Refinements of Lazy Narrowing for Left-Linear
Fully-Extended Pattern Rewrite Systems

Mircea Marin!, Taro Suzuki?, and Tetsuo Ida!

1 Institute of Information Sciences and Electronics
University of Tsukuba, Tsukuba 305-8573, Japan
{mmarin,ida}@score.is.tsukuba.ac.jp
2 Department of Computer Software
University of Aizu, Aizu Wakamatsu 965-8580, Japan
taroQu-aizu.ac. jp

ISE-TR-01-180

Abstract. Lazy narrowing is a general F-unification procedure for equa-
tional theories presented by confluent term rewriting systems. It has been
deeply studied in the first order case and various higher-order extensions
have been proposed in an attempt to improve its expressive power. Such
extensions suffer from huge search space in guessing the solutions of vari-
ables of functional type. For practical purposes, the need to reduce the
search space of solutions is of paramount importance.

In this paper we introduce HOLN, a higher-order lazy narrowing calculus
for E-unification in theories presented by pattern rewrite systems. The
calculus is designed to deal with both oriented and unoriented equations,
and keeps track of the variables which are to be bound to normalized
solutions. We discuss the operating principle of HOLN, its main prop-
erties, and propose refinements to reduce its search space for solutions.
Our refinements are defined for classes of left-linear fully-extended pat-
tern rewrite systems which are widely used in higher-order functional

logic programming.

1 Introduction

Lazy narrowing is a general E-unification procedure for equational theories that
are presented by confluent term rewriting systems. It has been extensively stud-
ied in the first-order case (see, e.g., [10,11]) and serves as computational model
of many functional logic programming (FLP) languages. Motivated by functional
programming, many higher-order extensions of the FLP programming style have
been proposed. Naturally, these extensions impose suitable generalizations of the
underlying computational model to the higher-order case. Since higher-order con-
structs provide support for concise and natural formulations of many real-world
problems, this research field has attracted much interest in recent years (see,
e.g., [4,7,8,13,15]). Of particular interest is the framework suggested in [15] for
F-unification in theories presented by pattern rewrite systems. Among the main
benefits of adopting this framework, we mention:

1. the expressive power of FLP is extended with lambda abstractions and vari-
ables of functional type,

2. many higher-order generalizations of the properties of first-order lazy nar-
rowing depend on the properties (confluence, determinism, termination, etc.)
of the underlying rewrite relation. Rewriting with pattern rewrite systems
preserves properties of first-order term rewriting which are crucial in lifting
the essential properties of first-order lazy narrowing to the higher-order case.

The main difficulty in the design of a suitable computational model for higher-
order FLP is harnessing the high nondeterminism of guessing the solutions of
variables of functional type without loosing completeness. There are at least
two ways to overcome this difficulty: (a) we restrict to certain classes of rewrite
systems, and (b) we restrict to certain classes of goals to be solved. It is important
to identify restrictions which preserve the possibility to formulate large classes
of problems in an easy and convenient way.

In this paper we are concerned with a calculus inspired by the calculus LN
proposed by Prehofer [15]. We call this calculus higher-order lazy narrowing
calculus (HOLN for short). HOLN differs from LN in the following respects:

1. LN is designed to solve goals consisting of oriented equations. HOLN can
solve goals made of both oriented and unoriented equations. ’

2. LN regards all equations between A-terms with free variable at head posi-
tion as constraints. We call these equations flez/flez equations. Since solving
flex/flex equations is highly nondeterministic, LN doesn’t solve them. This
decision is motivated by the fact that flex/flex equations are always solvable,
and this information is often sufficient (e.g., in theorem proving). By con-
trast, HOLN solves certain flex/flex equations without increasing the non-
determinism of computation. As a consequence, HOLN can compute more
detailed answers.

3. The inference rules of LN depend only on the syntactic structure of goals
and rewrite rules. In addition, HOLN takes into account the fact that cer-
tain goal variables must be bound to normalized solutions. This additional

information allows us to reduce the high nondeterminism of guessing bind-
ings of normalized variables. We claim that the runtime overhead of keeping
track of the normalized variables in the goal pays off in comparison with the
reduction of nondeterminism enabled by this information.

The structure of the paper is as follows. In Section 2 we introduce our main no-
tions and notations. In Section 3 we formally introduce HOLN together with its
main properties, i.e. soundness and completeness. In Section 4 we introduce four
refinements of HOLN for left-linear fully-extended PRSs (LEPRSs for short).
Finally, in Section 5 we draw some conclusions and directions of future work.

2 Preliminaries

We first describe the meta-language of simply-typed A-calculus. The notation is
roughly consistent with [2,9, 15].

2.1 The Simply-Typed A-Calculus

Starting with a fixed set of base types B, the set of all types 7 is the closure of B
under the function space constructor —. The letter 7 ranges over types. Function
types associate to the right, i.e., we parse 4 —» 75 — 13 as 13 — (172 — 73). We
write 7, — 7 instead of 3 — ... — 7, — 7, if 7 is a base type.

Terms are generated as usual, by A-abstraction and application, from a set of
typed variables V = |J_ . Vr and a set of typed function symbols F = J, o1 Fr,
where V, NV, = F . NF. =0 if 7 # 7'. We assume that V, is countable for any
type 7. We denote the application of two terms s,t by (s t), and the abstraction
of a term ¢ over a variable by Az.t. An occurrence of a variable z in a term ¢ is
bound if it occurs below a binder for z, i.e., the occurrence of z is in a subterm
Az.t' of t. Otherwise it is free. Variables with free and bound occurrences in a
term ¢ will be denoted by FV(t) and BV(t) respectively.

. A type judgement that a term t is of type 7 is written as ¢ : 7. The following
inference rules inductively define the set of simply-typed A-terms:

acF, UV, s:7t—7 t:v z:7 5:7
a:T (st)y:7 z.s):T— 1"

In the sequel we consider only simply-typed A-terms. We denote by 7 (F, V) the
set of simply-typed A-terms, and by type(t) the type of a simply-typed A-term ¢.
The following naming conventions are used in the sequel:)

sets of finite variables in V: V.W
variables or function symbols: a

bound variables or function symbols: v
simply-typed A-terms: l,r,s,t,u
constants in F: e

bound variables: T,Y,2

free variables: XY, Z,H
non-negative integers: i, 5, k,m,n, N

To ease the notation, we also adopt the following abbreviations:

ob, for a sequence of syntactic objects obs, ..., 0b, where n > 0;
the symbol [0 denotes the empty sequence
AT,.s for Azy..... ALp.8

a(55) for (-~ (a 51)+--) sn)

For instance, A\T,.f(3,) stands for Azy...AZp - ((--- (f 51)---) 8n). The sub-
scripts m and n will be omitted when irrelevant or understood from the context.

Let s[t/X] denote the result of replacing each free occurrence of X in s by ¢.
The conversion rules in A-calculus are defined as follows:

(a~conversion) If y & FV(t) N BV(t) and type(y) = type(z) then Azt =, Ay.(t[y/=z]),

(B-conversion) (Az.s) t >g s[t/=],
(n-conversion) If z ¢ FV(t) then (Az.(t z)) >, t.

If we denote by ¢[l] a A-term with a distinguished occurrence of a subterm I,
then let t[r] denote the result of replacing the single subterm I by the term 7,
where type(l) = type(r). We define the a-reduction relation —, as

tl] sa tlr] it >4

The B-reduction relation — g and n-reduction relation —,, are defined similarly. k

We define — g, as —g U —,. For each of these reduction relations, we also define
the symmetric closure <4, the transitive closure —>$, the reflexive-transitive
closure —7%, and the reflexive-symmetric-transitive closure 5 in the obvious
fashion (¢ € {«,3,1}). The relations —p, <5, and ©p, are called -, 7-, and
Bn-equivalence respectively. Since the simply-typed A-calculus is confluent and
terminating with respect to G-reduction (respectively n-reduction) [1], every term
t has a normal form which is denoted by ¢}z (respectively ¢|,). The 8-normal
form (respectively n-normal form) of a term t is denoted by t|gs (respectively
tly). Let t be in f-normal form (i.e., t = t}). Then ¢ is of the form \Z,,.a(35),
where a € F UV is called the head of ¢, denoted by head(t). The 7n-ezpanded
form of t = AZ,,.a(3,) is recursively defined by

tTn =)‘mm+k-a(3nTm -'17n+1Tn: L) xn+an)

where ¢ : Tk — 7 and Tpq1,. .., Tmgk € FV(S;). We call t] 517 the long -
normal form of a term ¢, also written tIZ A term t is in long Bn-normal form if
t=t]7.

A term ¢ in long Bn-normal form is called flez if head(t) is a free variable,
and 7igid otherwise.

We will in general assume that terms are in long Sn-normal form and that the
transformation of a term into its long Bn-normal form is an implicit operation,
e.g., when applying a substitution to a term (see next). We will also identify
a-equivalent terms and assume that bound variables with different binders have
different names. This identification can be achieved at syntactic level if we adopt

the de Bruijn representation of A-terms [3]. Since s <vqapy t iff s[j) «—a 13 [5],
we can detect the afn-equivalence of two terms by comparing the de Bruijn
representations of their long Gn-normal forms.

The size [t] of a term ¢ in long Bn-normal form is the number of symbols oc-
curring in ¢, not counting binders. Formally, |Az.t| = |t| and |a(Z,)] = 1+ X7, |t;]-

A position is a sequence of natural numbers identifying a subterm in a term.
The set Pos(t) of positions in a term ¢ is defined inductively as follows: Pos(a) =
{e} if a € VUF; Pos(Azx.t) = {e} U {l-q | ¢ € Pos(t)}; and Pos(a(sy)) =
{eyUUL 1 {i-q | g € Pos(s;)}. Here € denotes the empty sequence. If p € Pos(t),
then ?|, denotes the subterm of s at position p, and ¢[s], denotes the term
obtained from ¢ by replacing its subterm at position p by a term s of appropriate
type.

Let p € Pos(s). The sequence BV(s, p) of A-abstracted variables on the path
to p in s is defined inductively as:

— BV(s,e) =03,
— BY(a(3z),i-p) = BY(s:,p),
— BY(Az.t,1-p) =z, BV(¢,p).

A substitution is a map 6 : V — T (F, V) such that:

(a) type(0(X)) = type(X) for all X € V,

(b) Dom(0) :={X € V| X # 6(X)}, called the domain of 8, is finite.

We frequently identify @ with the set {X — 8(X) | X € Dom(6)} of variable
bindings. We denote the set [y Domio) FVY(0(X)) of free variables introduced
by 8 by Ran(f). We also denote the codomain {6(X) | X € Dom(6)} of 6 by
Cod(6). The empty substitution is denoted by ¢, and the set of all substitutions
by Subst(F, V). Two substitutions §; and 6, are equal on V, notation 6; = 6 [V],
if 6,(X) = 62(X) for all X € V. The restriction of a substitution 8 to V, denoted
by 8]v, is defined by 8]y (X) = 6(X) if X € V, and 8}y (X) = X otherwise.

The application of a substitution § = {X; — t1,..., X, — t,} to a term
t, denoted by t6, is defined as [¢t,/Xy] . .. [t1/X1]t- This notation is extended to
other syntactic constructs over A-terms (e.g., sequences of terms, equations, etc.)
in the obvious way. For example, if ,, is a sequence of terms, then %,60 denotes
the sequence of terms t36, ..., t,0.

The composition 6162 of two substitutions 6,6, is defined as 6,65(X) =
(X61)02. A substitution 6, is more general than a substitution 2 over a set of
variables V, notation 6, < 83 [V], if 61y = 8, [V] for some substitution . 6; and
2 are incomparable over V if neither 6; < 6, [V] nor 62 < 6, [V].

Two terms s and t are called unifiable is there exists a substitution @ such
that s@ = t0. Such a 0 is called a unifier of terms s and ¢.

Let V € Pyin(V). A renaming away from V is a map p: V — T (F, V) with:

~ Dom(p) == {X €V| X #p(X)} € Prin(V),

— {tly |t € Cod{p)} CV, where Cod(p) := {p(X) | X € Dom(p)},
— p(X) # p(Y) for all X,Y € Dom(p) with X #7Y, and

= Ran(p) NV = 0, where Ran(p) = Uxcpom(p) FV(P(X))-

E.g., p={X — Az.Hy(z),Y — Hy} is a renaming away from V = {X,Y}.

2.2 Pattern Rewrite Systems

The following subclass of simply-typed A-terms was introduced by Miller [12]
and is often called higher-order pattern in the literature.

Definition 1 (Pattern [12]). A higher-order pattern (pattern for short) is a
term t in which every subterm of the form X (uy) with X € FV(t) has unl, a
sequence of distinct bound variables.

For example, the terms Az,y,2.X(z,z) and Az,y,z.f(X(x,2),Y (z)) are pat-
terns. The terms Az, y. X (x,y,z) and Az, y.f(X (z,g)) are not patterns.
Patterns have the remarkable property that unification is unitary. Moreover,
if two patterns are unifiable then a most general unifier can be computed in
linear time [16]. This result shows that unification with patterns behaves similar

to the first-order case.

Definition 2. A fully extended pattern is a pattern t such that for all p €
Pos(t), if t, = X () with X € FV(t) then unl, is a permutation of BV(t,p).
For instance, the pattern Az, y, z.X(z, z,y) is fully-extended, but the pattern
Az, y, z.f(X(z,v)) is not.

Definition 3 (Pattern rewrite system). A pattern rewrite system (PRS for
short) is a set R of pairs | — r such that

(c1) 1 and v are A-terms of the same base type,

(e2) FV(r) C FV(D), .

(e3) 1 is a pattern of the form f(l,).

A fully extended pattern rewrite system (EPRS for short) is a pattern rewrite
system R which satisfies the additional condition:

(ca) V(I = 7) € R, L is a fully extended pattern.

In the sequel we assume given a PRS R. We regard F as the disjoint union
Fa W Fe, where Fq = {f € F | 3(f(ln) — r) € R}, and F. = F \ Fy. The
elements of F; are called defined symbols, and the elements of F, are called
(data) constructors. :

Definition 4 (Rewriting). If (I — r) € R and p € Pos(s), we define a rewrite
step from s to t as

s ——->;,:o'r t: sl =10 At = s[rb],.

We often omit some of the parameters p, 0,1 — r and may write s —x t instead.
The relation —x is called the rewrite relation induced by R on T (F,V).

‘We mention below an equivalent definition of rewriting which takes into account
the free variables in s|, which were bound in s. This new definition is based on

the notion of lifter.

Definition 5 (Lifter). An ZTg-lifter of a term t (respectively rewrite rulel — r)
away from V is a substitution 0 = {X + p(X)(ZTx) | X € FV(t)} where p is a
renaming with Dom(p) = FV(t) (respectively Dom(p) = FV(1)), Ran(p)NV =
and p(X) :Togm 2 T f T1 171, -, Tkt T and X I Ty — oo Thgm —> T-

For example, {X — Y(z)} is an z-lifter of f(X) away from any set V C V\{Y'}.
An Z-lifted rewrite rule of a rewrite rule [— r away from V is an expression
of the form lo — ro where o is an Z-lifter of I — 7.
The following definition of rewriting can be proved to be equivalent to Defi-

nition 4.

Definition 6 (Rewriting). If (I — r) € R and p € Pos(s), we define a rewrite
step from AZj.s to AT;.t as

AT;.s —>;'7"9’T AT AT (s|p) = ATE-10 A ATt = XT5.8(r8]p,
where T = BY(M\T;.5,p) and l — r is an Tx-lifted rewrite rule away from FV(s).

We denote by —7, the reflexive-transitive closure of —%, and by <% the reflexive-
symmetric-transitive closure of —%. Two terms s and ¢ are R-joinable, notation
s |r t, if there exists a term u such that s —% w and t =% u. R is confluent
if whenever s —% [and s —%, r, we have | |z 7. R is left-linear if there is no
rewrite rule ({ — r) € R with multiple occurrences of a free variable in [.

A term s is R-normalized if there is no rewrite step s —x t. A substitution
0 is R-normalized if 6(X) is R-normalized for any X € Dom(6).

R induces an equivalence relation =¢ on 7 (F, V), which is the least equiv-
alence relation induced by the following axioms and inference rules:

s=pt s=pt t=gu s=pt s=Rp & t=gt

t=npt t=rs S =R U Az.8s = Mx.t (S t) =R (S' t’)
(l—r)eR sep,t
l=pnr s=xnt

It has been shown [18] that =g coincides with the model-theoretical semantics
for higher-order equational logic. Moreover, we have the following relationship
between rewriting and equational logic [9]:

s=r t & s]j ox tl]. (1)

An equation is a pair (s,¢) of terms of the same type. We distinguish between
oriented equations, written as s I> ¢, and unoriented equations, written as s =~ t.
We denote by Eq(F, V) the set of equations over variables V and function sym-
bols F. A flex/flex equation is an equation between flex terms. For example,
Az X (z,z) = Ax.Y is a flex/flex equation, but Az.X (z,z) = Az.f(Y) is not.

A substitution 7 is a pattern substitution if y(X) is a pattern for any X €
Dom(). v is an R-solution of s = t, notation v € Ug(s = t), if sy <% tv.
Since sy and ty are assumed to be in long Gn-normal form, relation (1) implies
that v € Ur(s = t) iff sy = ty. Under the additional assumption that R is

confluent, this condition is equivalent to sy [® v, or to the existence of a rewrite
derivation of the form sy ~ ty =% u =~ u for some u € T(F,V). Such a rewrite
derivation is called a rewrite proof of v € Ugr (s = t).

A substitution v is an R-solution of s > t, notation vy € Ur(s > t), if
s —% ty. This condition is equivalent to the existence of a rewrite derivation
sy > t'y —% ty = ty which rewrites only the left-hand side. Such a rewrite
derivation is called a rewrite proof of v € U (s > t).

Let Proof (e,) denote the set of rewrite proofs of v € Uz (e).

In the sequel we assume R to be a confluent PRS. Let E = gy be

a sequence of NV equations. The notions of R-solution and rewrite proof are
extended to sequences of equations in the obvious way. Formally, we say that v
is an R-solution of E, notation v € Ur (E), if v € Ur(e;) for alli € {1,...,N}.
A rewrite proofof y € U (E)isamap p: {1,...,N} — Uzlil Proofg (e;,7) such
that p(¢) € Proofg (e;,~y) for all ¢ € {1,..., N}. We denote by Proofy (E,) the

set of rewrite proofs of v € Ug (E).
In general we are interested in computing R-solutions which are R-normalized

w.r.t. some set of variables. Therefore, we adopt the following notions of goal
and R-solution.

Definition 7 (Goal, R-solution). A goal is a pair E |y where E is a sequence
of equations and W € P (V). Elw is a flex goal if E is a sequence of flex/flex

equations.
A substitution vy is an R-solution of Elw, notation v € Up(Elw), zf ylw is

an R-normalized substitution and v € Ur(E).

For a given set of function symbols F and set of variables V we denote the set
of goals by Goal(F,V), the set of flex goals by Goals(F,V), and define the set
FV(E|w) of variables of a goal E|w by FV(E|w) = FV(E)UW.

Definition 8. A set A is a complete set of R-solutions of a goal E|w, notation
A € CSUR(E\w), if it satisfies the following conditions:

soundness: A C Ur(E|w),
completeness: Vy € Ug(Elw),360 € A.0 <~ [FV(E|lw)].

A is o minimal complete set of R-solutions of a goal E|w, notation A €
MCSUR(Elw), if A € CSUR(E|w) and any two substitutions 61,05 € A are
incomparable over FV(E).

In general, computing a complete set of R-solutions is highly intractable, mainly
because solving flex/flex equations is highly nondeterministic. Moreover, higher-
order unification is known to be nullary [6]. This means that MCSUy(E|w) may
not exist. Obviously, this implies that MCSUx (F|w) may not exist. The good
news is that there are many applications in which it is sufficient to decide the
existence of an R-solution for a goal (i.e., if CSUR(E|w) is empty or not), and it
is known that CSUg (E|w) # 0 whenever E is a sequence of flex/flex equations.
For such applications, it is sufficient to be able to compute a complete set of so
called partial R-solutions of a goal.

Definition 9. Let E|w be a goal. A complete set of partial R-solutions of F|w
is' a set A of pairs (8, F|w) which satisfy the following conditions:

(a1) Flw- is a flex goal,
(c2) V{0, Flw) € A, Vy € Ur(F).0y € Ur(E),
(()3) V’}’ (S UR(Elw), 3(0,F[WI> € A, 3’}’/ c UR(FLW/) Ly = 0’)/ [H(Elw)]

Intuitively, every goal F'|w of a partial R-solution (8, F'\w/) represents the goal
that should be solved to reach an R-solution of E|y, but we don’t solve F'|y
because of high nondeterminism. Condition (c3) corresponds to the complete-
ness condition of Definition 8, whereas condition (c2) corresponds to a weakened
form of the soundness condition of Definition 8.

Note that if A satisfies conditions (¢1), (¢2), (c3), then the set

Ext(A) = {07 {0, Flw') € A and v € U (F)}

is a complete set of R-solutions of F, and contains a subset A’ € CSUR(Flw).
However, we may have Ext(A) ¢ CSUR(E|w).

Since a complete set of partial R-solutions may be infinite, we are inter-
ested in the design of calculi C which enumerate a set Ans% (E|w) of partial
R-solutions of E|w for which conditions (c1), (¢z), (¢3) hold.

Definition 10. Let C be a calculus which computes a set of pairs
Ans% (Elw) C Subst(F,V) x Goals(F,V)
for any given goal Elw . We say that C is

sound if Ans% (E|w) satisfies condition (cz) of Definition 9.
complete if Ans% (E|w) satisfies condition (cs) of Definition 9.

3 Lazy Narrowing Calculi

In this section we will present several higher-order lazy narrowing calculi de-
signed to compute complete sets of partial R-solutions.

Such a calculus C will be described by a finite set of labelled inference rules.
The inference rules are binary relations on goals of the form

(Er,e, E2) lw=>a,c0 (E10, E, Ex0) |w:

where « is the label of the inference rule, e is the selected equation, 6 is the
substitution computed in the inference step, W’ = FV(W#), and E is a sequence
of equations whose elements are called the descendants of e. If €/ is an equation
in Ey or Es, then €' has only one descendant in the inference step, namely the
corresponding equation €'6 in E16 or Exf. We often omit some of the subscripts
a,e,0 of an inference step when they are irrelevant or understood from the

context.

We call C-step an inference step of a calculus C. We will denote by step(C)
the set of inference steps of a calculus C. A C-derivation is a (possibly empty)
sequence of C-steps

Elw = Ep [Wo = ay,6 E, LWl =az,02 " an,bn Enlw.,

abbreviated Eplw, =§ En|w, or simply Eglw, =4 Enlw, , where 6 =0, ...6,,.
A C-refutation is a C-derivation E|w =} F|w for which there is no C-step
starting with F'|y.. We define

Ans% (Elw) = {(6, Flw:) | 3 C-refutation Elw =} Flw-)}.

In the sequel se adopt the following naming conventions:

equations: e€e,...,exea,...
sequences of equations: EE,....E\,Es,...
sequences of flex equations: F'

C-steps: m, ..., T, T, ...
C-derivations: Inm,.. I, I,,...

In the sequel we will introduce several higher-order lazy narrowing calculi and
analyze their main properties. To simplify their presentation, we adopt the fol-

lowing conventions:

— s~ tstands for t =~ s, and s >~ t stands for ¢ > s,
— for any binary symbol 4, we abbreviate by @, ><Nv,, a sequence of expres-

sions uy < vq,...,U, DX U,. For example, X, — t,, denotes the sequence
of variable bindings X; +— ¢;,...,X, — t,, whereas s, > t,, denotes the
sequence of equations s; > t1,...,8, > t,.

— whenever convenient, we relax the convention of writing terms in long 87n-
normal form, but keep the convention that all written terms are S-normal

forms,
— H, Hy, Ha,... denote distinct fresh variables; also, the sequences Un,, ¥n, ?—;Z

and Z, are assumed to consist of distinct bound variables.

3.1 The Calculus HOLN

HOLN consists of three groups of inference rules: preunification rules, narrowing
rules, and rules for removal of flez/flex equations.

Preunification rules

[i] Imitation.
If ~¢ {~,~71,>,>"1} then

(B1, M. X(5,) ~ /\f.g(a),Eg) lw =[i],8 (B1, AZ.Hp, (5mm) = AT.tp, E9)0w

where § = {X — A\ym.9(Hn(Tm))}-

10

[p] Projection.
If AZ.t is rigid and ~€ {=,~"!,>,>"1} then

(El,)\EX(Q) ~)\.’—L‘—.t, EQ) LW #[p]’g (El, /\TX(m) o~)\f.t, E2)91W¢

where 0 = (X - \grm: ()}
[d] Decomposition. If ~¢ {~,>} then

(Br, MT0(35) = AZ0(tn), B2)lw =(a),e (B1, AT.5p ~ AT, E2) lw

Lazy narrowing rules

[on] Outermost narrowing at nonvariable position.
If ~¢ {~,~ !, >} and f(I,) — is a fresh? Z-lifted rewrite rule of R then
(B1, AT.f(37) = ATt E2) lw=[on),c (B1, AT.Sn D> AT.lp, \E.1 =2 NT.t, B2) |w

[ov] Outermost narrowing at variable position.
If ~€ {=, =71}, f(I,) — r is a fresh Z-lifted rewrite rule of R, and either
AZ.X (3,) is not a pattern or X ¢ W then

(B1, AT X (5m) = NB4, B2) lw=> (01,0 (Br0, AT.Hn (5m8) > AZ.ln,
AL~)\f.to, Ega) LW’

where 6 = {X — Xy f(Hn(Tm))}-

Rules for removal of flex/flex equations

[t] Trivial equation.
If ~¢ {=,>} then

(Elv it~ t7 E?) LW =>[t],€ (Elv E?) lW

[fs] Flex/flex same.
If ~¢ {=,>} and X € W then

(B1, 22X (Yn) =~ AZ.X (9), B2)lw =150 (E1, E2)0lw

where 0 = {X 1 Ayn.H(Z)} with {Z} = {y: |y = ¢/, 1 < i < n}.
[fd] Flex/flex different.
If X,Y € W then

(B1, T X (m) = NT.Y (UL,), E2)lw =>jga1,0 (Br, E2)0lw-
If X € W then
(B1, A2 X (Um) D AE.Y (), B2) lw =[sa)0 (F1, E2)0lw.

In both situations, 8 = {X — Xgm.H(z;),Y — Ay, H(z;)} with {Z} =
{Tm} 0 {yn}-
! This means that f(l,) — r is an Z-lifted rewrite rule away from the finite set of free
variables which occurred in the preceding part of the computation.

11

Remark 1. The calculus HOLN restricts the application of inference rule [ov]
by taking into account the information that certain variables must be bound to
R-normalized values. This information is also used for solving certain flex/flex
equations in a deterministic way. Keeping track of the R-normalized variables of
a goal and employing this information in the solving process is a novel feature
which distinguishes HOLN from the other higher-order lazy narrowing calculi
proposed so far in the literature.

3.2 Main Properties of HOLN

It is obvious that Ansf O™V (E|w) C Subst(F, V) x Goals(F,V) whenever Ely €
Goal(F,V). In this section we prove that HOLN is a sound and complete calculus.
The following trivial lemmata will be instrumental in our proofs.

Lemma 1. Let8,v1,v2 € Subst(F,V) andV, V' € P(V) such that V' C FV(V4).
If 1 =2 [V] then 6y1 = 072 [V'].

Lemma 2. Let 0,y € Subst{(F,V) and V,V' € V such that V' C FY(VE). If 6
s a pattern substitution and 0y[v is R-normalized, then [y is R-normalized.

First, we prove that HOLN is sound. The following theorem is instrumental in

our proof of soundness.

Theorem 1. Let 7 : Elw =>a.e0 E'|lw’ be an arbitrary HOLN-step. If ' €
Ur(E') then 6y € Ur(E).

Proof. The proof is by case distinction on the label of the inference step.

— If @ = [i] then = is of the form

(By, NE.X (57) = NT.9(8n), Ba)lw =(ije0 (B, Xo-Ho (57) = No-bmy B)0l

(=1

where 6 = {X +— AUp,.g(Hpn(Ym))}. Obviously, 0y € Ur(Es, E2), and we
only have to check that 6y’ € Ugr(e). From v € Ur(F’) we learn that
v € Up(NT.Hp(5m0) ~ T ty,).

This implies that 7' € Ur (MT.g(Hn(5m0)) = \T.9(,)) = Ur(eb), and thus

9’)’1 € L{R(e). .
— If a = [on], there is a fresh Z-lifted rewrite rule f(I,) — r of R such that =

is of the form

By, XT.£(57) =~ N&.t, B2) lw=(onl.e.c (B1, NE-5n B Nln, NET = MT.t, Ea)
QES5n) = AT [onl.e,

and we only have to check that 7' € Ug(e). From ' € Ur(E') we learn that

M.s5;v =5 ATy for1<j<n
MT.ry =% AZ.t'y’ if e is an oriented equation
ATy <% ATty if e is an unoriented equation

12

These relations imply that
M. f(37)Y —% AZ.ty if e is an oriented equation

M. f(57)7 <% AZ.ty' if e is an unoriented equation

i.e., 7' is an R-solution of e. v .
— If @ =[ov] then there is a fresh Z-lifted rewrite rule f(l,,) — r of R such that

e (El, /\i.X(%) o~ /\f.t,EQ) [oW#[ov],e,G (Elg, /\an(sm_H) > Afln,
— AT~ AT .16, E20) |w

e

where 0 = {X — Xyp,.f(Hn (%)) }- In this case we only have to check that
0 € Ur(e). From v € Ur(E') we learn that

AT Hj(smb)y =5 ATy for1<j<mn
AL.ry —% XZ.t0 if e is an oriented equation
ATy o AT.t0y if e is an unoriented equation

As a consequence, we have
NT.X(5)07 = Mo f (Ho(sm0))Y —% X&.f (7)) —r NE1/

and therefore:
XT. X (57)07 —% AZT.t0+' if e is an oriented equation
AT X (5,)07 <5, AZ.t0v' if e is an unoriented equation

Hence, 0 € Ugr(e).
— the cases when o € {[p],[d],[t],[fs],[fd]} are straightforward. m]
Corollary 1 (Soundness). HOLN is sound.
Proof. Let Elw be an arbitrary goal, v € U (F), and
Elw = Eolwy =a1,0; E1lw, =020 - =an,0. Enlw, = Flw
an HOLN-refutation, abbreviated E|w =g F|w-. We can apply n times Lemma

1 to infer that

Y € Un(F) = UR(Ey) = 0n7' € Ur(En-1),

7

O2...0,7 € UR(EQ) =6 (02 . 0,—,’)") € Z/[R(Eo) = U-R(E)

Thus, 6y € Ur(E).]

The following definition will be used in the completeness proof of HOLN and of
its further refinements.

Definition 11 (Configuration). A configuration is a tuple (Elw,~,p) with
v € Ur(Elw) and p € Proofg (E,7). We denote the set of configurations by Cfg.

13

Our main idea of proving completeness of a higher-order lazy narrowing calculus
C is to identify a poset (A,>) with A C Cfg, > a well-founded ordering on A,

and a partial function
Dc : A X Prin (V) x Eg(F,V) — step(C) x A
which satisfy the following conditions:

(a) Vy € Ur(Elw),3p € Proofp (E,7)-(Elw,7,p) € A,

(b) f T = (Elw,v,p) € A, V € Psin(V) with FV(E|w) C V, and e € E can
be selected in a C-step, then &¢(T,V,e) = (w,T') with 7 : E|lw =, ¢ F'|w,
T = (E,[W'77/7 P/>, T Tl) and Y= 671 [V]

Under these assumptions, proving completeness of C proceeds as follows. Let
Eolw, € Goal(F,V) and vy € Ur(Eolw,). By (a), there exists a triple T} =
{Eolwoo, po) € A. Let V] = FV(Eo) U W,.

If &c(T1, V1,) is undefined for all e € F then the derivation Ep|w, = Eslw,
is a C-refutation, thus € € Ans% (Eolw,). Since, € < v [FV(Ey) U W] for any
v € Ur(Eo|w,), we conclude that C is complete.

Otherwise, let e; € Ep be an equation for which @¢(Ty,Vi,ep) is defined,
and let (m,T2) = P¢(T1,V1,€). We assume that 71 : Eglw, =e,0, Eilw,,
;= (El lW1a717 Pl), and choose Vz = fv(‘/iel)

We can now repeat the above construction by starting from 7%, as we did for
Ti. The construction is depicted below.

Yo € Ur(Eolw,) = 311 = (Eolw,, 10, p0) € A (by (a))

Choose V;, = FV(Ep) U W,

e1 € Ey for which &¢(T1, V1, e1) is defined.
4
Let <7T1, T2> = Qc(Tl, 1/1, 61)
where 7 : Eglwy, =>e,.0, E1lwn,

Ty = (Erlw,, 11, p1)-

Choose V, = FVY(V16;)

ez € Ey for which @¢ (T, Va,ez) is defined

4

Choose Vv = FV(Vn_16n_1),
ez € Ey for which &¢ (T3, V2, e2) is defined.
I
Let (nn,Tn+1) = @c(Tv, Vi, en)
where 7n : En_1lwy_, =en,0n Enlwy
Tn+1 = (Enlwy, YN, pPN)

Let IT be the C-derivation obtained by concatenating the C-steps my,..., 7y in
this order. By property (b), we have T} > ... > T’y Since > is well-founded, we
will eventually reach a triple Tn41 = (Enlwy, v, on) with Exy = F consisting
of flex equations which can not be selected in a C-step starting with Fly, . Thus,

II is a C-refutation.

14

It remains to show that v = 61 ...0nyn [FV(Es) U Wy]. First, we prove by
induction on k that

Vk € {0, o, N — 1}-’)’N—k——1 =0N_¢-- -BN'YN [VN—k]- (2)

The base case for k = 0 holds by condition (b) for 7. If (2) holds fork < N—1
then, since Vy—r = FV(VN-k-10N—-k~1), we learn by Lemma 1 that

ON_k—1VN-k—-1 = ON_k—10n—k - .. OnYN [VN-k—1]

By condition (b) for mny_x—_1, we know that yny_x—2 = On_k—1YN—k—1 [VN—-K—-1]-
Thus, YN—k—2 = ON—k—10N—k - - . OnYN [Vv—k—1] and this concludes our induc-

tive proof of (2). In particular, for k = N —1, we have that vo = 61 ... Onyn [V1].
0

Theorem 2 (Completeness). If R is confluent then HOLNis complete.

To prove that HOLN is complete, we must identify a poset (A, >) with A C Cfy,
and a partial function

QHOLN A X ‘szn(V) X Eq(]‘-, V) - St(?p(C) x A

which satisfy conditions (a) and (b) of our generic completeness proof of a higher-
order lazy narrowing calculus C. First, we introduce some useful notions and
prove some auxiliary results.

Given an equation e, we define the size of e by le| := |s| + [t| f e=s =t
or e = s > t. The size of E = €y is defined by |E| := {le;| | 1 £ i < N},
where {},, denotes the multiset constructor. The length of a rewrite proof p for
v € Ur(E|w) is defined by |p| := ZX.,|p(3)|, where p(i) denotes the number of

rewrite steps of p(z).
Let > be the lexicographic combination of the orderings > 4, > B, > ¢, where:

- <EI«W77)p) _>:A (EILW’17,yp/) iff Ipl 2 |p,l7
— (Elw, 7. p) =B (E'lw",7', o) E {|X] | X € Dom(7)} Zmu {IX"¥'| | X" €
Dom(v')},
— (Elw, 7,0} =c (E'lw, 7, p') Hf |EY| Zmut |E"Y|-
Let =4 B,c:=> N >"1. Then > is obviously well-founded. Since R is confluent,
condition (a) is obviously satisfied. It remains to show how @HOLN can be defined

in a way which satisfies condition (b).
The following six lemmata are crucial to justify the correctness of our defi-
nition of ®xory. If not stated otherwise, we assume that ~¢ {~,~71 >, l>_1}

Lemma 3. Let E =N, T = (Elw,7,p) € Cfg withex, = XAT.v(5,) ~ A\T.v(t,) €
E, and V € Py;n(V). Assume p(k) has no rewrite steps at the head positions of
the equational sides. We define

= (Eh=T) MB-5n = AT-bn, ki1, -, eN) and 7 : Elw =(g)enc E lw-
Then m is a valid HOLN-step and there ezists p' € Proofp(E',v") such that
T =(E'lw,7,p') € Cfgand T T'. We denote the pair (w,T") by $1q)(T, V, ex).

15

Proof. Since p(k) has no rewrite steps at the head positions of the equational
sides, we have:

(k) : XTv(327) = ATu(tny) =% AT.0() ~ AT.0(iy)

and we can rearrange the rewrite steps of p(k) into a sequence of rewrite deriva-
tions Ri, Ra, ..., R, where each R; (1 < j <n) is of the form

R; - DZu(T51, 557, - - -, 8n7Y) = AT0(T5_1, 457, - - -, tY)
"'7;2 A-:II_.’U(UJ'_.I, Ujy Sj41Yr -+« Sn’y) ~ /\f.v(uj_l, Uj, tj+1’)', ey tn’y)

by rewriting only the j-th subterms of the sides of the equation. Then |p(k)| =
X% _1|R;| and we can extract from R; a corresponding rewrite derivation

R} : MT.syy ~ AT tjy —R AT.uj = AT.u;

with |R}| = |R;|. We define p/(¢) fori € {1,...,N +n—1} by

(i) if i <k,
pE) =< R 11 ifk<i<k+n,
pi—n+1)ifk+n<i<N+n-—1

It is easy to see that p’ € Proofp(E’,y), T' = (E'\w,7,p') € Cfgand T =4 T,
T=pT,T>cT. ThusT > T". 0

Lemma 4. Let E=¢y, T = (Elw,7v,p) € Cfg, ex = A\T.X(3) 2 X\T.X(3) € E,
and V € Prin (V). We define:

E = (ek—h [=7°EE PR CN),
’. _ . . vy Jp@) if1<i<k,
pdl,...,N-1} — Uie{l,...,N}—{k} Proofg (e:,7), p'(i) = {p(i-i— 1)ifk<i<N

T = (E, bws s P’), m: Elw = lt]ex e EILW

Then w is a valid HOLN-step, p’ € Proofg(E’,v), T' = (E'\w,7, 0"} € Cfg, and
T = T'. We denote the pair (w,T") by $(T,V, ex)-

Proof. Straightforward. O
Lemma 5. Let E =en, T = (Elw,7,p) € Cfg, ex = NT.X(Sm) 2 ATt € E
with AT.t rigid, and V € Py;n (V) such that FV(E|w) C V.

(i) Assume head(X~y) € F and p(k) has no rewrite steps at the head positions of
the equational sides. Let m be the HOLN-step 7 : Elw =>[j) e,.0 E'|w-. There
exists p' € Proofy (E'|\w:) such that TV = (E'|\w,v,p') € Cfg, T = T’ and
v =0y [V]. We denote the pair (w,T") by @(T,V, ex)-

(%) Assumne Xy = Xyp,.y;(Tp). Then there exist

® a HOLN-step m : Elw =[p} e, .0 E'lw and
o T" = (E'\w,v',p'") € Cfg such that T = T and v = 6" [V].
We denote the pair (m,T') by Sp)(T,V, ex)-

16

Proof. First, we prove Lemma 5.(i). Assume head(Xv) = f € F and p(k) has
no rewrite steps at the head positions of the equational sides. In this case \Z.t
must be of the form AZ.f(¢,) and we can write v = 6+’ [Dom(v) \ {H,}], where
0 = {X = Mm.f(Hn(¥m))}, Dom(y') = (Dom(y) \ {X}) U {H,}, and H,
is a sequence of distinct fresh variables. Therefore, {H,} NV = §, and thus
v = 6+' [V]. In this case, p(k) is of the form

X f (Ha(5m)) 2 Xa.f (0a07) — K. f (@) = X ()

with no rewrite steps at the head positions of the equational sides. Let E” = E#f.
Then v’ € Ur(E") and p € Proofg(E”,'). By Lemma 2 we learn that v/ €
Ur(E"|w+). Note that T” = (E”|w+,v',p) € Cfgand T > T”. We can apply
Lemma. 3 to construct p’ € Proofn (E’,~’) such that T’ = (E'|w-,7, p') € Cfg
and 77 > T’. We conclude T > T" from the transitivity of >.

Next, we prove Lemma 5.(ii). Assume Xy = Ay,,.4;(%,). Then we can write

v = 6y [Dom(y) \ {H,}], where § = {X — Mjy;(H,(%m))}, Dom(y) =
(Dom(v) \{X}) U{H,}, and H, is a sequence of distinct fresh variables. There-
fore, {Hp,} NV = 0, and thus v = 6+ [V]. Let

T E,,W =>[p],ek,0 E’[W/

Obviously, ¥ € Ur(E’) and p € Proofp(E’,v'). By Lemma 2, we learn that
v € Ur(E'|w). We define T' := (E'|\w+,v',p). Then T' € Cfgand T =4 T",
T >p T'. Thus, T > T’. This concludes our proof of Lemma 5.(ii). o

Lemma 6. Let E =¢x, T = (Elw,v,p) € Cfg, ex € E, and V € Pyin(V) such
that FV(Elw) C V.
(1) If e, = XT.s ~ ATt with head((M\T.s)y) = f € F, =€ {=~, >}, and p(k) has
a rewrite step at the head position of the left-hand side, then there exist
o an Z-lifter f(l,) — 7 of a rewrite rule of R and
o T = <(E;CT-T7 AT.s > Ai'f(m)a AT~ /\Et, €k+1y-- > CN) bws 717 p,> € Cfg

2’

such that T > T', v = ' [V], arlfd p' (k) has no rewrite steps at the head
position of the left-hand side. ‘
In this case we define O1)(T,V, er) := (n,T’) where w : Elw = E'|w.
(%) If ex = XE.s = XT.t,head((AZ.t}y) € F, and p(k) has a rewrite step at the
head position of the right-hand side, then there exist
e an Z-lifter f(l,) — 7 of a rewrite rule of R and
o T = (\(ek—_'f, MT.s > AZ.f(I,.), \T.s ~ AT.T, ex41,-- -, en) lw, 7, p') € Cfg

E :
such that T > T, v = ' [V], and p'(k) has no rewrite steps at the head

position of the left-hand side.
In this case we define P (T, V, ex) := (w,T') where m: Elw = F'|w.

Proof. We prove only Lemma 6.(i) because Lemma 6.(ii) has a similar proof.
Under the given assumptions, we can assume p(k) is of the form

ery =R MT.f(s]) = Xz.t/ _)’{’(;,.)—»r AT.rd = NTt —5 \Tou = NTu

17

where p is the head position of the left-hand side, f(I,,) — r is a fresh Z-lifter of a
rewrite rule in R such that AZ.f(1,,)6 = AZ.f(s.), and the depicted rewrite step
is the first one at position p. Then (AZ.s)y = AE.f(55), and we can decompose
p(k) into two rewrite derivations:

Ri:ey=)2T.f(5,) ~ ATty =% M. f(1n)0 ~ NT.t/
Ry : Na.f(In)6 =~ Mot/ —10™ 77 Nzord = Nt —3 ANTou =~ Azu

Let R} be the rewrite derivation obtained from R; by rearranging the rewrite
steps such that we first rewrite the left-hand sides and next the right-hand sides.
This means that R} can be decomposed into 2 rewrite derivations:

R : ey = MT.f(57) = ATty =% AT.f(In)0 ~ ATty
RY : NTf(In)8 = ATty =G 7T ATrd = ATty — 3 XErS ~ Na Y

such that RY has no rewrite steps at the head position of the left-hand side, and
[RY| + | R3] = | Ry| = | Ra- _

f(ly) — 7 is a fresh Z-lifter, and thus FV(AT.f(I,)) N Dom{y) = 0. Since
Dom(8) € FV(A\Z.f(1,)), we conclude that v’ := vy U4 is a well-defined substi-
tution and ' € Ur(E’|w). Note that E/ = 23\,—“ with

— € = e; and p(i) € Proofp(e},”'), if i <k,
— €, = AT.s > AT.f(l,) and R} € Proofg(e},?),
— €)y1 = AT.r = AT.t and (R, R2) € Proofp (€} 1,7'),
~ e} =e;—; and p(i — 1) € Proofg(el,v)if ¢ > k+ 1.
p() ifi<k,
RY ifi=k
/ /4 7 SO 1 >
Therefore, we can define p’ € Proofn (E',%') by o'(2) = (RU,Ry)ifi— k+1,
pi —1) ifi>k+1.
Then obviously 77 € Cfgand T >4 T'. Thus T = T". O

Lemma 7. Let E =en, T = (Elw,v,p) € Cfg, ex = MT.X(7n) =~ AT.X(¥},) €
E with X € W, and V € Pyin(V) such that FV(E|lw)C V.

We define the HOLN-step 7 : Elw =>(g).c,,0 £ lw.

Then there exists T' = (E'|\w+,7,p’) € Cfg such that T > T' and v =
0v' [V]. We denote the pair (m,T') by Pys)(T,V, ex).

Proof. From v € Ur(F|w) and X € W results that X+ is an R-normal form.
This implies that A\Z.X (7n)y and AZ.X (3,)y are R-normal forms too, and thus
p(k) has no rewrite steps. Hence, < is a unifier A\Z.X (g) and Az.X (v7,). On the
other hand, it is well-known that the substitution # computed by 7 is a mgu
[14] of A\T.X (7) and XZ.X (y},) over {X}. From the freshness condition on the
variables introduced by 6, we conclude that V' N Ran(f) = 0, and thus 8 < v [V].
Therefore there exists 4 such that v = 8+ [V]. Together with Lemma 2, this
implies that 4" € Ug (E’|w-) and that the map p’ defined by
vn [pG) ifl<i<k,
P = {p(i+1)ifk§i <N

18

is a rewrite proof of 7' € Ur (E’|w). This implies that " = (E'|w+, ', p’) € Cfg.
Since T =41, T >p T and T >¢ T, we conclude that T > T". m]

Lemma 8. Let E=ey, T ={(E|w,7,p) € Cfg, ex € E, and V € Py;in (V) such
ex = AT.X (Urm) = ANZ.Y (y]) and X, Y € W,
that FV(E|lw) C V. Assume { or
ex = AE.X (Jm) > NZ.Y (y,) and X € W.
and let m be the HOLN-step 7 : Elw =sd],er,0 £’ lw-
Then there exists T' = (E'|w+,v,p') € Cfg such that T = T' and v =
67" [V]. We denote the pair (x,T') by Pya)(T, V, ex)-

Proof. From v € Ur(E|w) and X € W results that X+ is an R-normal form.
This implies that AZ.X (¥,)y is an R-normal form. Also, if e is an unoriented
equation, we learn from Y € W and v € Ugr(E|w) that Yv is an R-normal
form, and thus AZ.Y (y/,)y is an R-normal form too.

These observations imply that p(k) has no rewrite steps, redardless whether
ek is an oriented equation or not. This implies that + is a unifier of AT.X (%,,) and
AZ.X (y},). On the other hand, it is well-known that the substitution 6 computed
by 7 is a mgu [14] of AZ.X (¥,) and AZ.Y (y),) over {X,Y}. From the freshness
condition on the variables introduced by @, we conclude that V N Ran(6) = @,
and thus @ < « [V]. Therefore there exists 4 such that v = 64’ [V]. Together
with Lemma. 2, this implies that v' € Ug (E’|w-) and the map p’ defined by

v [P ifl<i<k,
p(z)—{p(z’+1)ifk§i<N

is a rewrite proof of v/ € Ug(E'|w-). Thus T' = (E'|w+,v’,p’) € Cfg. Since
T=4T and T »p T’, we conclude that T > T". O

We are ready now to define $poLn. Let E = en, Elw € Goal(F,V), V €
Psin(V) with FY(E|w) C V, and e, € E an equation which can be selected in
an HOLN-step starting with F |y .

We choose (A, *>) = (Cfg, =) where = is the lexicographic combination of
A, B,>c, and distinguish the following cases:

— ex = AZT.X(37) ~ AT.X (37). Then we define Suorn (T, V, ex) == Oj(T, V, ex).
In this case, Prorn satisfies condition (b) of our generic completeness proof,
because of Lemma 4.

— Otherwise, assume e = A\Z.v(5,,) ~ AZ.v(%,) and p(k) has no rewrite steps at
the head positions of the equational sides. Then we define SuoLn (7T, V, €x) =
D1a)(T, V, ex). In this case, PnoLn satisfies condition (b) of our generic com-
pleteness proof, because of Lemma 3.

— Otherwise, assume e; = AZ.X(5,;) ~ AZ.t with head(Xv) € F, AZ.t rigid
and p(k) has no rewrite steps at the head positions of the equational sides.
Then we define Puorn (T, V, ex) := D151(T, V, ex). In this case, Pyorn satisfies
condition (b} of our generic completeness proof, because of Lemma 5.(i).

19

— Otherwise, assume ey = AZ.X(5,,) ~ AZ.t with Xy = \yr,.4:(Tp) and ATt
rigid. Then we define $uorLn(T,V, ex) := Ppp)(T, V, ex). In this case, PuoLn
satisfies condition (b) of our generic proof because of Lemma 5.(ii).

— Otherwise, assume ex = AZ.s ~ AZ.t with head((AZ.s)y) € F, ~€ {=,>},
and p(k) has a rewrite step at the head position of the left-hand side. Then
there exists (71, T") = @15)(T, V, ex) where T" is a configuration of the form

T" = ((€5=1, AZ.5 > AT.f(In), \T-1 = ATt €1, - - en)lw, v P
EII
and p" (k) has no rewrite steps at the head position of the left-hand side. Let
E" = e},;- Then ef = AT.s > AZ.f(l,) and we can determine (2, T") =
ProLn(T”, V, €}) by appeal to the previous cases. Note that v = 4" [V] and
T > T’ because T > T" by Lemma 6, and T” > T" by property (b) of $uoLn
defined so far. We can write

2 E" lw icx,e;c’,B E’ [
and T" = (FE'|w+,v,p'). It is easy to check that o € {[i],[d]}. We have
" = 6+’ [V] by property (b) of PuorLn defined so far. Thus, v = 6+ [V].
Also, note that the relation

m: Elw =ae0 B lwr

is an [ov]-step if a = [i] and an [on]-step if & = [d]. Hence, in this case we
can define yorn(T,V, ex) == (m, T"). .
— Otherwise, assume ex = AZ.X(¥,) ~ AZ.X (y,) with X € W. Then we define
SpoLN(T, V, ex) := Pisq) (T, V, ex). In this case, Pyorn satisfies condition (b)
of our generic proof, because of Lemma 7.
ex = ANEX(Tm) = MNZ.Y (y,) and X, Y € W
— Otherwise, assume { or
er = AT.X (Tm) > AZ.Y (¥)) and X € W.
Then we define Srorn(T,V, ex) := Py (T, V, ex). In this case, Puorn sat-
isfies condition (b) of our generic completeness proof, because of Lemma 8.
Since these are all the possibilities which can be satisfied by a selected equation
e, in an HOLN-step, we conclude that our definition of $yo1,N satisfies condition

(b) of our generic proof. O
Remark 2. We have actually proved a stronger result: if R is a confluent PRS
then HOLN is strongly complete, i.e., completeness is independent of the choice
of the equation in the current goal.

4 Refinements

There are two sources of nondeterminism in computations with HOLN-deriva-
tions: the choice of the inference rule of HOLN, and the choice of the rewrite rule
of R when narrowing steps are performed. In the sequel we will investigate the
possibility to make the computation with HOLN-derivations more deterministic
by reducing the choices of inference rules.

20

4.1 HOLNj;: a Refinement of HOLN for Left-Linear EPRSs

Programs restricted to left-linear (term or pattern) rewrite systems are widely
accepted in functional logic programming. As we will see later, the notion of left-
linear EPRS (LEPRS for short) extends the notion of left-linear term rewriting
system to the higher-order case in a way which preserves many properties of
their first-order counterpart which are relevant to our investigation.

In this subsection we study the behavior of HOLN when R is a LEPRS.

First, we confine our attention to a particular class of oriented equations
produced upon outermost narrowing steps, the class of parameter-passing de-
scendants.

Definition 12. A parameter-passing equation of a goal E'|w+ in an HOLN-
derivation II : E|lw =4 E'|w is either

(a) an equation AT.s; > AZ.l; (1 < i< n) if the last step of IT is of the form:
(B, AT (37) = AT.t, E2)lw =(on,e (B1, XT.55 D ATl AT.T == XT 8, o) lwr

(b) an equation NT.H;(5,,0) > MT.l; (1 <1< n) if the last step of Il is of the
form:

(B1, M. X (5m) = AT .8, Ea)lw = [ov],6 (E16,)z.H, (.-S-:n—é) > AZ.l,,
AT = AE.10, Ex6) lw.

A parameter-passing descendant of a goal E'|w: in an HOLN-derivation IT :
Elw =} E'|w is either a parameter-passing equation in II or a descendant of
a parameter-passing equation in II.

Note that parameter-passing descendants are always oriented equations. To dis-
tinguish them, we will write s » ¢ instead of s > t.

The following lemma characterizes the HOLN-derivations when R is a (fully-
extended) left-linear PRS, and can be proved by induction on the length of the

HOLN-derivation.
Lemma 9. Let R be a left-linear PRS and
I . EI«W =>3 (E173 > t7E2)le’

an HOLN-derivation such that s » t is a parameter-passing descendant of
(El, s»t, Eg) lw+ in II. Then

(i) t is a linear pattern,
(i) (FY(Er,s)UFV(EO)UWYNFV() =0,
(%) if R is an LEPRS then t is a fully-extended pattern.

An important theoretical result which is relevant to our investigation is the
validity of the standardization theorem for confluent LEPRS [17]. In the sequel
we give a brief account to this theoretical result.

21

Definition 13. A position p is a pattern position of a term t if p € Pos(t) and
head(t|q) € FY(t) for all ¢ < p. We denote by Pai(t) the set of pattern positions

of a term t.

For example, if t = f(a, X (Az.z)) then € and 1 and 2 are pattern positions of 1,
but 2 and 2-1 are not.

Definition 14. Let E = ey andy € Ur(E|w). A rewrite proof p € Proofy (E,7)
is outside-in if for any k € {1,..., N} we have:

(1) p(k) is an outside-in rewrite derivation, that is, if p(k) is of the form

exy —>f,’1_’” . —>;’;_”" u~uy
then the following condition is satisfied for all 1 < i < n — 1: if there exists
J with i < j such that p; = p; + q then q € Pat(l;) for the least such j,
() If ex, = s » t € E and p(k) has a rewrite step at position 1-p such that no
later rewrite steps take place above position 1-p then p € Pai(t).

A configuration (Elw,7, p) is outside-in if p is an outside-in rewrite proof. We
denote by Cfg™ the set of outside-in configurations.

Lemma 10. Let R be a confluent LEPRS, eN|w a goal without parameter-
passing descendants, and v € Ur (€n|w). Then there exists an outside-in rewrite

proof p of v € Ur(exlw).

Proof. By the standardization theorem for LEPRSs [17], there exists a rewrite
proof p of v € Ur (€x|w) such that for any k € {1,..., N}, p(k) is an outside-in
rewrite proof of v € Ug(exlw). Since E|w has no parameter-passing descen-
dants, we conclude that T := (€x|w,, p) is an outside-in configuration. O

We are ready now to state our main theorem.

Theorem 3. Let E =¢en, T = (Elw,7,p) € Cf¢”, V € Psin(V), and e € E
an equation which can be selected in an HOLN-step w starting from Elw. If

BuoLn(T, V, ex) = (m, T') then T’ € Cfg*.

Proof. Let m : Elw =>a.e,.6 E'\w: and T' = (E'|w+,', p') with B/ = %. To
prove that 7' € Cfg™, we must show that for alli € {1,...,N'}:

(i) 0'(3) is an outside-in rewrite derivation, and
(i) If e} = s » t and p(¢) has a rewrite step at position 1-p such that no later
rewrite steps take place above position 1-p then p € Pai(t).

‘We distinguish two cases, whether €} is a descendant of e in 7 or not.

Case 1. Assume € is a descendant of ex in 7. Then a € {[i], [p], [d], [on], [ov]}.
If a =[p] then i =k, e} = €0 and p’(i) = p(k). Since p(k) is outside-in, p’(7)

is outside-in too. If €} is a parameter-passing descendant then e; = s » t and

e; = s6 » t0. Assume p’(7) has a rewrite step at position 1-p and no later rewrite

steps take place above 1-p. Since p’(i) = p(k) and p(k) satisfies condition (ii),

22

we learn that 1-p € Pai(t). Since Pat(t) C Pat(t8), we learn that 1-p € Pai(t0).
Thus, p’(i) satisfies condition (ii).

If a € {[i],[d]} then, by the definition of ProLn, p(k) is an outside-in rewrite
derivation without rewrite steps at the head positions of the equational sides.
By construction, p'(7) is outside-in too. Moreover, if €/ is a parameter-passing
descendant, then ey is also a parameter-passing descendant. Since T € Cfg"i, we
learn that p(k) satisfies condition (ii). This implies that p/(z) satisfies condition
(ii) too.

Assume « € {[on],[ov]}. Then = is of the form

7: FElw Sa,en,d (ek_16', AZ.Sp W ATy, AT.r = AT.t0,e5440, - . ., eNG) lw
where e = A\T.s ~ A\Z.t with ~€ {=,~7!,>} and Mz.s0 = N\Z.f(3,). If ¢} =
ey, +n = AZ.r =2 XZ.t0 then from the definition of $uoLn (see proof of Lemma
3.2) results that we can assume w.l.o.g. that p’(k + n) is obtained from p(k) by
removing an initial sequence of rewrite steps. Since p(k) satisfies conditions (i)
and (ii), we conclude that p’(k+n) satisfies them too. Otherwise, e; = €}, ;_; =
AZ.s; » AZ.l;. Let’s assume p’(k + j — 1) is a rewrite derivation of the form

Chpj1? = NBsjy B NBLy =P ST Ly e NELy
which successively rewrites at positions 1-p1,...,1-py. By the constructibn of
p'(k+7—1) from p(k) results that p(k) has a rewrite sub-derivation of the form

— _— — U —r
! 1 1
)‘xl”f(sj—l) S5y Sj4+1r-- - Sn)’)’ -)\iL‘t")’ —)1‘9'j~Q1,51 .-
—Tm N\% f(FT 2T T~ \E
e AT f(5;°0, 1, Sja1s - - - > Sn)Y = ATty =5 A\Tu = AT.u

which starts by rewriting successively at positions 1-¢-j-q1,-..,1-¢-J-@m- In ad-
dition, g-¢; = p; for all < € {1,...,m}. This implies that if p’(k + j — 1) is not
outside-in then the displayed sub-derivation of p(k) is not outside-in, which con-
tradicts with the fact that p(k) is outside-in. Thus, p’(k+ 7 — 1) is outside-in. It
remains to prove that p’(k + j — 1) satisfies property (ii). Assume p'(k + j — 1)
has a rewrite step at position 1-p such that no later rewrite steps take place
above 1-p. In the outside-in rewrite sub-derivation of p(k) depicted above, the
first rewrite step above position 1-¢-j-qx is at position 1-¢ with f (l_,:) — r. This
implies that py = g-gx € Pat(ly), i-e., (ii) holds.

Case 2. If €' is not a descendant of e in 7w then €, = e;0 for some i €
{1,...,N}~{k}, and p’(i) = p(i). Since T € Cfg*, we have that p() is outside-
in, and thus p’(%) is outside-in too.

Next, we prove that p'(¢) satisfies condition (ii). Let’s assume €} be a param-
eter-passing descendant. Then e} is of the form s » t0 where e¢; = s » t.
Suppose p’(i) has a rewrite step at position 1-p such that no later rewrite steps
take place above position 1-p. Since p’(i) = p(i), we conclude that p € Pai(t).
Since Pat(t) C Pat(t8), we conclude that p’(i) satisfies condition (ii). O

We are ready now to define our first refinement of the calculus HOLN.

23

Definition 15 (HOLN;). HOLN; is the calculus defined by HOLNy U {[v]} be
the calculus obtained from HOLN by dropping the application of inference rule
[on] to selected equations of the form AZ.f(3;,) » A\T.X (k) where f € Fy.

Main properties of HOLN;
First, we prove that if R is a confluent LEPRS then HOLN; is strongly complete.

Theorem 4 (Strong completeness). Let R be a confluent LEPRS. Then
HOLN; is strongly complete.

Proof. Let V € Py (V) with FV(Eglw,) CV, and v € Ur(Eo|w,)- We choose
A := Cfg”, - is the lexicographic combination of > 4, > g, *¢, and ®uoLn, =
PuoLn- To make our generic proof outlined in Section 3.2 work for these choices,
we only have to check that:

(a) there exists a configuration Ty = (Eolwy,70,p) € Cfg™*. To prove this, we
first observe that Ey|w, has no parameter-passing descendants because it
is the initial goal. Therefore, by Lemma 10, we conclude that there exists
To = (Eolwo, 70, p) € Cfg™.

(b) U E=¢eN, T ={(Elw,7,p) € A, V € Psin(V) with FV(Elw) CV, e, € E
is selectable in an HOLN-step, and $noLn(T,V,ex) = (7, T’) then TV € A
and 7 € step(HOLN;). The fact that 77 € A follows from Lemma 3.

Thus, it remains to check that = € step(HOLN,), i.e., that if e = A\Z.f(3;) »
AZ. X (yn) with f € Fy then 7 is not an [on]-step.

Let’s assume, by contrary, that ex = A\z.f(5;,) » A\z.X (7,,;) with f € F; and
7 is an [on]-step. From the definition of $yoLn we learn that p(k) has a rewrite
step at the head position of the left-hand side. Since p(k) can not have rewrite
steps above the head position of the left-hand side and (Exlw, , vk, px) € Cfg™,
by property (ii) we learn that the head position of AZ.X (7,,) should be a pattern
position, which is a contradiction. Hence, # is not an Jon]-step. o

Another important property of HOLN; is soundness, and this is an immediate
consequence of soundness of HOLN.

Theorem 5 (Soundness). HOLN; is sound.

4.2 FEager Variable Elimination

In this subsection we present a further refinement of HOLN; to reduce the
nondeterminism of solving parameter-passing descendants of the form s » ¢
where ¢ is a flex term. The refinement is defined under the assumption that R
is a left-linear EPRS.

First, we note that, by Lemma 9, if e = s » t is a parameter-passing de-
scendant in a HOLN; derivation, then t is of the form AT.X(J) where ¥ is a
permutation of Z and X ¢ FV(s). This implies that § := {X +— A\y.s} is a well
defined substitution and 6 € U(e) C Ug(e).

24

Definition 16 (HOLNjy). We define the calculus HOLN; := HOLN; U {[v]},
where [v] is a new inference rule defined by:

[v] Variable elimination.
(Er,s » XZ.X(Y), B2)lw =)0 (B1, E2)0lw
where 0 = {X — A7.s}, and assume that [v] has the highest priority.

The calculus HOLNj is called higher-order lazy narrowing with eager variable
elimination because it addresses the possibility to eagerly eliminate the free
variable occurring in the right-hand side of a parameter-passing descendant by

binding it to left-hand side of the equation.
Proving soundness of HOLN> is trivial.

Theorem 6 (Soundness). The calculus HOLN; is sound.

In the rest of this subsection we will prove that HOLN; is strongly complete.
First, we prove the following auxiliary lemmata.

Lemma 11. Let R be a LEPRS and II : Elw =} (E1,s » t, E2)|lw+ be an
HOLN;-derivation. Then

(i) t is a linear fully-extended pattern,
(%) (FV(E1,s) UWYNFV(t) = 0.

Proof. By Lemma. 9, we know that properties (i) and (ii) hold if IT is a HOLN;-
derivation. Thus, we only have to check that properties (i) and (ii) are preserved

by [v]-steps.
Let E = (E1,5 » A\T.X(7), E2) and 7 : Elw =) rzxm),0 Elw be a
[v]-step. Assume that all parameter-passing descendants s’ » ' € E satisfy the

conditions

(a) ¢’ is a linear fully-extended pattern,
(b) If E = (F’',s" » t', E") then (FV(E',s)UW)NFV(t') = 0.

Let E' = (E{,s"” » t”, EJ). We must show that

(i) t” is a linear fully-extended pattern,

(it) (FV(E{,sYUW)NFV(E") =90.

By the definition of [v], s” » t” is a descendant of an equation s’ » t’ € (Fy, E»).
We can write £ = (B}, s’ » t/, Fj). By (b), we have X ¢ FV(¢"), thus ¢/ = t'.
Since (a) implies that ¢’ is a linear fully-extended pattern, we learn that (i) holds.
To prove (ii), we distinguish two cases:

1. s » A\Z.X(g) € E}]. Then Ran(f) C FV(E}), and therefore FV(EY,s") C
FV(E,,s"). Thus, FV({t") N FV(EY,s") = FV(¢') 0 FV(EY, ") C FV(E) N
FV(E},s") = 0. Also, by (i) we have X ¢ W, therefore W’ = W, therefore
W' NnFY{") =W nFVY({') = 0. Hence, (ii) holds.

25

2. s » A\T.X(y) € F3. Then X ¢ FV(E],s' » t')U W, and thus B = E,
s"=¢,t" =t ,W =W’ In this case (ii} follows from (b). O

Lemma 12. Let E = (€z_1,5 » M2.X(9), ex+1,---,en), T = (E[W,7,p) €
Cfgm Ve Prin(V) with FV(Elw) CV, and 7 : E[W = [o),s» AT. X (7),6 en_qlw.
We define

'7, = 7[Dom(’y)—{X}7
’ . _ N-1 oAt 1 p(Z) ifi <k,
p - {1""7N 1}__)Ui=1 PTOOfR(ei77)7 p (7') - {p(i—l—l) sz <i< N
= <6§V—] [W’? 7,) p’)
Then T' € Cfg” and T > T'. We denote the pair (x,T") by &,)(T, V, ex).

Proof. From T € Cf¢°®* we learn that p(k) is an empty rewrite proof of v €
Ur(s» AT.X @)) This implies that Xy = A7.s7, therefore p’ € Proofg (e€jy_1,7’)
and 77 € Cfg”. Obviously, T =4 T, T >p T' and T >. T’, thus T > T". O

We are ready now to claim that the calculus HOLN, is strongly complete.

Theorem 7 (Strong completeness). Let R be a confluent LEPRs. Then
HOLN; s strongly complete.

Proof. We choose (A, =) as in the proof of strong completeness of HOLN; and
define the partial function

ProLn, : Cfe™ — Prin(V) x Eq(F,V) — step(HOLN,) x Cfg®
_ | P(T,V,e) if @1,)(T, V, e) is defined,
Puorn, (T, V;e€) = {5Z5HOLN1 (T,V,e) otherwise.

4.3 Lazy Narrowing with Confluent Constructor LEPRSs

In this subsection we present a refinement of HOLN for confluent constructor
LEPRSs. This refinement has been inspired by a similar refinement of the cal-
culus LNC with leftmost equation selection strategy for left-linear constructor
TRSs [10], and addresses the possibility to avoid the generation of parameter-
passing descendants of the form s » t with ¢t ¢ T (F.,V). The effect of this
behavior is that the nondeterminism between inference rules [on] and [d] disap-
pears for parameter-passing descendants.

Definition 17. A C-derivation respects strategy Sieq if every C-step is applied
to the leftmost selectable equation.

It has been shown [10] that the calculus LNC with leftmost equation selection
strategy Sieg, does not generate parameter-passing descendants with defined sym-
bols in the right-hand side. It can be shown that the calculus HOLN; has this

property too.

26

Lemma 13. Let R be a confluent constructor LEPRS. If II is an HOLN;-
derivation which respects strategqy Sieft then all equations s » t in Il satisfy the
condition t € T (Fc, V).

Proof. Because R is a constructor LEPRS, the only way to generate equations
s » t with t € T(F., V) is via a-steps of the form

(B, AT,.s" » AZn- X (Un), E, /\E—};X(.t_n_) o~ /\E’If, Eo)lw =a,e, {XATm f(.)} - -
.
with X € FV('), f € F4 and a € {[i],[ov]}. Such an a-step can not occur in

the HOLN,-derivation because it would not respect strategy Siesi: the equation

AT,.8' » XT,.X (") is more to the left than e, and it can be selected in a [v]-

step. O

Corollary 2. Let IT be an HOLN;-refutation which respects strategy Siep. Then
IT has no [on]-steps applied to parameter-passing descendants.

Proof. Immediate consequence of Lemma 13.

We are ready now to define our refinement for confluent constructor LEPRS.

Definition 18 (HOLN3). HOLN3 is the calculus obtained from HOLN: by
dropping the application of rule [on] to parameter-passing descendants.

Theorem 8 (Soundness). HOLNj is sound.
Proof. Immediate consequence from the soundness property of HOLNg. a
Theorem 9 (Completeness). The calculus HOLN3 with leftmost equation se-

lection strategy is complete.

Proof. Immediate consequence of Corollary 2. O
Remark 8. In our previous work of studying higher-order lazy narrowing with
confluent constructor LEPRSs, we have proposed another calculus to avoid the
generation of parameter-passing descendants s » t with defined symbol occur-
rences in the left-hand side. Our previous calculus differs from HOLNj; by re-
placing the inference rule [v] with another rule called [c], which is shown below.

[c] Constructor propagation.
If 35 » A\Tx. X (Ur) € E1 and s’ = Agg.s(Tx) then

(E], AZX(E) =~)\Z.u, EQ) lW :>[c],e (El, /\-Z?.SI @) =~ AZ,:'U,, EQ) lW’

By giving to rule [c] the highest priority, it can be shown that this calculus with
leftmost equation selection strategy is strongly complete. Also, this calculus is
sound for goals consisting of unoriented equations. O

27

4.4 HOLN4: a Refinement to Detect Redundant Equations

In this subsection we investigate the possibility to detect and eliminate equations
which do not contribute to the computation of an answer substitution. We call
such equations redundant. By detecting and eliminating such useless equations

we save computing time.

Definition 19. Let (E1,e, E2)|w be a goal. The equation e € E is called redun-
dant in Flw if e = AT.s » XZ5.X(Ur) such that the following conditions are

satisfied:

(a) Tx is a permutation of the sequence Ty,
(b) X & FV(E, ATx.s, Ea).

We define the calculus HOLNy := HOLN U {[rm]} where [rm] is a new inference
rule defined as follows:

[rm] Removal of redundant equations.
If e = AT%.s » AZ. X (Ux) is redundant in (&1, e, E2)|w then

(EI ;€ EZ) lW =>[rm],e,c (Ela E2) LW

To give the calculus HOLN, a more deterministic computational behavior, we
may assume that the inference rule [rm] has the highest priority, i.e., that when
[rm] is applicable to a selected equation, then we discard the application of the

other inference rules.

Main properties.
We argue that HOLNy is sound and strongly complete.

Theorem 10. HOLNy is sound.
Proof. It is enough to check that if there is an HOLN,-derivation
I, : Elw =4 (E1, e, E2)lw

with e redundant in (£, e, E2)|w, then the HOLN,-derivation

Iy : Elw = (E1, e, E2)lw' = rm),e (B1, E2)lwr
obtained by extending II; with an [rm]-step, satisfies the condition:

{0V FvEIw) | 7 € UR(EL, €, E2)} = {07 [rv(m1w) | V' € UR(E, E2)}-
By Lemma 1, it is sufficient to prove that
{vlv | v €Ur((Br, e, B2)lw)} = {7'Iv | 7 € Ur((E1, E2)lw)}

where V = FV(EQ) UW'. To prove this fact, it is sufficient to note that X ¢ V.

This follows by an easy induction proof on the length of IT;. a

28

Theorem 11. Let R be a confluent PRS. Then HOLN, is strongly complete.

Proof. We choose A = Cfg and the poset (A, >) where > is the lexicographic
combination of orderings > 4, > p, >¢ used in the completeness proof of HOLN.

Let E = en, Elw € Goal(F,V), V € Psin(V) with FV(E|w) C V, and
T = (Elw,7,p) € Cfg. For any equation e; € E which is selectable in an
HOLN,-step we define:

(7, (E"\w,7, ")) i 7 : Elw = [m)er £ lw € step(HOLN3),
_ o | p(d) if1<i<k,
¢HOLN4 (Tv‘/vek) = where p (Z) - ,0(’& + 1) fk<i<N
PpoLn(T, V, ex) otherwise.

Obviously, ' € Cfgand T =4 T",T = T",T ¢ T". Thus, T = T". a)

If (BEr, AZx-s » AT X (T%), E2)lw a goal in a HOLN-derivation then, by Lemma
9, we know that X ¢ FV(E1, A\Tg.s) and T, is a permuted sequence of Zx. Thus,
we have the following result:

Lemma 14. Let R be a confluent LEPRS and E1, e, Eolw € Goal(F,V). The
equation e is redundant in (Ei,e, Ex)lw if e = ATg.s » AT X(Tg) and X ¢
FV(Es).

5 Conclusions and Future Work

We have presented a new lazy narrowing calculus HOLN for EPRS designed to
compute solutions which are normalized with respect to a given set of variables,
and then have presented 4 refinements to reduce its nondeterminism in a way
which preserves completeness.

The results presented in this paper owe largely to a new formalism in which
we treat a goal as a pair consisting of a sequence of equations and a set of
variables for which we want to compute normalized answers. This formulation

of narrowing has the following advantages:

— it clarifies problems and locates points for optimization during the refutation
process of goals,

— it simplifies the soundness and completeness proofs of the calculi,

— it simplifies and systematizes the implementation of the lazy narrowing cal-
culus as a computational model of a higher-order FLP system.

A promising direction of research is to extend HOLN to conditional PRSs. A
program specification using conditional PRSs is much more expressive because
it allows the user to impose equational conditions under which rewrite steps are
allowed. Such an extension is quite straightforward, but it adds nondeterminism
in guessing the values of the additional variables in the conditional part of rewrite
rules. We expect that this source of nondeterminism can be avoided if we restrict
to certain classes of conditional PRSs.

29

Acknowledgements. The work reported in this paper has been supported in
part by the Ministry of Education, Culture, Sports, Science and Technology,
Grant-in-Aid for Scientific Research (B) 12480066, 2000-2002. Mircea Marin has
been supported by JSPS postdoc fellowship 00096, 2000-2001.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.
18.

H.P. Barendregt. The Lambda Calculus, its Syntax and Semantics, volume 90.

North Holland, second edition, 1984.
H.P. Barendregt. Lambda calculi with types, volume 2 of Handbook of Logic in

Computer Science, pages 118-309. Oxford University Press, 1992.

. N.G. de Bruijn.

J.C. Génzalez-Moreno, M.T. Hortald Génzalez, and M. Rédriguez-Artalejo. A
Higher-Order Rewriting Logic for Functional Logic Programming. In Proceedings
of International Conference on Logic Programming, pages 153~167, Leuven, 1997.
MIT Press.

. J.R. Hindley and J.P. Seldin. Introduction to Combinatorics and A-Calculus. Cam-

bridge University Press, 1986.

. G. Huét. A Unification Algorithm for Typed A-Calculus. Theoretical Computer

Science, 1975.
M. Marin, T. Ida, and T. Suzuki. On Reducing the Search Space of Higher-Order

Lazy Narrowing. In A. Middeldorp and T. Sato, editors, FLOPS’99, volume 1722
of LNCS, pages 225-240. Springer-Verlag, 1999.

. M. Marin, A. Middeldorp, T. Ida, and T. Yanagi. LNCA: A Lazy Narrowing Cal-

culus for Applicative Term Rewriting Systems. Technical Report ISE-TR-99-158,
Institute of Information Sciences and Electronics, University of Tsukuba, Tsukuba,

Japan, 1999.

. R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. Tech-

nical report, Institut fiir Informatik, TU Miinchen, 1994.

A. Middeldorp and S. Okui. A deterministic lazy narrowing calculus. Journal of
Symbolic Computation, 25(6):733-757, 1998.

A. Middeldorp, S. Okui, and T. Ida. Lazy narrowing: Strong completeness and
eager variable elimination. Theoretical Computer Science, 167(1,2):95-130, 1996.
D. Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. Journal of Logic and Computation, 1:497-536, 1991.
K. Nakahara, A. Middeldorp, and T. Ida. A complete narrowing calculus for
higher-order functional logic programming. In Seventh International Conference on
Programming Languages: Implementations, Logics and Programs 95 (PLILP’95),
volume 982 of LNCS, 1995.)

T. Nipkow. Functional unification of higher-order patterns. In Proceedings of §th
IEEE Symposium on Logic in Computer Science, pages 64-74, 1993.

C. Prehofer. Solving Higher-Order Equations. From Logic to Programming. Foun-
dations of Computing. Birkh&user Boston, 1998.

Z. Qian. Linear unification of higher-order patterns. In M.-C. Gaudel and J.-
P. Jouannaud, editors, Proceedings of the Colloguium on Trees in Algebra and
Programming, volume 668 of LNCS, pages 391-405, Orsay, France, April 1993.

V. van Oostrom. Personal communication.

D.A. Wolframi. The clausal theory of types. Theoretical Computer Science, 21,

1993.

30

