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1. Introduction

In this chapter, we consider a special class of linear programs with an
additional concave constraint

. . T
maximize C€'X (11)

subject to x € F\G,

where ¢ is an n-vector, FF C IR" is a polytope and G C IR" is an open
convex set. We assume on (1.1) that G possesses a kind of separability,
i.e., G can be represented as follows, by means of a sum of functions
gi :S— R, j=1,...,n, each of which is concave with respect to z;:

Xn:w(z:’) > 0}-
j=1

We call the complement of this set G a separable reverse convez set,
following separable concave functions of the form g(x) = > 7_; g;(=;)-
The separable concave function is certainly a special class of concave
functions, but involves a wide variety of functions unlike its appearance.
In fact, it is an elementary exercise in linear algebra that every con-
cave quadratic function can be reduced to a separable form; and the
linear multiplicative function H;-’zl(c}x + d;) can be transformed into
Yi=1logy; with y; = cIx+d;j for j = 1,...,n [11, 15]. These imply

G:{XES”

that there is a certain amount of demand for the linear program with .

an additional separable concave constraint (LPASC), as well as for the
separable concave minimization problem: '

n
minimize Zgj (z5) 19
, _1:1 ( * )
subject to x € F.

The readers should remark that even this well-known global optimization
problem belongs to LPASC, because (1.2) is equivalent to

maximize —y

n
subject to x € F, Zgj(xj) -y <0.
3=1

The research on global optimization of the general linear program with
an additional concave constraint (LPAC) can be traced back to 1950,
arising from a location problem by Baumol-Wolfe [1]. The algorithms
proposed since then can be classified roughly into four classes. The first
class consists of algorithms based on the edge property of F\ G. As will
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be shown in Section 2, at least one optimal solution to LPAC lies on the
intersection of the edges of F' and the boundary of G. Exploiting this
property, Hillestad [5] proposed a simplex-type pivoting algorithm for
searching an optimal intersection point. Hillestad’s algorithm has been
modified and still developed by Hillestad-Jacobsen [7] and Thuong-Tuy
[17]. The second class is outer approximation algorithms, which in-
volves e.g., Hillestad-Jacobsen [6] and Fiilép [4]. Hillestad-Jacobsen [6]
developed a procedure for cutting off a potion from F by a valid cut con-
structed at an infeasible vertex of F for the associated concave minimiza-
tion. The convergence of their algorithm is not guaranteed; but Filop [4]
improved this point later. The third class is conical branch-and-bound
algorithms, which involves e.g., a bisection algorithm by Moshirvaziri-
Amouzegar [12] and w-subdivision algorithm by Muu [13]. The last
class is algorithms alternating local search and concave minimization.
This class is based on the concept of duality between LPAC and its
associated concave minimization problem, studied by Tuy [18] and Tuy-
Thuong [20]. As reported by Pferschy-Tuy [14], algorithms of this class
are very efficient when the dual problem of a given instance is easy to
solve.

Since LPASC is a special class of LPAC, algorithms of the above
classes are naturally applicable to each instance of LPASC. Unfortu-
nately, however, none of them exploits the special structure of the sepa-
rable reverse convex set, which must have potential for efficient solution
by analogy with the separable concave minimization (1.2). We can only
see in a comprehensive survey on d.c. optimization by Tuy [19] a ba-
sic subdivision process for minimizing a separable d.c. function over a
rectangle. As is well known, the separability of the objective function
of (1.2) is one of the most useful structures in designing efficient global
optimization algorithms. Since the pioneer work on (1.2) by Falk-Soland
[3], a number of efficient rectangular branch-and-bound algorithms has
been developed: Soland [16], Horst-Thoai [9], Kuno [11], Ryoo-Sahinidis
[15] to name but a few. The purpose of this chapter is to develop practi-
cal algorithms by making full of use the separability of LPASC, together
with the existing results on LPAC and (1.2).

In Section 2, after describing the problem formally, we give two op-
timality conditions, both of which play one of the leading parts in the
proposed algorithms. Another leading part is played by Falk-Soland’s
rectangular branch-and-bound algorithm, which is explained in detail,
in Section 3. Sections 4 and 5 are devoted to the algorithms for LPASC.
In Section 4, on the basis of the duality by Tuy [18] and Tuy-Thuong
[20], we develop an algorithm alternating local search and rectangular
branch-and-bound. In Section 4, we try solving LPASC using a new
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rectangular branch-and-bound algorithm. This algorithm has basically
the same structure as Falk-Soland’s one but contains some devices for
improving the efficiency. Some concluding remarks are discussed in Sec-
tion 5.

2. Problem description and basic properties

The problem we consider in this chapter is of the form

maximize c¢'x

subject to Ax<b, 1<x<u

Zn:gj(wj) <0, Y

where A € R™*™, b € IR™, ¢ € IR*, and l,u € IR™. For each j =
1,...,n, the function g; : S — IR is concave, and can be affine or
constant. Let

C={xeR"|Ax<b}, D={xeR*|1<x< u}
g(x) =" gi(z;), G ={xe8"|g(x) >0}
j=1

Since each component of 1 and u is finite, D represents an n-dimensional
rectangle, which we assume to be included in the domain S™ of function
g- Using these notations, we can make it clear that the feasible set of
(2.1) is a d.c. set of the form CND\ G, i.e., the difference of two convex
sets C' N D and G. :

To show some basic properties of (2.1), we first need to make three
assumptions, which are not special to our problem but often imposed on
d.c. optimization problems (see e.g., [10, 8]). Let M denote the closure,
and OM the boundary of a set M.

Assumption 2.1. Problem (2.1) is feasible:
| CND\G#0.
Assumption 2.2. The side constraint g(x) < 0 is essential to (2.1):
max{c'x | x € CND\G} < max{c'x | x € CN D}.

The second assumption is quite natural, as well as the first one. If
Assumption 2.2 fails, problem (2.1) is equivalent to an ordinary linear
program

maximize c¢'x

subject to Ax<b, I1<x<u. (2.2)
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We can compute an optimal solution x° of (2.2) using any one of ordinary
algorithms because C'N D is nonempty by Assumption 2.1 and bounded.

. Assumption 2.3. Problem (2.1) is regular:
| CND\G=CnD\G.

Since C N D\ G is a d.c. set, it might consists of some connected
parts. If one of the parts is included in 0G, it will disappear from
CND\G. Assumption 2.3 excludes such a case; in other words, there
is a point y € C N D in any neighborhood of each feasible solution such
that g(y) < 0. Although Assumption 2.3 seems somewhat strong, each
instance of (2.1) can easily be transformed into a regular one, as will be
seen later.

Theorem 2.1. Under Assumptions 2.1 and 2.2, the boundary of G
contains all optimal solutions to (2.1), at least one of which lies on an
edge of the polytope C'N D.

Proof: Since C N D\ G is a nonempty and closed set, (2.1) has an
optimal solution x*. Assume that x* is not a boundary point of G.
We see from Assumption 2.2 that ¢"x® > ¢"x* and ¢g(x°) > 0 for any
optimal solution x° to (2.2). Therefore, the line segment joining x* and
- x° intersects G at x’ = (1 — A)x* + Ax® for some A € (0,1). This
intersection point x’ is feasible to (2.1) and satisfies

chl —_ (1 _ )\)CTX* + )\CTXO > (l _ A)ch* + )‘ch* — CTX*,

which contradicts the optimality of x*.

Now suppose that x* is a boundary point of G. Since G is a convex
set, it has a supporting hyperplane H at x*. Let H' = HNCn D.
Then H' is a polytope and contains x*. The minimum of ¢"x on H’ is
achieved at a vertex v of H’; and hence ¢'v < ¢'x*. However, since
v € CND\G, we have c'v = ¢"x*, which implies that v is also an
optimal solution to (2.1) and must lie on dG. Recall that v is a vertex
of H', which is an intersection point of H and some edge of the polytope
cnD. ]

Theorem 2.2. Under Assumptions 2.1 and 2.2, if x* ¢ CND\ G is
an optimal solution to (2.1), then

min{g(x) |[x €CND, ¢'x>c'x*} =0. (2.3)

If Assumption 2.3 is fulfilled as well, then (2.3) is sufficient for x* to
be an optimal solution.
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Proof: Let x* be an optimal solution to (2.1). Assume that there is
a point X’ € C'N D such that g(x') < 0 and ¢"x’ > ¢"x*. Since x’ €
CND\G, this point x’ is an optimal solution to (2.1). From Theorem 2.1,
however, every optimal solution to (2.1) lies on G, which contradicts
g(x') < 0. Hence, we have

min{g(x) | x € CND, ¢'x > c'x*} >0,

where the equality holds when x = x*.

Conversely, when (2.3) holds for some x* € CN D\ G, let us assume
that there is a point x’ € C N D\ G such that ¢"x" > ¢"x*. Under
Assumption 2.3, in any neighborhood of x’ we can find a pointy € CND
with g(y) < 0. If y is sufficiently near to x’, we can keep c'y > ¢'x*,
which contradicts (2.3). Therefore, ¢'x < ¢'x* holds for any x € C'N
D\ G; and x* is an optimal solution to (2.1). n

These two optimality conditions are well-known results on (2.1), and
still true even when the concave function g is inseparable (see e.g.,
(10, 8]). They are the key to solution to the class of linear programs
with a concave side constraint. Especially when we try to exploit the
separability of the side constraint g(x) = Y7, g;(z;) < 0, the problem
given in Theorem 2.2,

minimize g¢(x)
PD(a)| subject to Ax<b, 1<x<u
c'x > a,

plays a crucial role in the algorithms. Since PD(c"x*) has the same
optimal solution as the original problem (2.1) though the objective and
side constraint are changed, it is called the dual problem of (2.1). Here,
‘we should remark that the dual problem of (2.1) is a separable concave
minimization. )

Before proceeding to the algorithms, we briefly discuss how to trans-
form a given instance of (2.1) into a regular one where Assumption 2.3 is
fulfilled. One of the easiest way is to slightly perturb the side constraint

function g.
Proposition 2.3. For sufficiently small € > 0, let
g'(x;€) = g(x) — e(llxlI* +1). (24)
Then the following problem is regular and satisfies Assumption 2.3:

maximize c¢'x
subject to Ax<b, 1<x<u - (2.5)
g'(x;€) <0.
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Proof: See e.g., [10]. ]

Note that the perturbed function ¢’ is still concave and separable. In
fact, letting
gi(zj;€) = gi(zj) — ez} + 1/n),
then we can represent ¢’ as a sum of n concave functions:

n
g'(x¢) = _gi(zj;¢)
i=1

Therefore, (2.5) belongs to the same class as our problem (2.1); and
besides, it will provide us with a high- quahty approximated solution to
(2.1) 1f ¢ is sufficiently small.

3. Falk-Soland’s algorithm for concave
minimization

As is well known, the rectangular branch-and-bound algorithm by
Falk-Soland [3] is the most powerful tool for minimizing the concave
function, though it can only be used when the objective function is sep-
arable. In the previous section, however, we have seen that the dual
problem of (2.1) is just this case. Therefore, a straightforward way
to solve (2.1) by exploiting its separability is to apply the rectangular
branch-and-bound algorithm to problem PD(a). In this approach, the
point is how to find an appropriate parameter value of «. This has al-
ready been resolved by Tuy [18] and Tuy-Thuong [20]. Before describing
their approach in detail, we will explain Falk-Soland’s branch-and-bound
algorithm for a separable concave minimization problem

minimize g(x) 3.1
subject to A'x < b/, 1<x< u, (3-1)
where A b
! __ !
vo[ AL vl k], o2

Let D = {x € R" |1 < x < u} as in the previous section and
| = {xeR"|A'x < b}.

3.1 Three basic steps

In the rectangular branch-and-bound algorithm, while subdividing the
rectangle D successively into

D* = [IF, uf] x 15, u§] x --- x [IF,uf], keKk, (3.3)
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we solve each subproblem of (3.1) with a feasible set C' N D*, i.e., a
problem of the following form with D = DF*:

minimize g(x) .
subject to x € C'N D.

P(D)

Subdivision of D needs carrying out in such a way that the set of result-
ing subrectangles D¥’s constitutes a partition of D; hence, in the course
of the algorithm, we always have

D= ] D% intD'nintD* =0 ifi#F, (3.4)
keKX

where intM denotes the interior of a set M. The subdivision rules that
guarantee the convergence of this algorithm will be discussed later.
The main scheme of the algorithm consists of three basic steps:

Let D' := D, K := {1} and k := 1. Repeat Steps 1 — 3 until K = 0.
Step 1. Take an appropriate index ix out of K and let D := Dix.

Step 2. (Bounding operation) Compute a lower bound z* on the opti-
mal value z(D) of P(D). If zF > g(x*) for the best feasible solution
x* to (3.1) obtained so far, discard D from further consideration.

Step 3. (Branching operation) Otherwise, divide the rectangle D into
two subrectangles D?* and D%+!. Add {2k,2k + 1} to K.

There are two major advantages in this algorithm: (1) we need only
two vectors I¥ = (I%,...,15) and u* = (uf,...,u%) to maintain and
construct each subproblem P(D); and (2) we can compute a strong lower
bound z* by solving a linear program. Next, we will see the second point.

3.2 Bounding operation (Step 2)

To compute a lower bound z* in Step 2, we first determine the convex

envelope of g; on the interval [I;, u;] for each j =1,...,n:
hj(z;) = i ( 1‘1)‘—1‘-7(]):6‘7. J J(;)_IJ i( .7)' (3.5)
3T i

From the concavity of g;, we see that
 hy(z;) < gi(z;) if zj € [lj,u5), hj(z;) > gi(z;) otherwise,

where we should remark that h;(z;) = g;(z;) if z; € {l;,u;}. Therefore,
h; is the convezr envelope of g; on the interval [l;,u;], i.e., the maximal
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convex function that never exceeds the value of g; on [l;,u;]. Since g is
the sum of g;’s, this property is inherited to

h(x) = Zri: h;(z;). (3.6)

Lemma 3.1. Ifx € D, then
h(x) < g(x), |
where the equality holds when z; € {l;,u;} for j=1,...,n. |

We should also note on A that it is an affine function of x. Hence,
replacing the objective function g of P(D) by k, we have a linear program
that provides a lower bound of its optimal value:

minimize  h(x)
subject to x € C'ND.

PL(D)

Let x* denote an optimal solution to PL(D) when C'N D # §. Then we
see that h(x*) can be used as the lower bound 2F in Step 2:

v {h(xk) ifC'ND#0

2" = .
400  otherwise.

Lemma 3.2. If 2% = +oo, then P(D) is infeasible. Otherwise, among
z(D) and g(x*) there is a relationship:

< 2(D) < g(x),
where the equalities hold when a:;c €{lj,u;} forj=1,...,n. .

The rectangular branch-and-bound algorithm requires one to solve a
series of linear programs of the form PL(D). These problems, however,
differ from one another in just A and D. Therefore, any optimal basis B
of A’ in the present problem can serve as the initial basis in solution to
the succeeding problem. Namely, we first restore B to a feasible one for
the new bounding constraints defining D; then we optimize it according
to the new objective function A (see e.g., [2] in further detail). This
process can usually be done in quite a few simplex pivoting operations.

3.3 Branching operation (Step 3)

In Step 3, we divide D in such a way that the resulting sets D? and
D?+1 satisfy (3.3) and (3.4). We can carry out this as follows, given an
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index j € {1,...,n} and a number m; € [I;,u;]:
D¥*  =[l,ur] X -+ X [lj_1, u5-1] X [lj; m;]
X[Lig1, u1] X -+ X [l un] (3.7)

D+ = [l ua] X -+ X [, ui-1] X [my, w]
X1y wj1] X oo X [l un]

In general, no matter how we select j and m;, the finiteness of the
algorithm cannot be guaranteed without a tolerance for the optimal
value of (3.1). In that case, the algorithm generates an infinite sequence
of rectangles D, i =1,2,..., such that

DR >DR>..., C'n (ﬂ D’“‘) #0. (3.8)

=1
Let us denote D* simply by D' = [l,ul] cx [ u ;] and the
sequence by the index set £ = {1,2,...,4,...}. We assume that for

each i € £, rectangle D'*! is generated from D' via (3.7) for some pair
(ji? m;i)'

Lemma 3.3. There is an infinite subsequence L, C L such that j; = q
forallie L, and

l;—+l;, ué—)uz, m —)m € {l;,u;} asi— +oo in L.

Proof: Since j; is an element of the finite set {1,...,n}, we can take
an infinite subsequence £/ such that j; = ¢ for all ¢ € L;. Assuming
Ly ={1,2,...} without loss of generality, we have

AR RS R |
ST St Sug < g,

. !
Vie L.
Hence for some [ and u; such that l; < <up < u;, we have l; — 13
and u — Uz as ¢ — +oo in E’ These also implies that I and uj are
a,ccumulatlon points of m} because mq coincides with elther l;"’l or qu“
for each i € L. Therefore we can take a subsequence £, C L such

that m; —mg e{lq, uy} as 1 — +oo in L. |

When a positive tolerance is allowed for the optimal value of (3.1),
the rules below of selecting the pair (j;, w?,) guarantee the finites of the
algorithm.

Bisection. For each ¢ € £, let us select

ji € argmax{uj' - lj- li=1,...,n}% (3.9)
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and divide the interval [J yuj] at
mé, = (1= NI, + A, (3.10)
where A € (0,1) is a constant. We refer to this selection rule of (j;, mf,)
as bisection of ratio A.
~ Lemma 3.4. If £ is generated according to the bisection rule of ratio
A € (0,1), then there is a subsequence L' C L such that
g(x') —2* =0 asi— +oo in L/,

where x* is an optimal solution to PL(D*) and z* the optimal value.
Proof: Let us take the subsequence L, given in Lemma 3.3. T hen we
have If — 1%, ul — u}, miy = 'my € {l7,u3} as i — +oo in L,. From
(3.10), however, we have

(1= N + Auy = mg € {ig,uz}, _
which holds only if m} = I3 = uj. This, together with (3.9), implies
that D' shrinks to a point m* = (mf,...,m}) € D! as i = +4oo in
L' = Uy=; L4 Hence, from the definition of PL(D?*), we have the desired
result. u

¥
.

The bisection rule is simple but does not entirely exploit the char-
acteristics of problem PL(D). As stated in Lemma 3.2, the objective
function h of PL(D) agrees with the value of g at each vertex of D. The
next selection rule of (j;, m}t) uses this property.

w-division.  For each ¢ € L, let us select

‘ J; € arg max{gj(a:;) — h](x;) li=1,...,n} (3.11)
and divide the interval [l;:i, u;'] at ‘
m;, = z;’ (3.12)
We refer to this selection rule of (j;, m?,) as w-division.

Lemma 3.5. If L is generated accordmg to the w-division rule, then
there is a subsequence L C L such that

’ g(xi)—zi—)ﬂ asi— +oo in L'.

Proof: Suppose that m — mq = I3 as ¢ — +00 in the sequence £, given
in Lemma 3.3. Then we have of = [i+! from (3.12), and h(z}) = g,(=})
from Lemma 3.1, where h’ is the convex envelope of g, on the interval
[i5, ui]. f ¢ = 400 in Ly, then hi(xh) — gq(2 q) — 0. This can be shown
even when m} = u}. Hence, by noting (3.11), we have the desired result.

q
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3.4 Description of the algorithm

The rest to be discussed is how to select an index iy from the set
in Step 1. Usually, either of the following rules is adopted:

Depth first. The set K is maintained as a list of stack. An index 4 is
taken from the top of K; and 2k + 1, 2k are added in this order to
the top.

Best bound. The set K is maintained as a list of priority queué. An
index 45, of least 2** is taken out of K.

Now, we are re‘ady to describe the algorithm completely. Let ¢ > 0 be a
given tolerance for the optimal value of problem (3.1).

Algorithm 3.1.
begin '
D':=D;K:={1}; k=1,
initialize the incumbent value z* := +o00;
while K # 0 do
/* Step 1 %/
select an index 4 from K by a fixed rule (depth first or best bound);
K = K\{ir}; set D := D and define a subproblem P(D) of (3.1);
/* Step 2 x/
determine the convex envelope &; of g; on [I;, u;] for each j;
construct PL(D) of minimizing h(x) := 7, h;(z;);
compute a feasible solution x* and a lower bound 2* on z(D) by
solving PL(D);
if 2* — 2 > € then begin
/* Step 3 x/
if g(x*) < z* then update z* := g(x*) and x* := xk;
select 7 € {1,...,n} and m; € [I;,u;] by a fixed rule (bisection
or w-division);
D% = [ly,uy] X -+ X [lj,mj] X -+« X [ln, un);
D+ = [l ug] X -+ X [mj,u] X - X [l un];
K:=Ku{2k,2k+1}; k:=k+1
end
end
end;

Theorem 3.6. Whene > 0‘,' Algorithm 3.1 terminates in a finite num-
ber of iterations and yields a globally e-optimal solution x* to problem

(3.1).
Proof: Let us assume the contrary: Algorithm 3.1 is infinite. Then it
generates an infinite sequence £ of DF satisfying (3.8). The backtracking
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criterion 2* — z*¥ > € implies that the following inequalities hold at the
end of each iteration in which k; for ¢ € £ is taken out of K:

7 te< 2 < g(xd),

where x* is an optimal solution to PL(D*) and z* the optimal value.
From Theorem 3.4 and 3.5, however, g(xi) — 2z = 0 as i — +oo in some
L' C £ whichever rule we adopt for selecting (7, w;) in Step 3. Therefore,
we have € < 0, which is a contradiction. The e-optimality of x* follows
from the backtracking criterion. n

Corollary 3.7. Suppose ¢ = 0. If the best bound rule is adopted in
Step 1, the sequence of x*’s generated by Algorithm 3.1 has accumulation
points, each of which is a globally optimal solution to problem (3.1).

Proof: 1If the algorithm happens to be finite, the assertion is obvious
from the backtracking criterion. Assume that it is infinite and generates
an infinite sequence £ just stated in the proof of the previous theorem.
The best bound rule then implies the following at the beginning of each
iteration in which j; for ¢ € £ is taken out of K:

7 < ZF < 2(DF), VkeKk,

where 2 is the optimal value of PL(D*). However, g(x’) — z* — 0 as
i = +oo in some £ C £; and besides min{z(D*) | k € K} is nothing
but the optimal value of (3.1). Hence, every accumulation point of x* is
a globally optimal solution to (3.1). ]

4. Direct application of Falk-Soland’ algorithm

Let us return to our original problem (2.1), subject to Assumptions
. 2.1-2.3 given in Section 2. As mentioned at the beginning of Section
3, we can solve (2.1) by applying Algorithm 3.1 to the dual problem
PD(a) if we can find an appropriate value of the parameter a. For
this purpose, Tuy [18], Tuy-Thuong [20] and Pferschy-Tuy [14] have
proposed the following approach. First, we generate a locally optimal
solution x* using any one of available algorithms, and then check its
global optimality by solving PD(a) with & = ¢"x*. If the optimal value
" of PD(c"x*) is zero, then x* is a globally optimal solution to (2.1);
otherwise, we try checking another locally optimal solution.

4.1 Local search

According to their approach, the first thing we have to do is to search
a locally optimal solution x*. We can use the simplex algorithm on
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problem (2.1) since the objective and constraints except for the last one
are all linear. The simplex algorithm may start from any feasible vertex
v! ¢ G of the polytope C' N D. If no feasible vertex is on hand, we may
solve PD(—c0), i.e., a concave minimization problem, using Algorithm

3.1:
minimize  g(x)
subject to Ax<b, 1<x<u

Since g is a concave function, it achieves the minimum at some vertex
vl € C N D. By Assumptions 2.1 and 2.3, we must have g(v!) < 0. To
be precise, Algorithm 3.1 might not yield a vertex of C'N D when € > 0;
but, how to cope with that case will be discussed later.

Starting from v!, we generate a sequence of adjacent vertices v
of CND such that ¢"v! < ¢"v2 < - - -, using the simplex algorithm, with
some anticycling pivoting rule if necessary (see [2]). In this process, we
must encounter a vertex v/ satisfying

2

g(v') <0, i=1,2...,£-1, g% >0,

before reaching an optimal vertex x° of the linear program (2.2). Then
we compute an intersection point x* of the edge vt-1-v¢ and 9G. This
point x* € 8G is given as (1 — A*)vé~1 + A*v* for

A* = min{A € [0,1] | g[(1 — A)v* 1+ AvE] > 0}, (4.1)

Since (4.1) is a convex minimization and besides univariate, computation
of \* is inexpensive. From Theorem 2.1, we see that x* is a nominee for
solution to (2.1).

In this local search procedure, we should remark that an edge vi—lyi
for some ¢ < £ can intersects 0G. More precisely, there might be at most
two points x’ and x” on edge v~!-v* such that g(x’) = g(x") = 0. In
that case, however, both x’ and x” cannot be optimal for (2.1) because

chl-‘l < ch/ S ch// S cht’

and v* € C N D\ G by assumption. Even if we neglect such intersection
points, we never lose any optimal solution to (2.1).

4.2 Global optimality check

If we obtain the nominee x* € C'N DN JG, the next thing is to check
whether x* satisfies the optimality condition of (2.1) given by Theo-
rem 2.2. We can accomplish it, in theory, applying Algorithm 3.1 to
PD(c"x*). If the algorithm yields x* as an optimal solution to PD(c"x*),
we can conclude from Theorem 2.2 that x* is optimal for (2.1) as well.

3
, Vo, ..
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In practice, however, Algorithm 3.1 might not terminate in finite time,
without a positive tolerance e. We therefore need some additional de-
vices.

For a sufficiently small § > 0, let x’ be a point on the line including
edge v~1-v* such that

c'x' =c"x* +6 < X,
where x° is an optimal solution to the linear program (2.2). Also letting
€=g (X’),

we see that ¢ > 0. Instead of solving PD(c"x*), we solve PD(c"x’)
using Algorithm 3.1 with this € as tolerance. Then, by Theorem 3.6, the
algorithm must terminates in finite time and yields an e-optimal solution
to PD(c"x'). If the output solution is x/, then it satisfies g(x') < g(x)+e
for any x € CND satisfying ¢"x > ¢"x*+4. Since g(x) = € by definition,
we have

g(x) >0, ¥xeC'nD,

where €’ is set to C N {x € R™ | ¢"x > ¢"x* + §}. If there is a point
x" € C' N D satisfying this with equality, then z” is an optimal solution
to (2.1) and the optimal value is ¢"x* + 6 by Theorem 2.2. Hence, we
have

c'x*>c¢'x-46, ¥YxeCnD\G,
which means that x* € C N DN JG is a globally §-optimal solution to
(2.1).

Next, suppose that Algorithm 3.1 yields x* # x” with g(x*) < e. This
point x* is a vertex of C' N D* for some k¥ € K but might not be a
vertex of C'N D. However, since g achieves each local minimum at some
vertex of C' N D, finding a vertex w! of C' N D with g(w!) < g(x*)
is not expensive if we locally minimize g on C' N D starting from x*.
Once we obtain such a point w! with g(w') < g(x*) < €, we may again
generate a sequence of adjacent vertices w2, w3, ... of C'N D such that
c"w! < ¢Tw? < -- -, until some edge wf~1-w’ intersects 9G.

4.3 Description of the algorithm

Let us summarize the algorithm alternating local search and concave
minimization, where § > 0 is a given tolerance.

Algorithm 4.1.

begin
let w ¢ G be a vertex of C' N D; optimal := false; C' :=C; k=1,
while optimal = false do begin
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repeat
v := w; find a vertex w of C' N D adjacent to v such that
cv<ce'w '
until g(v) < 0 and g(w) > 0;
let x* be an intersection point of edge v—-w and 9G;
let @ := ¢"x* + 6 and x’ be a point on the line including v—w such
that ¢'x' = o;
let C":=Cn{xeR"|c"x>a};
solve PD(a) using Algorithm 3.1 with € := g(x’) and let x* denote
its output;
if g(x*) < € then
find a vertex w of C' N D with g(w) < g(x*) in a neighborhood
of x*
else optimal := true;
k=k+1;
end;
xX*i=x
end;

k

Theorem 4.1. When § > 0 is a sufficiently small number, Algorithm
4.1 terminates in a finite number of iterations and yields a globally §-
optimal solution x* to (2.1).

Proof: For each iteration k > 1, we see that
TxF > Txb1 16> eTxk-1, |

Since ¢'x* has an upper bound ¢"x?, the finiteness of Algorithm 4.1
follows this. n

5. Indirect application of Falk-Soland’s
algorithm

In the previous section, to solve (2.1) we apply Falk-Soland’s branch-
and-bound algorithm in a rather direct manner. This solution method,
however, has a weak point that we have to solve a class of concave
minimization problems repeatedly, even though the class is fairly easy
to solve in comparison with other multiextremal global optimization
problems. In this section, we will develop a method that computes an

upper bound on the optimal value of (2.1), not a lower bound on that of

the dual problem (3.1), in Step 2 of the rectangular branch-and-bound
scheme. Therefore, once we call this branch-and-bound algorithm, it
generates a globally optimal solution to the original problem (2.1).

As in Falk-Soland’s algorithm, we subdivide the rectangle D into sub-
rectangles D¥, k € K, which constitute a partition of D. However, the
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problem to be solved for each partition set D is not a subproblem of
(3.1) but that of (2.1), i.e., we solve a problem of the following form with

D = DF: ;
maximize cC' X

QD) subject to x € CND\G.

Of course, Q(D) belongs to the same class as (2.1), and hence cannot

be solved directly. Instead, we compute an upper bound w* on Q(D) in
each iteration and narrow partition sets down to the one containing an
optimal solution to (2.1):

Let D! := D, K := {1} and k := 1. Repeat Steps 1 — 3 until £ = 0.
Step 1. Take an appropriate index ¢ out of K and let D := Di*,

Step 2°. (Bounding operation) Compute an upper bound w* on the op-
timal value w(D) of Q(D). If w* < c'x* for the best feasible
solution x* to (2.1) obtained so far, discard D from further con-
sideration. ' \

Step 8. (Branching operation) Otherwise, divide the rectangle D into
two subrectangles D?* and D?+!. Add {2k, 2k + 1} to K.

We will begin by explaining how to compute the upper bound w* in
Step 2’ of this scheme.

5.1 Linearization and its solution

As shown in Lemma 3.1, the convex envelope h of ¢ defined in (3.5)
and (3.6) satisfies h(x) < g(x) for all x € D. Hence, by letting

H = {xe€ R"|h(x) <0},

we have
D\Gc DNnH.

This immediately implies that the optimal value w(D) of Q(D) is bounded
from above by that of

maximize ¢'x

QL(D) subjectto x€e CNDNH.

Let x* denote an optimal solution to QL(D) when it is feasible. Also,
let :

k {Jﬂ ifCNDNH#)
w® = .
—o0 otherwise.
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Lemma 5.1. If w* = ;—oo, then Q(D) is infeasible. Otherwise, the
following relationship holds:

wk > w(D). | (5.1)

|

Since h is an affine function, QL(D) is a linear program with the set
of constraints

A"x<b" 1<x<u,

where

i A

A= | gi(u) —g1(h)  gn(n) — gn(ln)
L uy — ll Up — ln

b
b = 2": 1;g;(u;) — uigi (L)
yp

L =1

Therefore, if we try to use w” as the upper bound in Step 2’, we need to
solve a series of linear programs different from one another just in the
last tows of A” and b”. However, this structure of A” causes a serious
disadvantage when we solve them using the revised simplex algorithm
where the inverse of each basis is maintained in a compact form such as
a product of eta matrices (see e.g., [2]). Even if we keep an optimal basis
of A” in such a form for the present problem, it is of no use in solving
the succeeding problems. To improve this, we propose to solve QL(D)
in two stages starting from an optimal solution x*=1 of the preceding
linear program. In both stages, the matrix we mainly deal with is not
A" but A’ defined in (3.2).

First stage of solution to QL(D). Let
#(a) = min{h(x) | x € CND, c'x=a}.
It is known that ¢ is a convex piecewise affine function of « (see e.g.,

[2]). We see from the following that QL(D) amounts to locating the
maximum of « satisfying ¢(a) < 0.

Lemma 5.2. Letx' be a point in CNDNH. Then x' is an optimal so-
lution to QL(D) if and only if ¢"x' is the mazimum value of o satisfying
b(a) < 0.

Proof: Note that ¢(c"x’) < h(x’) < 0since x’ € CNDNH. Therefore,

if either holds, we have ¢ "x’ > ¢"x for any x € CND satisfying h(x) < 0,
which implies the other. [ |
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If c™x # a for any x € C'N D, then ¢(a) is understood to-be 4-co.
For a given x*~! optimal for the preceding linearized subproblem, we
first check the value of ¢ at ¢"x*~!. This can be done by solving the
following linear program ‘

minimize  h(x) (5.2)
subject to x € CND, ¢'x>c'xF 1. )

Three cases can occur:

Case 1: Problem (5.2) is infeasible. In this case, ¢(c'x*~1) = +oco and
QL(D) can provide no better solution than x*~!. Hence, we can
exclude the rectangle D from further consideration.

Case 2: Problem (5.2) has an optimal solution x’ such that ¢'x’ =
¢"x*~1. The value ¢(c"x*!) is given by h(x). If h(x) = 0,
then ¢"x*~! is the maximum of a; but QL(D) can provide no
better solution than x*~! as long as h(x') > 0. If A(x') < 0, let
] = cTxk-1,

Case 3: Problem (5.2) has an optimal solution x’ such that ¢™x’ >
c¢"xF1. Let a; = ¢"x'. Then we have ¢(a1) = h(x’). If h(x') is
vanishes, then ¢ is the maximum of a; hence, x*¥ and w* can be
set to x’ and ay, respectively.

Second stage of solution to QL(D). If ¢(a;) # 0, then we adjust
the value of o to restore ¢(a) = 0. Suppose that ¢(ay) < 0. In this
case, as increasing the value of o from a1, we solve

minimize  h(x)
PQ(a) | subject to Ax<b, 1<{x<u
c'x=aq,
using the parametric right-hand-side simplex algorithm [2]. Then it
generates a sequence of intervals [y, @3], [0, @3], ..., and a sequence of
bases B1,B%,... of A’ such that B* is optimal for PQ(a) when a €
[, @i41]- The optimal value ¢(a) of PQ(a) is affine on each interval
[@;, @iy1]- If we find a break point oy satisfying

Plos) <0, i=1,...,6—1, ¢(ag) >0, (5.3)

we can easily compute a point o/ € [y, ay] such that #(a’) = 0. Then
we have w* = o and x* as an optimal solution to PQ(c/). If no break
point satisfies (5.3), then « reaches its maximum @, = max{c'x | x €
C N D} and still satisfies ¢(ag) < 0. In that case, we have CND C H;

since h(x) < 0 is redundant to QL(D), we may set a, to wk.
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In the case that ¢(ay) > 0, we may solve PQ(a) as decreasing the

value of & from a;. Again, we have a sequence of intervals [ag, 01], [03, 23], . . -,

and the piecewise affine function ¢(«) for a < a;. If we can find a break
point ay satisfying

ples) >0, i=1,...,—1, ¢(a) <0,

the rest of the procedure is the same as before. Otherwise, a reaches its
minimum o, = min{c’ | x € C'N D} and still satisfies ¢(a,.) > 0. This
implies C N DN H = 0, and hence w* = —co.

In these stages, we should remark that (5.2) is of the same form as
PL(D) the linearized subproblem in Falk-Soland’s algorithm. While o
in PL(D) is treated as just a constant, (5. 2) is solved via PQ(a) para-
metrically as changing the value of a from ¢"x*~1. In this connection,
we also note that (5.2) is dual for the linearization QL(D) in the sense
of Theorem 2.2 if x*~! is optimal for the latter. This branch-and-bound
algorithm, therefore, can be thought of as a method for solving the dual
problem of each subproblem while Algorithm 4.1 tries to solve the dual
problem of the original problem.

Let us summarize the above procedure, which receives h, x*~1, and
returns the optimal value w* of the linearized subproblem QL (D):

Procedure 5.1.
begin
/* Stage 1 x/
construct problem (5.2) of minimizing hA(x) on CNDN{x € R" |
cTx > chk—l};
if (5.2) is infeasible then return w* :=
else begin
. let x’ be an optlmal solution to (5.2);
if c"x’ = ¢"x*~! then
if h(x') > 0 then return w* := —c0
else a; = ¢TxF!
else begin
if B(x’) = 0 then return x* := x’ and w* := "%’
else a; :=c"x’
end;

—00

/* Stage 2 x/
if ¢(a1) < 0 then begin
solve PQ(a) parametrically as increasing « from oy;
let @s,...,a, be break points of the optimal value function ¢ of

PQ(a);
if ¢(as) <0fori=1,...,£—1and ¢(a) > 0 then begin
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compute w* € [ay_1, ] such that qb(wkz =0;
le}:c x* be an optimal solution to PQ(w*) and return x* and
w
end .
else let x* be an optimal solution to PQ(eq) and return x* and
w* = ay
end )
else begin
solve PQ(a) parametrically as decreasing o from ay;
let a,...,a, be break points of ¢;
if ¢(a5) >0for i = ..., —1 and $(ay) < 0 then begin
compute w* € [ay_y, ] such that ¢(w*) = 0; :
let x* be an optimal solution to PQ(w*) and return x* and
wk
end
else return w
end
end

end;

k= —co

5.2 Bounding and Branching

If an optimal solution x* to QL(D) is not a point in G, then x* is
also an optimal solution to Q(D) and (5.1) holds with equality. Unfortu-
nately, in general, x* is not even a feasible solution to Q(D). To perform
the bounding operation efficiently, however, we need a feasible solution -
giving a lower bound on (2.1) and have to update it timely. One way
to find a feasible solution to (2.1) is to check if each solution to PQ(a)
lies on G or not, in the second stage of solution to QL(D). Here, we will
give a more handy approach.

Suppose that a feasible solution X to the original problem (2.1) is
given and satisfies g(X) < 0. If g(x*) > 0 holds, the line segment
connecting x* and X intersects G at x’ = (1 — A)x* + A% for some
A € [0,1]. Such a point A can be computed in a way similar to (4.1).
This boundary point x’ of G is a feasible solution to (2.1) because the
segment x*—X is entirely included in the convex set CND!. We compute
x’ in each iteration if possible, and then update the incumbent and lower
bound with x’. The point X need not be determined beforehand. As the
rectangular subdivision advances, some vertex of D* k ¢ K, becomes
feasible for (2.1). Hence, we may check if each vertex of D is feasible for
(2.1) in each iteration. Since g is concave, checking requires O(2") time.
In the usual application, however, each g; constituting g represents a
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cost of z; and is nondecreasing. In that case, we need only to check the
feasibility of vertex 1.

The branching operation can be performed in the same way as in
Falk-Soland’ algorithm, i.e., we can use both bisection and w-division
for selecting (7, m;) in (3.7). Since the convergence by the bisection rule
is obvious, we briefly discuss the case of w-division. Let £ denote the
nested sequence of D%, i =1,2,..., as defined in (3.8). If we generate
the sequence £ according to the w-division rule, for each 7 € £ we select

ji € argmax{g; (@) — hy(&}) | 5 = 1,...,n}, (54)
and divide the mterval [ I J ut ] at

m, =z}, : (5.5)
where x' is an optimal solution to QL(D?). From (5.4) and Lemma 3.3,
there is a subsequence £’ C £ such that l;'- — I} and u; — uj for each
j as i = +oo in £'; and besides, I} and u] are accumulation points of
m . This, together with (5.5), 1mphes that x* has an accumulation point
among the vertices of D* = [I},u}] X --+ X [I*,u}]. From Lemma 3.1,

however, the convex envelope h agrees W1th g at each of these vertices;
and hence the optimal values of Q(D*) and QL(D*) coincide. Thus, we
have the following;:

Lemma 5.3. ‘If L generated according to either of the bisection and
w-division rules, then there is a subsequence L' C L such that

w' —w(D") - 0 asi—s oo in L.

5.3 Description of the algorithm

Lastly, we need to decide the rule of selecting an index #; from the
set K in Step 1. As in Algorithm 3.1, we can adopt either of the depth
first and best bound rules. We are now ready to describe the algorithm,
where € > 0 is a given tolerance.

Algorithm 5.2.

begin
construct the linearized problem QL(D) of (2.1) and solve it to obtain
x!;
select j € {1,...,n} and m; € [I;,u;] by a fixed rule (bisection or
w-division);
D? = [li,u1] X -+ X [lj,mj] X - -+ X [In, un);
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D?:= [llvul] X [ ] + X [lna'u'n]?
D' = D}C_{23}k:2 = —00;
while K # 0 do
/* Step 1 %/
select an index ix from K by a fixed rule (depth first or best bound);
K=K\ {ix}; D= = D',

if w* = —oo and some vertex v of D lies on CN D'\ G then begin
X:=v;w:=c'%
end;
/* Step 2° x/

- construct a subproblem Q(D) and its lmea,rlzatlon QL(D);
compute an optimal solution x* and the value w* of QL(D) using
Procedure 5.1;
if w* — w* > € then begin

/* Step 3 %/

if w* > —co then begin

let x' be an intersection point of x*~% and 9G;

if ¢"x’ > w* then update w* := c¢'x’ and x* := x’;
end;
select j € {1,...,n} and m; € [I;,u;] by a fixed rule;
D%* =l uy] X -+ X [[j,m;] X -+ X [ln, un];
D¥*FL = [l wq] X -+ X [mj,u5] X+ X [ln, un);
K=KU{2k,2k+1};k=Fk+1

end
end
end;

The following results are analogous to Theorem 3.6 and Corollary 3.7

Theorem 5.4. When € > 0, Algorithm 5.2 terminates in a finite num-
ber of iterations and yields a globally e-optimal solution x* to problem
(2.1). |

Corollary 5.5. Suppose ¢ = 0. If the best bound rule is adopted in
Step 1, the sequence of x*’s generated by Algorithm 5.2 has accumulation
points, each of which is a globally optimal solution to problem (2.1). ®

6. Concluding remarks

We have seen that Falk-Soland’s rectangular branch-and-bound algo-
rithm can serve as a useful procedure in solving linear programs with an
additional separable reverse convex constraint (LPASC). Since we have
not yet compared Algorithms 4.1 and 5.2 with other algorithms, we can
make no final conclusions about their computational properties. How-
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ever, if we think of the success of Falk-Soland’s algorithm in concave
minimization, we can strongly expect Algorithms 4.1 and 5.2 using it in
a direct or indirect manner to be reasonably practical.

As stated in Section 1, the rectangular branch-and-bound algorithm
has made great progress since Falk-Soland [3]. Although we have used
Falk-Soland’s classical branch-and-bound in Algorithm 4.1, we can in-
stead employ modern algorithms of this kind such as [11, 15]. These
are reported to be more efficient than Falk-Soland’s original algorithm.
Therefore, such modification will improve the efficiency of Algorithm 4.1
considerably. In addition, we could incorporate devices of [15, 11] into
Algorithm 5.2 because its structure is basically the same as Falk-Soland’s
branch-and-bound algorithm. We will report these improvements on Al-
gorithms 4.1 and 5.2 elsewhere, together with their computational re-
sults.
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