifp =1,
PL = P09
Pryi = qPy,
L
Q = ) iPi+(L+1)Pp

i=1

L
(Zi+(L+ 1)qu0

i=1

_(LL+1)
B 2

+ (L + l)q) Py

(L+ 1)L+ 2q)

2(L+1+¢q) °
1

L+1+gq

Py
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Appendix B: Proof of Proposition 2

Given 4, i, 6, and g = 0, we have the following two distinct cases:

e Case(1): p=1(e,A=p)
e Case 2): p#1(.e.,1#p

Case (1): p=1(.e. A= p)

1 4 L
E[W[L,q]] @+ 1)0 o 5/1 E

0E 1 1
oL 21 (L+1)2%
OE 2

a2 ~ (L+1)36

52
Thus, P) L§> 0 for all values of L > 0, which means that, the response time function

E [ W[ L q]] 1s convex and hence, it has only one minimum point.

Case 2):p# 1(.e. 1 # p)
L U .
E[Wpg| = ﬂ[(l Lﬂ)[( =PV~ (L+1)]

1,

Ta-p)

9E _ p" 0" ~ D~ (L+ 1)+ (o~ D) logp)
oL ,u@(pL“ —1)2

L
Since m> 0, from the above equation, it is seen that the sign of g T depends

on the value of
A(L) 2 (™" = 1) = [(L + 1)8 + (o — )] log(p).

Then, %A(L) = e(pL+1 - 1) log(p).
Note that A(~1) < 0 Since in this case, p # 1, then we have the following two distinct

cases:

d
e Case (1): p> 1By noting thatlogp > Oand p"*'—1 > OforL > — A(L) >0
for L > —1.

13



d
e Case (2): p < 1By notingthatlogp < 0andp**!' -1 < 0forL > —1, EA(L) >0
for L > —1.

We therefore see that A(L) is increasing in L for L > —1. Therefore, there exists a unique
value L of L such that A(L) = 0. Note that L is not necessarlly an integer. Thus E [W;, o]
decreases with L for L < L and increases with L for L > I. Note that [z] denotes the
largest integer that is not greater than i. Set L = [L] for L = [L]. For L > [L], set L = [L],
if E [W[L oj <E [W[L+1 0])> and L =[L] + 1, otherwise. Then, E [W|, ] decreases with L

for L < L and E [W.g] increases with L for L > I.
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