A global optimization method, QBB, for
twice-differentiable nonconvex
optimization problem

Yushan Zhu* Takahito Kuno

July 30, 2001
October 23, 2001 for Revision -

ISE-TR-01-182

Institute of Information Sciences and Electronics, University of Tsukuba, Ibaraki
305-8573, Japan

Institute of Chemical Metallurgy, Chinese Academy of Sciences, Beijing 100080,
China ‘

* Tel: +86-298-536791, Fax: +86-298-535206, e-mail: yszhu @syou.is.tsukuba.ac.jp

Key words. Global optimization, branch-and-bound algorithm, QBB,
simplicial division, interval Hessian matrix, twice-differentiable function.



A global optimization method, QBB, for twice-differentiable nonconvex
optimization problem

Yushan Zhu' Takahito Kuno

Institute of Information Sciences and Electronics, University of Tsukuba, Ibaraki
305-8573, Japan '

Institute of Chemical Metallurgy, Chinese Academy of Sciences, Beijing 100080,
China :

Abstract

A global optimization algorithm, QBB, for twice-differentiable NLPs
( Non-Linear Programming ) is developed to operate within a branch-and-bound
framework and require the construction of a relaxed convex problem on the
basis of the quadratic lower bounding functions for the generic non-convex
structures. Within an exhaustive simplicial division of the constrined region, the
rigorous quadratic underestimation function is constructed for the generic
nonconvex function structures by virtue of the maximal eigenvalue analysis of
the interval Hessian matrix. Each valid lower bound of the NLP problem with
the division progress is computed by the convex programming of the relaxed
optimization problem obtained by preserving the convex or linear terms,
replacing the concave term with linear convex envelope, underestimating the
special terms and the generic terms by using their customized tight convex lower
bounding functions or the valid quadratic lower bounding functions, respectively.
The standard convergence properties of the QBB algorithm for nonconvex
global optimization problems are guaranteed. The computational studies of the
QBB algorithm for a general quadratic programming problem is reported to
show the global convergence and the algorithmic efficiency whilst the quadratic
coefficients are estimated loosely.
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1. Introduction

The vast majority of chemical process design and control problems are attracted
by the optimal solutions, however those problems are mainly characterized by
the existence of multiple minima and maxima, as well as first, second, and
higher order saddle points. Those nonconvex optimization problems always
frustrate the chemical engineers in their search to arrive at better designs for
novel or existing processes. These problems arise in many sorts of engineering
chemistry field, such as heat exchange network design, chemical and phase
equilibrium, and separation-reaction sequencing. Despite the importance of
identifying the global minimum solution or valid bound on that solution, this can
rarely reached rigorously. Contributions from the chemical engineering
community to the area of global optimization can be traced to the work of
Stephanopous and Westerberg ( 1975 ), and Westerberg and Shah ( 1978 ).
Renewed interest in seeking global solution was motivated from the work of
Floudas et al. ( 1989 ). Thereofore, in the last decade we have experienced a
resurgence of interest in chemical engineering for new methods of global
optimization as well as the application of available global optimization
algorithms to important engineering field ( Grossmann, 1996; Floudas, 1999).
This recent surge of interest is attributed to three main reasons. First, a large
number of engineering chemistry and computational chemistry problems are
indeed global optimization problems ( Wales and Scheraga, 1999 ). Second, the
existing local nonlinear optimization approaches may fail to obtain even a
feasible solution or are trapped to a local optimum solution, which may differ in
value significantly from the global solution. Third, the global optimum solution
may have a very different physical interpretation when it is compared to local
solution, the chemical and phase equilibrium problem is a very real one since in
equilibrium a local solution may provide incorrect prediction of types of phases
at equilibrium, as well as the compositions in each phase ( Mcdonald and
Floudas, 1994; Zhu and Xu, 1999; Zhu and Inoue, 2001 ).

One of the major difficulties with global optimization problems is the lack of
practical criteria, which decide when a local solution is global. Then, many
iterative schemes ( Horst and Pardalos, 1995 ) are developed which require
some global information in each step. The branch-and-bound framework is one
of the most promising methods for solving multiextremal global optimization
problems. The main idea of this framework consists of two basic operations:
successively refined partitioning of the feasible region and estimation of lower
and upper bounds for the optimal value of the objective function over each



subset generated by the partitions. Most often, lower bounding procedures are
- established using suitable types of underestimation of the functions involved in
the problem under consideration. As a result, lower bounds are computed by
solving relaxed problems in the same space of variables as the original problems.
In particular, the GOP algorithm for biconvex problems ( Floudas and
Visweswaran, 1990, 1993 ) and the branch-and-bound algorithm for bilinear
problem ( Al-Khayyal and Falk, 1983 ) rely on mathematical properties specific
to the problem solved in order to obtain the lower bounding problem. Floudas
and his colleagues ( Floudas, 1999 ) suggested an approach which necessitates
the identification of the minimum eigenvalues of the Hessian matrix of the
functions to be convexified over a rectangular domain. The o BB algorithm,
based on this technique, converges with mathematical rigor to the class of
twice-differentiable nonconvex programs. Recently, with the inspiration of the
phase stability analysis problem, a quadratic underestimation function based
branch and bound algorithm over simpilicial partition of the constrained region
is developed for twice-differentiable NLPs.

The determination of phase stability, i.e. whether or not a given mixture
will split into multiple phases, is a key step in separation process. Consequently,
it facilitates the search for the true equilibrium solution if a postulated solution is
thermodynamically unstable with respect to perturbations in any or all of the
phases, which can be evaluated by minimizing the tangent plane distance
function ( TPDF ). Zhu and Xu ( 1999 ) developed a novel branch and bound
algorithm for TPDF described by UNIQUAC equation on the basis of compact
partition of the feasible region, where the separable assumption is no longer
needed for the construction of the valid underestimation function. However, the
nonconvexity is only generated by the concave function in the D.C. ( Difference
of two Convex functions ) formulation of the TPDF. Further, a quadratic
underestimation function based branch and bound, QBB, algorithm (Zhu and
Inoue, 2001) is developed for the minimization of the stability analysis problem
on the basis of a rigorous underestimator constructed by interval analysis, which
i1s a method to expand the application of the QBB algorithm from the special
D.C. structure of the stability analysis problem described by UNIQUAC model
to the generic non-convex function structure. However, a systematic
investigation of the QBB algorithm for the general twice-differentiable NLPs are
indispensable so as to converge asymptotically to the global solution with
theoretical guarantee. In this paper, the relaxed convex programming problem is
constructed based on the quadratic underestimation function under a
branch-and-bound framework. The lower bound computed by solving this



relaxed problem is monotonic with the refined division of the optimal region.
The algorithm convergences are developed by virtue of the exhaustiveness of the
simplicial bisection if the QBB algorithm does not terminate after finitely many
iterations, since it generates infinite sequences of feasible and/or infeasible
points converging to one of the optimal solutions.

2. The QBB global optimization algorithm

The general nonconvex optimization formulation can be formulated as follows:

(P) min  f(x)
S.t. g.(x)<0 i=1L2,....,m

xeS° =R”

where f and g,belong to C?, the set of twice-differentiable functions, and S°

is a simplex defined by

S° ={xe R” :x="§+il,.V,.°,),i 20,%& =1}
i=l

i=1

where V'eVcR", i=12,.,n+1 are n+1 vertices of the simplex S°, and

Vis the set of all its vertices. Let D, be a subset of %" defined by
D, =fxeR": g,(x)<0,i=1,2,..,m}

In general, the set D, is nonconvex and even disconnected. We assume

throughout the paper that Problem ( P ) has an optimal solution, and at least one
feasible point is known. Then, for the general nonconvex optimization problem,
i.e. ( P ), the present algorithm belongs to a branch and bound scheme. At each



iteration of this algorithm, a branching step and a bounding step must be
finished simultaneously. Then, we start to develop this algorithm with the basic
operations needed in this scheme.

2.1 Simplicial Partition

For the branching procedure, the simplex S°will be divided into refined
subregions by using the well-known simplicial partition often used in global
optimization algorithm. For every kind of branching, it is a simple matter to
check that for every iel, the points V', ..., V7' U, V*, ..., V™ are

vertices of a simplex S, ¢S, and that:

(intS,) N (@intS;)=0 Vj=#i; Us, =8
iel

Then, the simplexes S,, ie I, form a subdivision of the simplex Svia U. Each

S, will be referred to as a subsimplex of S. Clearly, the partition is proper since

it consists of at least two members if and only if U does not coincide with any
V'’. An important special case is the bisection where the U is a point of the

longest edge of the simplex S, for example Ue [V’",V"J, 1.e.

v v

= max {jVi—Vj‘l}
i<j
i,j=1,...n+1 ,

where |{| denotes an iven norm in R", and U=aV*+(1-a)V" with
y g

0<a<1/2. It should be noted here that a means the simplex V is divided into
two subsimplexes such that the ratio of the volume of the smaller subsimplex to
that of S is equal to a. Zhu and Inoue ( 2001 ) used an exact bisection method
since the a 1s equal to 1/2. Obviously, in an infinite filter of simplexes

S, ©8,..28, o.., the diameter of the simplex §,,i.e. §(S,); the length of the

longest edge of S, , will monotonically decrease. For the convergence proofs of



the branch and bound algorithm, the most useful concept is the exhaustiveness
of a partition process ( Horst, Pardalos, and Thoai, 1995 ). A nested subsequence

of partition sets {Sf}, ie. S’ o8, Vv, is called exhaustive if S’/ shrinks to
an unique point, i.e.,

S’ ={x}

j=l

A partition process in a branch and bound algorithm is called exhaustive if every
nested subsequence of partition sets generated throughout the algorithm is
exhaustive. Konno, Thach, and Tuy ( 1997 ) proved that the above mentioned

exact simplicial bisection is exhaustive since §(S,)—0 as k — +o.

2.2 Quadratic underestimation function for general non-convex structures

In the bounding step of a branch and bound algorithm, a lower bound is
always obtained by constructing a valid convex underestimation function for the
original one appeared in the problem ( P ), and solving the relaxed convex NLP
to global optimality. For current simplex given by

‘ n+l n+l
S=%emwx=2&v2&zazk=%- (1)

i=1 i=1
where Ve VcR", i=12,..,n+1 are n+1 vertices of the current simplex S,

and Vis the set of all its vertices. Then, we intend to compute a lower bound

u(S) of the objective function fon SN D, . In other words, we compute a lower

bound for the optimal value of the problem

( P(S)) min  f(x)
st.  g®<0 i=12..m
xeScR”



As above mentioned, f and g, are generic nonconvex functions belonging to

C?, then the main idea for computing a lower bound u(S) is to construct from

Problem ( P(S) ) a convex problem by replacing all those nonconvex functions
with their respective convex underestimation functions, then solving the
resulting relaxed convex problem. In order to reach this purpose, we see the
following Definition:

Definition 2.2.1 Given any nonconvex function f(x):§—>R,xeScR"

belonging to C?, the following quadratic function is defined by

F(x)ziaixf+zn:bixi+c (2)
i=1 i=1

where, xeScR" and F(x)=f(x) holds at all vertices of S. a, s are

nonnegative scalars and large enough such that F(x)< f(x),VxeS.

It is trivial to see that F(x) is convex since its quadratic coefficients, i.e.

a;’s , are nonnegative. And the following Theorem can be used to ensure that it

is indeed a rigorous underestimator of f(x),i.e. F(x)< f(x) VxeS.

Theorem 2.2.1 F(x) defined by Definition 2.2.1 is a convex underestimator of

f(x) if the difference function between them, i.e. D(x)=F(x)- f(x), is a convex

function.

Proof. Suppose that x' and x> are two arbitra oints in the current
pp Iy p

simplex S defined by Eq.1, then there exists 2(n+1) real values, o,,p. e R



n+l n+l n+l

satisfying 0<e,.B, <1, Ye, =1, Y B,=1, such that x'=Y V' and
i=1 i=1 i=1

n+l

x> =) B, V' . Since D(x)=F(x)-f(x) is a convex function, we have the
i=1
following inequality according to the definition of the convex function:
D(Ax' +(1-A)x?)< AD(x' )+ (1- A)D(x?)
where, 4 is an arbitrary real value, and 0<A<1. Substitution of the convex

combination of x' and x* into above equation, and by Jensen’s Inequality
( Rochafellar, 1972 ) we have

ppx' +(1-A)x?]< w@aiv" )+ (1—/1)0(2 BV )

n+l n+l

< AgaiD(V‘ )+ (- l); B.D(v*)

n+l n+l

since o, =1 and ) B,=1. According to Definition 2.2.1, we know that
i=1 i=1

F(x)= f(x) holds at all vertices of S, i.e. F(V')=f(v'). Then D(V')=0 at each

vertex V', i=l, ..., n+1. Following above inequality, we have
Dax' +(1-A)x*]<0

Since x' and x> are two arbitra oints in simplex S, then let
ry p p

x =Ax'+(1-A)x*, obviously it is also an arbitrary point in this simplex, and
D(x)<0 . Then, F(x)<f(x)VxeS . It means that F(x) is a rigorous

underestimator of the generic nonconvex function f(x) for any point xe§.

It is well known that D(x) is convex if and only if its Hessian matrix
H,(x) is positive semi-definite in the current simplex. A useful convexity

condition is derived by noting that H,(x) is related directly to the Hessian

8



matrix H,(x) of f(x), xeS by the following equation:
H,(x)=2A-H,(x)

where A is a diagonal matrix whose diagonal elements are g,’s defined in

Definition 2.2.1. A is refereed as the diagonal underestimation matrix, since

these parameters guarantee that F(x) defined by Eq.2 is a rigorous
underestimator of the generic nonconvex function f(x). Evidently, the
following Theorem will help to guarantee that D(x), as defined in Theorem
2.2.1, is convex:

Theorem 2.2.2 D(x), as defined in Theorem 2.2.1, is convex if and only if

2A-H ,(x)=2diag(a,)- H ,(x) is positive semi-definite for all xeS§.

In order to simplify the parameter calculation, the underestimator F(x) is

reformulated by using a single nonnegative a value, as following
F(x)=azn:xf+ibixi+c (3)
i=l i=l

Then, all diagonal elements of the diagonal underestimation matrix A are
therefore equal to the uniform quadratic coefficient a defined by Eq.3. On the
basis of the Theorem 2.2.2, the following theorem can then be used to ensure

that F(x) defined by Eq.2 or Eq.3 is indeed a rigorous convex underestimator

of f(x):



Theorem 2.2.3. F(x) as defined by Eq.2 is a rigorous convex underestimator of

f () if and only if

a, 2 max{ 0, %maxxes {Hl’; (x)+ Z'HJ (XX} } (4)

or, if F(x) is defined by Eq.3, we have
a> max{ 0, —;—max,.,xes A, (x)} | (5)

where the ,(x)’s are the eigenvalues of H,(x), the Hessian matrix of the

generic nonconvex function f(x) for xe8.

Proof: As H,(x), the Hessian matrix of the generic nonconvex function f(x),

is symmetric, so that all its eigenvalues are real values. According to Theorems

2.2.1 and 222, F(x) as defined by Eq2 is a convex ( or linear )
underestimator of f(x) if and only if D(x) defined in Theorem 2.2.1 is convex.

D(x) is convex if and only if for every xe§S, all eigenvalues A”(x) of D(x)

are nonnegative.
In the second case, since the uniform quadratic coefficient is used, the

eigenvalue of D(x) can be directly related to that of f(x). The above
nonnegative condition is equivalent with requiring the minimum eigenvalue of
D(x) over x to be nonnegative:

min, _¢ A7 (x)=0

i,xeS Vi

10



After substituting A”(x)=2a-A.(x) and a> max{ 0, ;maxl s A (X )}, we have

min, ¢ A7 (x)=min, _(2a -1, (x))

i,xeS ¥ i,xeS

> min, _¢ {max]0, max, ¢ A, (x)]- 2, (x)}

i,xeS

2 min, s imax, 0.2, ()]~ 4, (<)}

Obviously, max,[0,2(x)]-2,(x)>0 by considering the two cases for the sign
of 4(x),s0 min A7 (x)20, thatis, D(x) is convex for xeS. Therefore, F(x)

as defined by Eq.3 is a rigorous convex underestimator of f(x).

In the first case, by virtue of Gerschgorin’s theorem ( Gerschgorin, 1931 ), the

eigenvalue lower bound of a real symmetric matrix A= (a,.j) 1S given as

minA, =a, —Zla

j¢l

|

After substituting Eq.4 toH, (x)=2A-H, (x), its lower bound can be given as

n_ A% (x)= 2max{ 0, ; xes{Hf > > [H( j}} H (x > - 1] (x)
> max{ 0, max_g {Hf (x)+ 2]}1;‘ (xj} }— {Hf (x)+ > [H] (xj}

J#i Jj#i

> maxxes{ 0, {Hf (x)+ 2|ij (x]} }— {H;{ (x)+ Y [HJ (XX}

J#i J#i

Obviously, min,A?(x)20 by considering the two cases for the sign of

xeS "M

11



H/ (x)+ Z‘H; (XX So D(x) is convex for xeS. Therefore, F(x) as defined by

J#i

Eq.2 is a rigorous convex underestimator of f(x).

The following Proposition shows the relationship between the linear and

- constant coefficients of F(x) and its quadratic coefficients, and that the former
ones can be determined by the latter and all vertices of the current simplex.

Proposition 2.2.1 The linear and constant coefficients of F(x) defined by
Eq2or3,i.e. b ’sand c can be given by the quadratic coefficients a,’s known

by Theorem 2.2.3 and the current simplex.

Proof. In view of the Definition 2.2.1, we know F(x)=f(x) holds at all

vertices of S, then the following linear equation group can be obtained as
VAV +b TV +c = (V) k=1 n+l

where Ae R™ is the diagonal underestimation matrix whose diagonal elements

are the quadratic term coefficients, a,’s defined in Eq.2 or 3. be R" is the

linear coefficient matrix whose elements are b,’s defined in Eq.2 or 3, and ¢ is

a scalar.

b'V* +c=f(V)-V'AV  k=1.,n+l

The matrix be R" is augmented as (b,c)e X", in order to include the scalar
¢ . In the same way, the matrix Ve R is augmented as (V,1)e R0+,

where 1 is a column unity matrix of R". (V,1)e R ig a regular square

12



matrix since Ve R is the coordinate matrix of the simplex which is
linearly independent. Then we have

(b.c) =(v.1)'[£(v)-V7av]

where, [f(V)-V7AV]|e R*" is a column matrix for the n+1 vertices of the

current simplex. In virtue of this equation, it is very obvious that the linear and
constant coefficients defined by Eq.2 or 3 are determined completely by the
quadratic coefficients and the current simplex.

By replacing all the nonconvex functions in Problem ( P(S) ) with their
corresponding quadratic function based convex underestimators described by
Eq.3, we have the following relaxed convex programming Problem ( QP(S) ):

( QP(S) ) min  E(x)
S.t. G,(x)<0 i=12,...,m
xeScR”

where,

F(x)= i‘aifxi2 +zn:bifx,. +c’
i=1

i=1

Gi(x)=zn:af’xl.2+ibf"xl.+cg" i=12,.,m
i=1 i=1
Let D, be asubset of R" defined by
D ={xe R": G,(x)< O,i=l,2,...,m}

Obviously, the set D, is convex and compact. Then, the Problem ( QP(S) ) has

an optimal solution according to the well known Weierstrass Theorem.
It should be noted that only additional m+1 quadratic parameters, i.e. a

and a* for i=12,..,m, are introduced during above transforming process if

13



the uniform underestimation function is used, since all other linear and constant
coefficients can be calculated by those quadratic parameters and the current
simplex consequently. The following Theorem states that the optimal solution
F" of the convex programming Problem ( QP(S) ) is a valid lower bound of the
primal Problem ( P(S) ).

n+l n+l

Theorem 2.2.4 For each simplex S= {xe R x=D AV, 42034 = 1} cSs’,
i=l i=1

a lower bound w(S) of f over SND, can be computed by u(S)=F’, where

F’ is the optimal solution of F over SN Dy.

Proof. First, we show SnD, cSnD,. Since G,(x) is a convex underestimator
of g,(x), ie. G,(x)<g(x), we have G,(x)<g,(x)<0 for any xeD,, then
x € D, . Finally we have SnD, cSnD, by noting D, c D, . Second, by virtue

of F(x)< f(x) forany xeSnD, and SnD, cSND,, we have

F’ =min{F(x),xeSmDG}SF(X)forxeSmDG < f(x)forxe SN D,

It shows that u(S)=F" is a valid lower bound of f over SnD,.

In the next Proposition, it shows that the lower bound obtained by Theorem
2.2.4 i1s always bounded from below and has a monotonic property which is
useful within a branch and bound framework.

Proposition 2.2.2.
(a)Let S' and S* be two simplexes satisfying S* cS'. Then, u(S?)z u(S').

(b ) If Problem ( P ) has a feasible solution, then p(R)>— foreach ScS°.

14



Proof.
(a)Let F'(x) and F’(x) be the quadratic underestimation functions of f (x)

enerated in S' and S* satisfying S cS', respectively. Then, we will show
g ying p y

F'(x)< F?*(x) for xeS?. According to Eq.2, we have
F'(x)= ia;xf + znlbilx,. +c!
i=1 i=l

F*(x)= zn:afxf + ibfx,. +c?
i=1 i=1
Then,

Fl(x)_Fz(X)zi(ail_az'z)xi2+i(bil_bi2)"t+cl_cz
i=1

i=1
It follows from the fact, i.e. S*cS', then max_ A (x)> max __, A,(x) or

maxxes.{H-,.’,f(x)+2’H§(x]}2maxxesz{H,{(x)+2’H§(xj}. In virtue of Theorem

J#i J#i

2.23, we have a;>a?. Then the difference function D(x)=F'(x)- F*(x) is
positive semi-definite.

Since F'(x) is the underestimation function of f(x), then we have
F'(x)< f(x) for all xeS'. According to the Definition 2.2.1, we know
F?(v?)=#(v?) for all vertices of simplex §*, i.e. V7, for i=1,2,..,n. Since

S> cS', wehave F'(V2)<F?(V?) for i=1,2,..,n. It means

p(v/)=F'(v?)-F*(V})so  i=12,...n

15



For any xeS’, and x=) AV} with A, 20Vi and il,.zl, by the convex

i=1 i=1

function characteristic of the difference function D(x), we have
D(x)= D(Z AV? ]s 3 2,0(v2)<0
i=1 i=1

Then, we obtain F'(x)< F?(x) for xeS2.
By the same way, for xe S’ we have
G (x)< G (x) for i=1,2,..,m
Then, we have
D, =fke®R": G'(x)<0,i=1,..,m}nS' ;) D =fkeR": G?(x)<0,i=1,...mS>
Since S? <8', finally we have
1£(S?)=min{F?(x):xe D2 AS* }> min{F'(x):xe D! NS'}= u(S')

( b)) From ( a ), we need only to show that ,u(S°)> —o . This bounded property

follows from the fact that the relaxed programming problem of Problem ( P(S) )
over the initial simplex S°, i.e. Problem ( QP(S°) ) is convex. Then, this

problem has an optimal solution, which implies that p(S°)> .

2.3 Upper bound

For a simplex S, if the function value of Problem ( P(S) ) is unbounded from

above, i.e. u(S)=-+eo, then it follows that

16



f(x)=+, forall xes.

In this case, the partition set S can be removed from further consideration.

Otherwise, one tries to find a set F(S) of feasible solutions in S and uses it for

computing an upper bound of the optimal value of Problem ( QP(S) ).
Throughout the algorithm, more and more feasible solutions can be found, then

the upper bound of the optimal value can be improved iteratively. A set F(S)

can be obtained by checking a finite set in S including, e.g. the set of all
vertices and the center of the simplex S, or some local solution of the Problem
( P) over S by any convex optimizer. If all of them are infeasible, the current
upper bound has to be kept until the new feasible set is found in the further
iterations with new branches. It should be noted here, we ever assume that at
least one feasible point is known, so that it can always be used until another one
with less function value appears within the progress of the algorithm.

2.4 Rigorous calculation of the quadratic coefficients by using interval
analysis

For generic nonconvex functions, the elements of its Hessian matrix H ;(x)

are likely to be nonlinear and nonconvex functions of variables, so that the
derivation of the diagonal underestimation matrix, i.e. A, valid over the entire
simplex is a very challenging task. However, satisfying the convexity condition

of Theorem 2.2.2 is essential for the preservation of the guarantee that F(x)

defined by Eq.2 is a rigorous convex underestimator of the generic nonconvex

function f(x). The complexity arising from the presence of the variables in the

convexity condition can become tractable by using the transformation of the

exact x-dependent Hessian matrix, i.e. H s (x), to an interval Hessian matrix

|7 P (x)J ( Neumaier, 1990, 1996; Hansen, 1992; Kearfott, 1996; Adjiman et al.,

17



1998a, b ), such that H, (x)c|H,], vxeS. S, the current simplex, can be

replaced with a more general interval box, described by [x*,x’]. x* and xV

are the lower and upper bounds of the current simplex, respectively. Obviously,

Sc [xL,xU J Then the interval Hessian matrix can be calculated in above interval

box, which will not influence the rigorousness of the estimation of the Hessian

matrix, H,(x), in the current simplex. The elements of the original Hessian

matrix, i.e. H,(x), are treated as independent when computing their general

interval boundaries according to the interval arithmetic. The following Theorem

will tell us how to use the interval Hessian matrix family H ;(x) to calculate

quadratic parameters q,’s defined by Eq.2:

Theorem 2.4.1. Consider the generic nonconvex function f(x) with continuous
second-order derivatives and its Hessian matrix H,(x). Let D(x)=F(x)- f(x)
be defined in Theorem 2.2.1 and F(x) be defined by Eq.2. Let |H,(x)| be a
symmetric interval matrix such that H,(x)c |7 ; |, VxeS. If the matrix [H N
defined by [H,]=2A-|H, |=2diag(a,)-|H ;] is positive semi-definite, then D(x)

is convex over the current simplex encompassed by [xL,xU J

Since the interval Hessian matrix |H,|o H,(x) is obvious, then a valid

lower bound of the maximum eigenvalue of [Hf (x)] can be more easily

computed by using the interval arithmetic. Then, Eq.5 derived in Theorem 2.2.3
can be replaced with the following interval form, in order to generate a single a

value which satisfies the following sufficient condition for that F(x) is indeed a

18



rigorous convex underestimator of f(x):

a max{O,%lmax (=, ])} (6)

where, A (H fj) is the maximal eigenvalue of the interval matrix family

|& ; (x)|. For the non-uniform case, the Eq.4 can be transformed into the

following equation by replacing the Hessian matrix with its interval form, as

a, Zmax{ 0, %{ﬁj+z|ﬂf|’l}} (7)

J#i

_f

where [H| = max{
ij

Hf
- ij

}. Obviously Eq.7 holds since for interval matrix

[Hfj, we have }_I:+2‘Hf |U 2[Hi{ ]+2[H;] In the following sections, some

Jj#i J#i
commonly used favorable function structures and the generic nonconvex
structure are analyzed in this interval way so as to get the tight convex
underestimations for them in the current simplex.

2.4.1 Extended Gerschgorin’s theorem for uniform case

For a real symmetric matrix A= (aij), the well-known Gerschgorin’s theorem

by

max ?

( Gerschgorin, 1931 ) states that its eigenvalues are bounded, such as A

all its elements such that

Aax = max{aﬁ + Z'aul]

J#i

In this paper, a straightforward extension of this theorem is presented for
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interval matrices, as the following Theorem:

Theorem 2.4.2 For an interval matrix [A]=[a,.j,a—” ), a lower bound on the

)

Proof: By definition of the interval matrix, A, (A])=max A, (4), therefore

maximum eigenvalue is given by

a;

Amax 2 maxi[aﬁ+ Zmax( ,

J#i

a;

Arnax ([A]) 2 Max , (4] maxi(aii + ZIaij ]

J#i

> max, | max AG[A](a,-,- )+ maerM](Zlaij‘ ]:l

]

Similar with that pointed out by Adjiman et al. ( 1998a ) in their «BB
algorithm for the estimation of the minimum eigenvalue of the interval matrix,

|y

[ _
> max, | a,+ Zmax(

J#i

above computational complexity is O(n2 ), then the bound it can provide on the

eigenvalue is slightly loose. However, it is still very effective if the problem
scale is not too large. For the practical applications, when the generic nonconvex
function structures are given in analytical form, their interval Hessian matrix can
be obtained by interval analysis, such as some widely used interval calculation
packages, as INTLIB, a Portable FORTRAN77 Interval Standard Function
Library ( Kearfott, 1996 ), and PROFIL, Programmer’s Runtime Optimized Fast
Interval Library in C/C++ ( Knuppel, 1993 ).

2.4.2 Underestimator for the convex ( linear ) function structure

For the convex ( linear ) function structures, denoted by f¢(x) or f*(x),
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obviously their convex envelopes are themselves. Then, they will preserve their
original forms in the final underestimators for the objection function or the
constraints.

2.4.3 Underestimaor for the concave function structure

For the concave function structure, denoted by f"“(x), whose eigenvalues are

all nonpositive, i.e. A, s(x)<0. Then, the quadratic coefficient of its

underestimator defined by Eq.2 is zero according to the Theorem 2.2.3, so that
the valid lower bound of the concave function structure over the current simplex
is a linear function whose linear and constant coefficients are given by
Proposition 2.2.1. This conclusion is also completely consistent with that
presented by Horst, Pardalos, and Thoai ( 1995, p.19 ). That is to say, the valid
bound constructed by Eq.2 is equivalent to the convex envelope of the concave
function over a simplex, which can be constructed by an affine function as given
in the following Proposition:

Proposition 2.4.3 Let S be a simplex generated by the vertices V°, V!, ...,

n+l n+l

V", Le. S={xe R":x=Y AV, 24,20,) 2 =1}, and let f"°(x) be a concave
par i

Sunction defined on S. Then the convex envelope of f“(x) over S is the
affine function L“°(x)=b"x+c which is uniquely determined by the system of
linear equations f"°(V')=b"Vi+c for i=0,..,n.

For the practical calculation, the matrix be®R" is augmented as
(b,c)e ®™, in order to include the scalar ¢ . As that used in Proposition 2.2.1,
the matrix Ve R™"" is augmented as (V,1)e R where 1 is a column

unity matrix of R". (V,1)e R™>*) is a regular square matrix since

Ve R™P is the coordinate matrix of the simplex which is linearly independent.
Then we have
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(b,c)" =(V, 1) £7(V)

where, £"°(V)e ®"" is the column matrix for those n+1 vertices of above

simplex.
2.44 Underestimaor for the general quadratic function

The general quadratically-constrained quadratic programming plays an
important role in the engineering field. For an arbitrary bilinear function

structure, denoted by x;x; and i# j, McCormick ( 1976 ) and Al-Khayyal and

Falk ( 1983 ) presented the tightest convex lower bound, i.e. convex envelope,

over the rectangular domain [x%,xY |x [xfx‘]’ | . Here a valid convex

underestimation function is easily derived for any general quadratic function,
since the eigenvalues of its Hessian matrix is known. The general quadratic
function is presented as

f(x)=x"Qx+q"x

Obviously, above bilinear structure is just a special case of this general function.

Since H,(x)=Q, we have the diagonal underestimation matrix, A, constructed

on the basis of Theorem 2.2.3, as

a =maxi{0,—l-ﬂ.?}
2

for the uniform case, or for the non-uniform case, we get

bzl
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Then, we have the quadratic underestimation function as

F(x)=x"Ax+b"x+c

where, the linear and constant coefficients, i.e. (b,c), can be computed by virtue

of Proposition 2.2.1.

2.4.5 Underestimator for the tri-linear function structures

For the tri-linear function structure, denoted by x,x X, and i# j#k, Maranas

and Floudas ( 1995 ) presented a valid convex lower bound over the rectangular
domain |[xZ, xV Jx [xfx‘]’ % [x,f,xf |. Here, we give a valid quadratic convex lower

bound over the simplex S. The elements of the whole Hessian matrix of this
tri-linear function structure over the simplex S are zero except for the rows and
columns concerning of i, j , or k. Then, the eigenvalues of this Hessian matrix
are all zero except for the ith, jth, and kth ones. In fact, these three eigenvalues
can be computed on the basis of the following sub-Hessian matrix, as

0

X, X,
H(xi,xj,xk)= x, 0 x
X. X

J i 0

whose interval sub-Hessian matrix can be computed as

[H(Xi’xj’xk )]=

Then, the lower bounds on the maximum eigenvalues can be computed by using
Theorem 2.4.2, as follows
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A, =lxkl+lxj’
A, =|xk|+[xi|

A, =,X,-|+’le

) for any interval [a, a]. Then, we get the rigorous

e

where, |a|= max[

a
quadratic coefficient as

a= max(O, A Ay, 2,3)

and the valid quadratic convex lower bound function can be written as

n
FTL(Xi,Xj,Xk)=aX[2 +ax+ax; + Y bx, +c
I=1

In virtue of Proposition 2.2.1, the linear and constant coefficients can be
computed easily. It should be noted here, this valid underestimation function
concerns of » linear coefficients rather than only ith, j th, and kth.

2.4.6 Underestimaor for the fractional function structures

For the fractional function structure, denoted by x,/x ; and i# j, Maranas and

Floudas ( 1995 ) presented a valid convex lower bound over the rectangular

domain [xf,xf.’ Ix [xfx‘j |. Here, we give a valid quadratic convex lower bound

over the simplex S. The sub-Hessian matrix of this fractional function structure
1s given as follows

0 )

X.

Hlx,x;) 1 2,
< %
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Then, we have the characteristic determinant of this Hessian matrix as

o -L

E-af=| LY =reZa-L oo
-— .__3"_1 X; Xj
X X

In this paper, we only consider the bounded case of the fractional function

structure. Here, we assume either x ;>0 or x;<0. For the first condition, i.e.

x; >0, we have

Then, the quadratic coefficient of the valid lower bound defined by Eq.3 over
the simplex S is
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-2 _2
Xi+X; —X

a=_3120
X

-J

For the second condition, i.e. x ; <0, we have

Therefore, the quadratic coefficient is computed as

_2 -
YXi+HX
X T >0

3

a=

So, the quadratic lower bound function can be written as

FF(xi,xj)zaxi2 +ax; +§n:blxl +c
=1

According to Proposition 2.2.1, the n+1 linear and constant coefficients can be
computed over the current simplex.

Remarks.

It should be noted here, that the relaxed convex programming Problem ( QP(S) )
contains not only the quadratic underestimation functions for the generic
nonconvex terms, but also the convex function terms which are not necessarily
transformed into the quadratic underestimators. Than, the final underestimation
strategy of the relaxed Problem ( QP(S) ) can be slightly revised into the
following convex programming formulation, as
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( QP(S) ) min  F(x)

st. G,x)<0 i=12,...m

xeScR”
where,

F'(x)=f*(x)+ £ )+ L7 (x)+ F (x)

G, (x)=gl(x)+gf(x)+ L (x)+ G (x) i=12,...,m

and f'(x), f°(x), L*(x), g-(x), ¢(x), L?(x) represent the linear terms,
convex terms, and the linear underestimation functions for the concave terms in

the objective function and the constraints, respectively. While F"“(x) and

G (x) represent the quadratic convex underestimation functions for the generic

nonconvex terms, and the special function structures, such as bilinear, trilinear,
and fractional. Compared with the relaxed problem ( QP(S) ), the relaxed
problem ( QP(S) ) contains not only quadratic function terms, but also the
generic convex terms of the original problem. But, it should be noted here, such
kind of relaxation does not affect the monotonicity of the valid convex
underestimators given in Proposition 2.2.2, so it will also keep the algorithm
convergences presented in the following sections.

2.5 Steps of the global optimization algorithm QBB

At the start of this section, the Problem ( P ) is formulated in an initial simplex
S°. However, the practical problem does not necessarily give that simplex, then
a convenient outer approximation method of obtaining this simplex is presented
here on a more broad basis, provided that the linear constrains can be separated
from those with nonconvex terms, and the lower and upper bounds of the
independent variables are known in a physical way, as follows

(P) min  f(x)

X

st.  g®<0 i=12,..m

27



where, x and ,’_‘ are the lower and upper bounds of x. The polytope defined

by the linear constraints are given as
P={xe R", Ax-b SO}

In order to incorporate the lower and upper bounds of the variables into this
polytope, the matrices A and b are expanded respectively as

>
H
[y
o
=
o
T
Il
[ A A -

where, 1 and -1 are diagonal matrices with 1 and —1 as the diagonal elements,
respectively. Then, we get the following polytope as

Pz{xe R", AX—BSO}

The following linear programming problems will help to generate the initial
simplex S° as small as possible, as

u, = min{xi, Xe 1;} i=1..,n
Then, all n+1 vertices of the initial simplex can be computed by

Vo=, ity) (8)
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Vi= e My = D M Hsen i, | i=10n (9)
= :

J#i

Now, we are in a position to present the proposed algorithm for solving Problem
( P) by using the basic operations described in previous sections.

Step 1 - Initialization. A convergence tolerance, e, and a feasibility
tolerance, ¢ s» are selected and the iteration counter k is set to zero. The initial
simplex S° is computed by Egs.8 and 9, as §° =(V°, V',..,V"), and the current
variable bounds x and x for the first iteration are Aset to be equal to the

following linear programming problems, i.e. X, = min{x,.,xe S"} and

x:. =max{xi,xe S°} for i=1,..,n. The global lower and upper bounds u, and

Yo on the global minimum of Problem ( P ) are initialized and an initial current

point x“¢ is randomly selected.
Step 2 - Local solution of Problem ( P ) and update of upper bound

The nonconvex and nonlinear optimization Problem ( P ) is solved locally within

the current simplex S. If the solution f%, of Problem (P )is & ;-feasible, the

upper bound 7y, isupdated as ¥, =min(y,, fE).

Step 3 — Partitioning of current simplex

The current simplex, S*, is partitioned into the following two simplexes

(r=1,2):
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Vk,m + Vk’l

k1 __ k,0 k,m k.,n
S™ =V VP, ,V

Vk,m + Vk,l

k2 _ k.0 k. ko
S =V, .., ,eoo VOV

where, k,m and k,I correspond to the vertices with the longest edge in the

current simplex, i.e. (k,m), (k,/)=arg max{“Vk,; vy " )
i<j
Step 4 — Update of 4;, and a,, inside both subsimplexes r=1, 2

The nonnegative parameters a;, and a4, for the general nonconvex terms in

the objective function and constraints are updated inside both simplexes r=1, 2

according to the methods presented in Section 2.4.

Step 5- Solutions inside both subsimplexes r=1, 2

The convex programming Problem ( QP(S) ) is solved inside both subsimplexes

( r=1,2 ) by using any convex nonlinear solver. If a solution F% is feasible

sol

and less than the current upper bound, y,, then it is stored along with the

k,r
sol *

solution point x

Step 6 — Update iteration counter k and lower bound g,

The iteration counter is increased by one,

k —k+1
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and the lower bound y, is updated to the minimum solution over the stored

ones from the previous iterations. Furthermore, the selected solution is erased
from the stored set.

U = Fk"r‘

sol

sol sol *

where, F*' = miln{F or=12, I=1..,k- 1}. If the set ] is empty, set u, =y, and

go to Step 8.
Step 7 — Update current point x** and current simplex S*

The current point is selected to be the solution point of the previously found
minimum solution in Step 6,

k,c I
sol

and the current simplex becomes the subsimplex containing the previously
found solution,

SE=| Vo Ve e VEI LG =1

Sk=|vke, e VEL VR | otherwise

Step 8 — Check for convergence

If (r.-u)>e., then return to Step 2. Otherwise, e,-convergence has been

reached. The global minimum solution and solution point are given as:

fleret
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ek’
where, k" =arg, {f*’ =y, b I=1,.. k.

Remarks:

( I). It should be noted that the current simplex can be deleted in Step 5
when either the relaxed Problem ( QP(S)’ ) is infeasible or its solution is greater
than the current upper bound. The former is obvious since Problem (P)is
infeasible too if the relaxed Problem ( QP(S)’ ) is infeasible. The latter
alternative is valid since the global minimum can not appear in this simplex for
the lower bound computed over this simplex is greater than the current upper
bound, which states that only local minima or some saddle points can exist
there.

( I ). In fact, the first condition in ( I ) for deletion of the infeasible
subsimplex is very crucial for the algorithmic efficiency, since we always
generate a much large initial simplex by the outer approximation method
introduced in above section. But, with the division of this initial simplex, the
branching step produces a large number of subsimplexes which are completely
infeasible for the relaxed Problem ( QP(S)’ ) and then are definitely infeasible
for the original problem ( P(S) ) over these subsimplexes. According to above
Remark I, so that these subsimplexes can be removed in the algorithm
immediately. This fact will be shown in Section 3 by solving a general quadratic
programming problem.

The mathematical proof that the proposed global optimization algorithm
QBB converges to the global minimum is presented in the following section.

2.6 Proof of convergence to the global minimum
If the QBB algorithm presented in above section terminates at iteration k, then

the point x“ is an optimal solution of Problem ( P ). In the case that the
algorithm is not finite, it generates at least one infinite sequence of simplexes

{87} such that $/" S/, for all j. The convergence of the QBB algorithm is

stated by means of the following results.

Proposition 2.6.1 Assume that Problem ( P ) has a feasible solution. Further,
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assume that the QBB algorithm generates an infinite subsequence of simplexes

Joee

'} such thar s s/, for all j, and lime=6Sf={x*}. Then, x" is an
-

optimal solution of Problem ( P ).

Proof. First, we show that the point x* is a feasible point of Problem ( P). To
do this, for each j, let V’ stand for a vertex of simplex S’. Further, for each j,

let (x’) be an optimal solution of the relaxed convex programming Problem

( QP(S) ) with S=S’. It should be noted that (xf ) exists for each j as shown in

Proposition 2.2.2(b). Since the edges of the simplex S’ are bounded and

‘llimSj =;\S’ ={x*}
Je =l

Then, we also have

limV’/ ={x*}

j

We can assume, by passing to subsequence if necessary, that x/ - x", as j— .

From this, we have
G,(x')- G,(x')<0,for i=1,.,m

Suppose that x” is not a feasible solution of Problem ( P ); That is to say, there
exists a number ¢ >0 and for some constraint k such that

g, (x')2e>0

Since x* is a vertex at the limit simplex, then according to Definition 2.2.1, we
have

gk(x*)=Gk(x*)28 >0
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which implies that x" is not a feasible point to Problem ( QP(P) ). This
contradiction implies that x" is a feasible point of Problem (P).

Next, since u(Sf“)z ,u(Sf')>-oo, for all j, by Proposition 2.2.2, there exists a

limit p° of {,u(Sf )} bounded by the optimal value of Problem ( P ). Moreover,

in view of the QBB algorithm, we have

limpu(S’)=limy(s')> £(x")

Jdoo J—yoo

which implies that x" is an optimal solution of Problem (P).

We observe that the accumulation point of the upper bound set also exists
because of the compactness of the initial simplex S°, and is an optimal solution
of the Problem ( P ), then Proposition 2.6.1 trivially leads to the following useful
- properties of the algorithm.

Proposition 2.6.2  Assume that Problem ( P ) has a feasible solution, and that
the simplicial partition process of the QBB algorithm presented in Section 2.1 is
exhaustive, then the QBB algorithm has the following convergence properties:

(@ ) If the OBB algorithm generates an infinite subsequence of simplexes {Sj }
such that the upper bound set F(Sf)¢(1> for each j, then each accumulation

point of the corresponding subsequence {xj } is an optimal solution of the

Problem ( P ).

( b ) The OBB algorithm terminates after finitely many iterations whenever the
feasible set of Problem ( P ) is empty.

For the proof of (a ), we can see that a subsequence of the upper bound set
exists with the limit as the optimal solution of the Problem ( P ). Moreover, if
the QBB algorithm does not terminate after finitely many iterations, it must
generate a subsequence of points converging to an optimal solution of Problem
(P ) by seeing the argument of Proposition 2.6.1. This contradiction implies that
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the QBB algorithm terminates finitely.

It is well known that the general nonconvex optimization problem is
NP-hard ( Vavasis, 1991 ). Then, we can expect that some large problems are
difficult for the QBB algorithm. However, this definitely does not mean that the
QBB algorithm is unable to solve the large problem in a reasonable amount of
time. As we have described in the QBB algorithmic steps, it is possible to obtain
a good feasible solution and show this feasible solution is within a specified
tolerance of being optimal, esp. for the problems with some favorable structures.
But, if we analyze the branch and bound tree structure generated from the
partition process, the finite upper bound on the total number of required
 iterations for &-convergence is exponential function of the initial simplex and
the global convergence tolerance.

3. Computation studies of QBB algorithm for phase stability analysis

An example consisting of a nonconvex quadratic objective function subject to
six inequality constraints all of which are nonconvex quadratic is used here to
evaluate the algorithmic efficiency of the QBB. Since the quadratic coefficients
of the underestimation function constructed in this paper for any bilinear term
are known a priori, i.e. 0.5 or 0 which are shown later, then we can use some
quadratic coefficients of the underestimation functions for the bilinear terms
which are rigorously valid but appointed to be much greater than their accurate
values obtained by the strict eigenvalue analysis in order to check the
complicated situations where the accurate lower bound of the maximal
eigenvalues of their interval Hessian matrix is difficult to be determined by any
analytical methods. The problem formulation is shown as follows, where it has
10 inequality constraints representing the bounds on the five variables. This
problem is taken from Colville’s collection ( 1970) and also chosen by Floudas
and Pardalos ( 1990 ) as a typical test for the constrained global optimization
problem.

Min

37.293239x, +0.8356891x, X, +5.3578547x2 — 40792.141

S.L.
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—0.0022053x;, X +0.0056858x ,X; +0.0006262x, X, — 6.665593 < 0
0.0022053x,x; — 0.0056858x, % — 0.0006262x, x,, — 85.334407 < 0

0.0071317x,X, +0.00218133x? +0.0029955x,x, — 29.48751 < 0

—0.0071317x,x, —0.00218133x? — 0.0029955x,x,, +9.48751 < 0

0.0047026x %, +0.0019085x,X, +0.0012547x,x, —15.699039 < 0
—0.0047026x,x,; —0.0019085%,x,, —0.0012547x, X, +10.699039 < 0
78 <x, <102

33<x, <45

27 <x, <45

27<x, <45

27 < x4 <45

The nonlinearities in above problem arise from the bilinear terms +x,x ; for

i#j,and -x?, in the cost and constrained functions. For the latter one, since

this bilinear term belongs to the concave function structure, then its convex
envelope described in Proposition 2.4.3. being an affine function over the
current simplex can be easily constructed. For the former bilinear term, we can
see its Hessian matrix over the current simplex is a constant matrix as following:

H=[0 1} or H=[0 —IJ

1 0 -1 0

whose two eigenvalues are 1 and -1, respectively. According to the analysis in
Section 2.4.4 for the general quadratic function, we get the unified quadratic
underestimation coefficient, i.e. a=0.5. Consequently, the linear and constant
quadratic underestimation function can be computed by Proposition 2.2.1 over
the current simplex. After all the nonconvex bilinear terms are replaced by their
quadratic underestimation functions, the valid underestimation functions for the
cost and constrained functions in above problem are obtained. Then, a convex
programming problem is obtained which can be solved by any convex optimizer

in order to locate a valid lower bound for the original function over the current
simplex.

36



Min

i=1

5
37.293239x, +O.8356891><(0.5x12 +0.5%; + Y bl x, +c** ]+ 5.3578547x; —40792.141

s.L

5 5
0.0022053 x(0.5x§ +0.5%5 + ) b’ x, +¢ 77 )+ 0.0056858><(0.5x§ +0.5%; + Y b}7x, +c* )+
i-1

i-1

5
O.OOO6262><(O.5X12 +0.5%; + Y blx, +cM ]— 6.665593<0

i-1

5 5
0.0022053%| 0.5x3 +0.5x; + » b>°x, +c** )+ 0.0056858 x ( 0.5%; +0.5%; + » b7*°x, + ¢ )+

s 00 %
[

5
0.5x; +0.5x; + > b7*x, +c ™ )— 85.334407 <0

i-1

i-1

0.0006262 x

i=1

5
0.0071317x]| 0.5x; +0.5x; + ¥ b*’x, +c** )+ 0.00218133x? +

5
0.0029955%| 0.5x; +0.5%; + Y b}*x, +c*? )— 29.48751<0

i=1

5 ’ 5
0.0071317x| 0.5%; +0.5%5 + Y b7>°x, +c¢ ™ )+ 0.00218133><(2b[3’3xi +c7? )+

i=l i=1

S
0.0029955x| 0.5%; +0.5%5 + . b7"*x, + ¢ ™ )+ 9.48751<0

i=1

i=1 i=1

5 5
0.0047026><(0.5x§ +0.5%; + Y b’x, +c* )+ 0.0019085 x(0.5x§ +0.5%; + Y bx, +c** )+

5
0.0012547><[0.5xf +0.5x2 + Y blx, +c )—15.699039 <0

i=1
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i=1 i=1

5 5
0.0047026 x[0.5x§ +0.5%; + Y b7 x, + ¢ )+ 0.0019085><( 0.5%3 +0.5%] + ) b7*x, + 74 )+

‘ 5
0.0012547 X(O.Sxf +0.5%5 + ) b7x, +¢7 )+ 10.699039 <0

i=]

5
S bkix, +ct <0 j=1,..6 (10)
=1

78<x, <102
33<x,<45
27<x,<45
27<x,<45
27<x;,<45

where, 5" and ¢/ represent the linear and constant coefficients of the
quadratic underestimation functions generated according to Proposition 2.2.1 for

the bilinear terms xx; for i#j, but 5/ and ¢ are for those bilinear
terms -x;x; including i=j. In Eq.10, the six inequalities are presented to

described the current subsimplex, where b/ and c*/ represent the linear and

constant coefficients of the jth superplane over the subsimplex S*. Since all
vertices of the current simplex are known, then these N+1 coefficients can be
obtained by solving a linear equation group, and the final signs of these
coefficients are determined by the fact that the constrained space lies inside the
current simplex ( Zhu and Xu, 1999 ).

In this paper, the NLP optimizer LSGRG2C ( Smith and Lasdon, 1992;
Lasdon, 2000 ) is used to solve each convex underestimation problem over the
current simplex within the QBB algorithmic framework. The final package
cQOBB is implemented in C language and also used for some nonconvex
optimization problems of chemical and phase equilibria in our form papers ( Zhu
and Xu, 1999; Zhu and Inoue, 2001 ). For above mentioned generally
quadratical programming problem, all the computational runs by cQBB package
were performed on a Pentium III/800 machine. In this paper, all CPU times
reported represent the total time taken to solve above problem with different
valid quadratic coefficients by QBB algorithm, where the global convergence is
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0.001 and the feasible tolerance is 0.001. The initial simplex is calculated by the
outer approximation method to the 10 linear inequality constraints representing
the bounds on the five variables, given as { {78.0,33.0,27.0,27.0,27.0},
{168.0,33.0,27.0,27.0,27.0}, {78.0,123.0,27.0,27.0,27.0}, {78.0,33.0,117.0,
27.0,27.0}, {78.0,33.0,27.0,117.0,27.0}, {78.0,33.0,27.0,27.0,117.0} }.
Obviously, this simplex is much larger than the hypercube for the five variables
in the original problem, i.e. { [78,102], [33,45], [27,45], [27,45], [27,45] }
which is fully contained in above simplex. The calculation results are shown in
Tables 1, 2, and 3 where the quadratic coefficient of the underestimation

function for any bilinear terms +x;x, for i= j in above problem is assigned to

0.5, i.e. the accurate one, 1.0, and 2.0, respectively. The CPU running time
increases and the solution quality deteriorates when the quadratic coefficient is
estimated loosely. However, the algorithmic convergence is guaranteed even
when the quadratic coefficient is assigned to be four times of the accurate one,
see in Table 3. It should be noted that the final number of the unfathomed
simplexes is zero for all assigned quadratic coefficients, since this constrained
problem has only one global solution and the infeasible subsimplexes and those
containing only local minima have been deleted with the algorithm progress, as
the Remark I states in Section III.

4. Conclusion

A quadratic underestimation function based branch and bound algorithm, QBB,
is developed to solve problems belonging to the broad class of
twice-differentiable NLPs. For any such problem, the ability to generate
progressively tighter convex lower bounding problems at each iteration
guarantees the convergence of the QBB algorithm to within epsilon of the global
optimum solution under the exhaustive division framework of the initial simplex.
The different methods are presented for the construction of the convex valid
underestimators for special function structures and the general nonconvex
function structures, and the maximal eigenvalue analysis of the interval Hessian
matrix provides the rigorous guarantee for the QBB algorithm to converge to the
global solution. The convergence properties of the QBB algorithm for the

nonconvex problems are obtained, and some results of the computational
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experiments for a general quadratic programming problem is reported to show

the capacity of the QBB algorithm for the practical applications.
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Tables

Table 1. Calculation results of QBB algorithm for Colville’s Problem when
a=0.5

Variable  Upper bound Upper Lower bound Lower Iteration No. of CPU time
X; bound bound number unfathomed (s)
solution solution subsimplexes

1 78.0 78.0

2 33.0 33.0

3 -30665.58848  29.99506 -30665.60118  29.99503 1090 0 205.97
4 45.0 45.0

5 36.77602 36.77601

Table 2. Calculation results of QBB algorithm for Colville’s Problem when

a=1.0
Variable ~ Upper bound Upper Lower bound Lower Iteration No. of CPU time
X; bound bound number unfathomed (s)
solution solution subsimplexes

1 78.0 78.0

2 33.0 33.0

3 -30665.58848  29.99506 -30665.77273  29.99445 2078 0 422.10
4 45.0 45.0

5 36.77602 36.77628
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Table 3. Calculation results of QBB algorithm for Colville’s Problem when
a=20

Variable ~ Upper bound Upper Lower bound Lower Iteration No. of CPU time

X; bound bound number unfathomed (s)
solution solution subsimplexes

1 | 78.0 78.0
2 33.0 33.0
3 -30665.58848  29.99506 -30665.68263 29.99471 4472 0 960.54
4 © 450 45.0
5 36.77602 ; 36.77646
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