A Secure Access Control Mechanism
against Internet Crackers

Kenichi Kourai and Shigeru Chiba
January 11, 2001

ISE-TR-01-176

Institute of Information Sciences and Electronics

University of Tsukuba
Tsukuba 305 J apan

A Secure Access Control Mechanism
against Internet Crackers

Kenichi Kourai Shigeru Chiba
January 11; 2001

Abstract

Internet servers are always in danger of being “hijacked” by various attacks like
the buffer overflow attack. To minimize damages in cases where full control of
the servers are stolen, imposing access restrictions on the servers is still needed.
However, designing a secure access control mechanism against hijacking is not
easy because that mechanism itself can be a security hole. In this paper, we
describe the access control mechanism of our Compacto operating system. Com-
pacto uses our new technique called the process cleaning so that malicious code
injected by a cracker cannot illegally remove access restrictions from a hijacked
server. According to the results of our experiments, the process cleaning can be
implemented with acceptable performance overheads.

1 Introduction

Internet servers, such as web servers and mail servers, are always in danger of
attacks by crackers. Their typical attack is the buffer overflow attack [19], which
injects malicious code into a server and obtains full control of the server, that is,
“hijacks” it. Another attack is to abuse a server plug-in or a Common Gateway
Interface (CGI) program, which can maliciously hijack a server [2]. Once a server
is hijacked, the cracker can use the server for performing malicious operations.
To protect the servers from these attacks with negligible cost, several techniques
such as StackGuard [8] has been developed [9, 3, 14]. These techniques are for
detecting the buffer overflow attack and invalidating it. Since those technique
cannot detect all types of buffer overflow attack, imposing access restrictions on
a server is still necessary. Access restrictions minimize damages by the attack
in cases where the server is unfortunately hijacked.

However, it is difficult to design a secure access control mechanism against
hijacking. An access control mechanism should prevent hijacked servers from il-
legally removing access restrictions and obtaining higher privileges for accessing
system resources. On the other hand, it must allow legitimate servers to remove
access restrictions if they need higher privileges. Unfortunately, it is difficult to
determine whether a server is hijacked or not; even if the server has not been
hijacked yet, malicious code might have been already injected and it might be
activated later for hijacking the server.

In this paper, we present an access control mechanism provided by the Com-
pacto operating system, which we are developing. It allows the users to impose

access restrictions on a particular process. They can prohibit a process from -

issuing specific system calls and restrict the range of parameters that a process
can pass to a system call. To prevent hijacked servers from illegally removing
access restrictions, we have developed a technique called the process cleaning.
If a hijacked process attempts to remove access restrictions, Compacto recovers
the process from malicious code that has hijacked it. It first resets the thread
of control so that the execution of the malicious code terminates. Then it re-
stores the state of the process including a memory 1mage and thereby eliminates
malicious code from the process.

We also describe the implementation of the process cleaning. Performance
overheads due to the process cleaning mainly come from restoring a memory
image when access restrictions are removed. To reduce the overheads, Compacto
allows the users to choose a strategy for restoring a memory image. To show
performance improvement by this technique, we measured the performance of
the Apache web server running on Compacto. We describe the results of this
experiment and discuss the overheads of the process cleaning.

The rest of this paper is organized as follows. Section 2 describes security
risks caused by removing access restrictions. Section 3 presents the process
cleaning technique, which makes it secure to remove access restrictions, and de-
scribes details of our implementation of the process cleaning. Section 4 shows
the results of our experiments for measuring overheads due to the process clean-
ing. Section 5 discusses the related work. Section 6 concludes this paper.

2 Access Restrictions

The Compacto operating system, which we are developing, allows the users to
impose access restrictions on a server process. With this facility, Compacto
can protect the rest of the system if the server is “hijacked,” for example, by
the buffer overflow attack. Since preventing all hijacks is not realistic, access
restrictions are still necessary for minimizing damages. Suppose that a hijacked
server attempts to modify a security-related system file. If the user prohibits
the server from issuing the write system call on that system file, Compacto
can deny that modification. Compacto also provides the setuid system call
originating from UNIX. It is used for giving a server process a lower access
privilege, which corresponds to the specified user.

2.1 Changing Access Restrictions

If access restrictions imposed on a server cannot be changed during the execution
of that server, several problems would happen in reality. Suppose that a web
server is serving both the Internet and Intranet users. The administrators would
want to impose more access restrictions on the server while it is serving the
Internet users. On the contrary, they would want to impose less while it is
serving the Intranet users. For example, while the server is handling a request
from an Intranet user ken, it should be able to read a file that only the user ken
can read so that ken can browse the contents of that file through the web.

Elevating the privileges of a process needs to remove some access restrictions
from the process. However, allowing the users to remove access restrictions
implies security risks. At least, a hijacked server must be prevented from illegally
removing access restrictions imposed on that server. For example, the seteuid
(not setuid) system call provided by UNIX can be a security hole [18]. It is
used for accomplishing the least privilege principle [16]. It temporarily lowers
the privileges of a privileged server and later gives the original privileges back.
Since it gives the original privileges back whether the process is hijacked or not,
even a hijacked server may recover the original higher privileges.

Confirming that a server is not hijacked is not easy. A server that seems to
be running normally may include malicious code for hijacking the server later. If
this server is allowed to remove access restrictions, then the malicious code may
be activated after the access restrictions are removed. The server’s execution
environment may be compromised. For example, if the variable argv[0] in a
process is modified, a cracker can send a HUP signal to the process and thereby
execute an arbitrary command indicated by that variable [5]. Detecting the
existence of hidden malicious code and compromised execution environment is
extremely difficult.

2.2 Spawning a Child Process

Since removing access restrictions implies security risks, a number of operating
systems such as UNIX, in general, allow a process only to impose access restric-
tions. For example, the setuid system call provided by UNIX can change the
access privilege from higher to lower but not from lower to higher. However,
in spite of this limitation, a server Tunning on those operating systems can still
impose different access restrictions depending on a request from a client. If the
server is connected from a client, then the server spawns a child process, imposes
additional restrictions on that child process, and has the child process handle
the request from the client. Removing the access restrictions from the child
process is not necessary because the child process just terminates after handling
the request. The server is kept running with the initial access restrictions and
is securely protected since it does not receive any data from a client.

This technique, however, is not workable if the performance of the server is
crucial. Since spawning and terminating a child process involves serious per-
formance penalties, practical Internet servers uses the process pool technique
[11]; the servers spawn several child processes in advance and repeatedly reuse
them instead of spawning a new child process for every request. The child
processes never terminate since they must handle the next request. Thus the
technique for imposing different access restrictions on a newly spawned process
for each request cannot be used together with the process pool technique. The
implementor of a server running on UNIX must choose efficiency or security.

3 Process Cleaning

Compacto uses a new technique called the process cleaning so that removing
access restrictions does not involve security risks mentioned in the previous
section. Thereby the users can impose access restrictions on a server only while
the server is handling a request from an untrustworthy client or it is executing an

savestate(); (1)

accept(); (2)
if (from_Internet) (3)
impose strong restrictions

else

impose weak restrictions
handle a request
restore state(); (4)

Figure 1: A typical server using the process cleaning.

untrustworthy plug-in code. The imposed access restrictions minimize damages
in cases where the server is hijacked and after that they are removed without
security risks.

The access restrictions provided by Compacto are, for example, to disable
some system calls. They also include changing the user/group ID of a pro-
cess into a less privileged user/group ID, and changing the root directory for
a process. These are implemented by the setuid, setgid, and chroot system
calls as in UNIX although UNIX does not allow removing the access restrictions
imposed by these system calls.

3.1 Recovering a Hijacked Process

For securely removing access restrictions, the thread of control must be recovered
from malicious code injected by, for example, the buffer overflow attack. Then
the malicious code must be eliminated from memory even if it has not been
activated yet. To do this, Compacto provides the save_state system call, which
saves the state of a process. This system call must be issued before access
restrictions are imposed on a process. These access restrictions are removed if
the restore_state system call is issued. This system call removes the access
restrictions and also restores the saved state of the process. Since the saved
state includes an instruction pointer and the memory image of the process, the
thread of control is recovered and, if any, malicious code is eliminated from the
memory.

For example, a web server running on Compacto uses the save_state and
restore_state system calls as follows. After finishing initialization, the web
server issues save_state system call (Fig. 1 (1)). Then the server waits until
a client connects with it (Fig. 1 (2)). If a client connects, access restrictions
depending on that client are imposed on the web server (Fig. 1 (3)). The
web server handles a request from that client with those access restrictions.
After the web server finishes handling the request, the web server issues the
restore.state system call (Fig. 1 (4)). This system call recovers the state of
the web server. Since it recovers the instruction pointer, the thread of control
is moved back to the next statement of the save_state system call (Fig. 1 (2)).
The web server repeatedly handle another request from a client.

3.2 Saved/Restored Process State

The restore state system call restores the values of all the registers. It is
analogous to longjmp provided by the standard C library. The restored reg-
isters include an instruction pointer (a.k.a. a program counter). If injected
malicious code successfully obtains the control of the process, the execution of
that malicious code is terminated when the restore state system call is issued.
Thus the malicious code cannot remove access restrictions without losing the
control of the process. The malicious code can issue the save_state system call
illegally. If it issues that system call, the process state saved by the previous
issue is overwritten; the successive issue of the restore_state system call does
not remove access restrictions imposed before the last issue of the save_state
system call.

The restore_state system call also restores a memory image. This elimi-
nates the Trojan horse, which is malicious code left on memory and later acti-
vated for hijacking, and restores the value of an environment variable recorded
on memory if it has been modified since the last issue of the save_state sys-
tem call. Restoring the whole memory image is necessary since distinguishing
malicious memory accesses from regular memory accesses is extremely difficult.
Restoring the whole memory image also keeps a server stable. If the server is
attacked by a cracker, the cracker might collapse part of the memory image of
that server and thereby cause a memory fault for terminating the server. A
server running on Compacto is protected from this type of the denial-of-service
attack since it can catch a memory fault and restore the whole memory image
for repairing the collapsed image.

The restore_state system call also restores signal handlers. If there are
pending signals, the restore_state delivers those signals before restoring sig-
nal handlers. The pending signals are delivered to correct handlers. If a signal
handler is replaced with a malicious handler, a cracker could activate this ma-
licious handler by sending a signal after access restrictions are removed. Then
the malicious handler could hijack the server.

The restore_state system call closes files and sockets that have been opened
since the last issue of the save_state system call. This is for avoiding the ex-
haustion of file descriptors, which a cracker may cause for the denial-of-service
attack. If malicious code injected by a cracker closes a file or a socket, the
restore state system call opens it again and restores the file descriptor for it.

3.3 Restoring Memory

Performance penalties of the process cleaning are mainly due to copying memory
for saving and restoring the state of a process. To reduce the amount of copied
memory, Compacto uses a technique known as copy-on-write [4, 15]. Further-
more, the users can select an implementation strategy for restoring a memory
image. As shown in Figure 1, a typical server running on Compacto saves its
state only once and repeatedly restores the saved state whenever it finishes han-
dling a request. The user can select an implementation strategy so that the
process cleaning works efficiently in that case.

The save_state system call saves the memory image of a process so that the
restore_state system call can restore it. However, that system call does not
immediately duplicate the whole memory image. It first changes the state of

original
page

shadow

. page i _____ < shadow
-m—l N, page

unmapé&
discard

(a)remap strategy (b)copy strategy

Figure 2: Two strategies for restoring memory.

every writable memory page into the write-protected mode. The memory page
is duplicated only if the process attempts to write in the page and hence a page
fault occurs. The page table is modified so that the original page is moved into
the kernel address space and a new memory page allocated for the duplication
is mapped at the original virtual address.! We call this new memory page a
shadow page. Since the shadow page is writable, no page fault never occurs
after the first one.

The restore_state system call restores only the memory pages that have
been saved since the last save_state system call was issued. For restoring them,
Compacto can choose one of two strategies. The first strategy is to unmap and
discard a shadow page and move the original page back from the kernel address
space. We call it the remap strategy (Fig. 2 (a)). The second strategy is to
copy the contents of the original page into the shadow page. The original page
remains in the kernel address space. We call this the copy strategy (Fig. 2 (b)).

Since the remap strategy does not need copying memory for the restoration,
Compacto normally selects this strategy. It is also good with respect to memory
consumption. However, the users can request Compacto to use the copy strat-
egy. A typical server running on Compacto repeatedly restores the state saved
by the save_state system call. The save_state system call does not alter-
nate with the restore_state system call. In this case, the remap strategy may
be less efficient. If Compacto selects the remap strategy, the restore_state
system call must make the restored memory page write-protected so that it is
duplicated again if the process attempts to write in that page between this and
the next issue of the restore _state system call. If a page fault occurs, the
page fault handler must allocate a shadow page and copy the contents of the
page into it. .

On the other hand, with the copy strategy, the restored memory page is still
a shadow page; the original page is left in the kernel address space. Compacto
does not have to make the restored page write-protected or to catch a page fault.
Since the copy strategy reuses a shadow page, it causes a smaller number of page
faults than the remap strategy. The number of memory copying depends on the
pattern of memory access until the next issue of the restore_state system call.

1The saved memory image must be stored in the original page because the original page
may be shared with parent and/or child processes for copying on write.

original original
page page
kerne kernel
copy
writed e write
shadow shadow
page | page
write #-NINNNNY copy shadow
. on write bage
write LS Y
(a)restore_state (bl)regular access (b2)random access
(2 copies) (0 more copy) (1 more copy)

Figure 3: The performance of the copy strategy depends on a memory access
pattern while a server handles a request. After the restore_state system call
is issued (a), if the access pattern has locality (bl), the copy strategy is faster.
Otherwise (b2), it is slower.

If the process writes in the same set of memory pages, that is, only the shadow
pages, the copy strategy needs only the same number of memory copying as
the remap strategy (Fig. 3 (bl)). Since no page faults occur in this case, the
copy strategy is faster than the remap strategy. On the other hand, if the
process writes in a totally different set of memory pages, maintaining shadow
pages is useless and hence the copy strategy needs a larger number of memory
copying. Compacto must copy the saved images to all the shadow pages for
the restoration (Fig. 3 (a)) and duplicate other pages when page faults occur
(Fig. 3 (b2)).

If the copy strategy is selected, the restore_state system call restores only
the memory pages whose dirty bit is set. The dirty bit is set by the hardware
if a process writes in the memory page associated with that dirty bit. After
the restoration, all the dirty bits are reset so that Compacto can determine
whether the page is written in between this and the next restoration. The
restore state system call does not copy a memory page whose dirty bit is
clear. If the memory page has not been written in for long time, Compacto
discards the shadow page of that page and reduces consumption of memory
pages. It unmaps and discards the shadow page and moves the original page
back from the kernel address space.

4 Experiments

We have developed the Compacto operating system on top of the Linux 2.2.16
kernel. This section reports the results of our experiments for measuring the
overheads due to the process cleaning. The machine we used for the experiments
is a PC with a Pentium IIT 933MHz processor? and 256MB memory.

Table 1: The execution time of the save_state system call.
of pages | 12 16 32 64 128 256 512 1024
usec 5.29 562 634 791 114 181 288 56.1

Table 2: The cost of restoring the states of resources (usec).
of resources 0 1 2 4 8 16 32
memory pages (remap) | N/A 0.63 0.84 1.18 1.90 3.43 8092
memory pages (copy) N/A 159 3.13 9.15 179 352 146
signal handlers 0.08 027 033 038 060 1.05 N/A
open files/sockets 0.05 0.60 0.69 083 1.05 149 284

For memory, we did not measure the case where the number of memory pages 1s zero because

at least one memory page is used for a stack frame and it must be restored.

4.1 = Micro Benchmark

We first measured the execution time of the save_state and restore_state
system calls. The execution time of the save_state system call depends on the
number of writable pages in a process (Table 1). For example, the Apache web
server uses approximately 60 writable pages. The total execution time includes
the cost of saving the states of the resources other than memory pages (3.4
usec): 2.12 psec for signal handlers, 0.90 usec for open files and sockets, 0.05
usec for registers, and 0.33 usec for issuing the system call. The influences of
the number of files and sockets were negligible.

For executing the restore_state system call, 0.33 usec is needed for issuing
the system call and 0.05 psec is for restoring registers. The rest of the execution
time of the system call depends on the number of the restored resources as listed
in Table 2. As for memory pages, the remap strategy needed a smaller cost than
the copy strategy. However, the remap strategy may need extra costs. If the
save.state system call is not issued and the restored memory page is updated
again before the next issue of the restore state system call, Compacto must
catch a page fault and allocate a shadow page. This cost is listed in Table 3.
- Therefore, in the worst case, the remap strategy is 1.3 to 1.8 times slower than
the copy strategy.

4.2 Apache Web Server

We also measured the execution performance of a web server running on Com-
pacto. As the web server, we used the Apache 1.2.13 [1], which is implemented
with the process pool technique. As client machines, we used PCs with a Celeron
300MHz and 64MB memory. The operating system of the client machines is

Table 3: The cost of handling page faults.
of pages 1 2 4 8 16 32
usec 221 496 13.1 26.6 528 185

2The L1 cache is 16KB (instruction) + 16KB (data). The L2 cache is 256KB.

2500 |

2000 | e

o
o
[<1

Connections/sec

1000 £

500 f POOL o

0 L L L . s T
2 4 6 8 10 12 14 16

of Client Machines

Figure 4: The server throughput (0 byte file was requested).

25

20 | POOL s

Response Time (msec})

2 4 6 8 10 12 14 16
of Client Machines

Figure 5: The average response time (0 byte file was requested).

FreeBSD 3.4. To avoid network saturation, the clients and the server are con-
nected through the 100baseT Ethernet and the server machine has two Ethernet
ports. We measured the execution time of the WebStone benchmark program
[13] with various number of clients.

For comparison, we used four different types of Apache server. The POOL
server is an Apache server which does not perform the process cleaning. The
COPY server is an Apache server performing the process cleaning with the copy
strategy. The REMAP server is an Apache server performing the process cleaning
with the remap strategy. These three servers use 16 pooled processes. Finally,
the SPAWN server is an Apache server modified for spawning a child process for
every request. It does not use the process pool technique or perform the process
cleaning. We did not impose access restrictions on any of the four Apache
servers in this experiment.

4.2.1 Results

Figure 4 and Figure 5 show the server throughput (the number of acceptable
requests per second) and the response time in the case that a 0 byte file was

| ————

1200 | e

8 1000 | '

2

5 8ol

3]

[} P

S 600 |

8 7
400 i 88<P)IY_ P
200 | REMAP s |

SPAWN —

2 4 6 8 10 12 14 16
of Client Machines

Figure 6: The server throughput (various sizes of files were requested).

n
o
o
Q
[}
[l
13
",

_
o

Response Time (msec)
S

(S}
T

2 4 6 8 10 12 14 16
of Client Machines

Figure 7: The average response time (various sizes of files were requested).

requested by the clients. All the servers modified 18 pages of memory, changed
one signal handler, opened one file and one socket while handling every request.

Figure 6 and Figure 7 show the server throughput and the response time in
the case that various sizes of files were requested. All the servers modified 18.3
pages of memory on average, changed one signal handler, opened one file and
one socket while handling every request. The requested files were copied from
our real web server®. The average file size was 7.6KB (from 73 bytes to 47KB).

4.2.2 Discussion

According to the results of our experiments, the COPY server is 1.5 times faster
than the SPAWN server. Since secure servers, which impose access restrictions de-
pending on each request, have had to spawn a new child process for every request
as described in Section 2.2, the process cleaning achieves 50% improvement of
the performance of those traditional secure servers. It allows the secure servers
to handle a request with pooled processes although its performance penalties
are not negligible if comparing the POOL server and the COPY server.

Shttp://www.hlla.is.tsukuba.ac.jp/

10

Since the process cleaning is CPU- and memory-intensive, the overheads of
the process cleaning is relatively small if most of the execution time of a server is
spent for disk and network I/O. Therefore, both the COPY server and the REMAP
server showed better performance in Figure 6 than in Figure 4. Requests for
large files causes more disk and network I/O than requests for 0 byte files.

In our experiments, the COPY server was always faster than the REMAP
server. The performance improvement was 8% on average. In the case that a 0
byte file was requested, the same set of memory pages was updated whenever a
request was handled. This is the case that the copy strategy achieves the best
performance. In the case that various sizes of files were requested, the copy
strategy is also better than the remap strategy although the memory access
pattern of the servers was less advantageous to the copy strategy than in the
former case.” Although the copy strategy is better than the remap strategy in
the case of the Apache web server, the remap strategy may be better in the case
of other kinds of Internet servers.

The COPY server needs more memory pages than the REMAP server since
it keeps the original pages in the kernel address space. To reduce memory
consumption, the restore_state system call should unmap and discard some
of the shadow pages and then move the original pages back from the kernel
address space. We also measured effects of this strategy. The modified version
of the restore_state system call unmaps a shadow page if the dirty bit is clear
because we expect that the shadow page will not be modified. According to our
experiment, the memory consumption of the modified COPY server was reduced
by 7.7 pages on average. On the other hand, the number of page faults was
increased. Thus the performance improvement against the REMAP server was
decreased from 8% to 6%.

4.3 FastCGI

We also measured the execution performance of the FastCGI module [10], which
runs on top of the Apache web server. The FastCGI module enables the server to
use pooled processes for running CGI programs. Without the FastCGI module,
the server must spawn a child process whenever a CGI program runs. As a CGI
program, we used wwwcount 2.5 [20], which is one of the most popular access
counters.

Like the experiment in the previous subsection, this experiment compared
four web servers: the POOL, COPY, REMAP, and SPAWN servers. Only the
FastCGI module used by the cOPY and REMAP servers performs the process
cleaning. The SPAWN server does not use the FastCGI module. It spawns a
child process for running a CGI program. The underlying servers of the four
are the normal Apache server. '

Figure 8 and Figure 9 show the results. These results are similar to the
results in the case of the Apache web server. However, the performance overhead
due to the process cleaning was smaller in this experiment. The COPY server
was only 15% slower than the POOL server. This is because executing a CGI
program was a bottleneck and hence the overheads due to the process cleaning
were relatively small.

11

400 T . T T T v

350 |
300 |
[¢] ,v .
g 250 74
FA0L e]
g 150 L
[}
100 1 POOL o T
COPY —a—
%0 REMAP —= 1
0 SPAWN —~

2 4 6 8 10 12 14 16
of Client Machines

Figure 8: The server throughput (CGI program was requested).

Response Time (msec)

2 4 6 8 10 12 14 16
of Client Machines

Figure 9: The average response time (CGI program was requested).

5 Related Work

The process cleaning can be regarded as a variation of the technique known as
checkpointing/recovery. Several researchers have proposed to use copy-on-write
for efficiently implementing checkpointing/recovery [12, 6]. Our contribution is
to apply that technique to the security domain instead of traditional domains
such as database transactions, process migration, and fault tolerance. In fact,
the design of the process cleaning is highly customized for access control mecha-
nisms. For example, only updated memory pages are saved since preserving all
the memory pages is not necessary. The saved memory pages are never written
on a disk drive since the process cleaning is not for fault tolerance.

Takahashi et al. [17] and Chiueh et al. [7] proposed to divide a process into
multiple protection domains. Their idea is to impose a different set of access
restrictions on each domain. The process can switch a protection domain for
changing a set of access restrictions. Their systems work well for protecting a
server from untrusted server plug-ins, for example. On the other hand, they are
not appropriate for protecting from the buffer overflow attack. If the process
is hijacked by the attack, only the current protection domain is compromised.

12

However, unlike the process cleaning, their systems do not provide a mecha-
nism for recovering the compromised domain so that the server can continue its
service.

6 Conclusion

In this paper, we proposed the process cleaning, which prevents hijacked servers
from illegally removing access restrictions. We also presented two implemen-
tation techniques for the process cleaning: the remap strategy and the copy
strategy. According to our experiments, overheads due to the process cleaning
were 50% at the worst case. However, the process cleaning enables Internet
servers to use pooled processes for handling a request even if they must impose
access restrictions depending on each request. Previous servers must spawn
a child process for every request. A web server using pooled processes with
the process cleaning achieved approximately 40-50% performance improvement
against a web server spawning a child process.

Our current implementation of the process cleaning does not support multi-
threading. There are several problems for supporting it. For example, should
we save/restore a state per thread or per process? If per thread, how should
we deal with a memory image shared among multiple threads? Which thread
should be allowed to save/restore a state? and so on.

Although the restore state system call restores the whole state of a pro-
cess, some Internet servers may want to leave part of the state as it is. For
example, they may want to preserve some memory pages for carrying data.
One of our future research directions is to develop a technique for enabling that
without any security risks.

References

[1) Apache HTTP Server Project. http://www.apache.org/.

[2] AusCERT. Vulnerability in NCSA/Apache CGI example code. AusCERT
Advisory AA-96.01.

[3] A.Baratloo, T. Tsai, and N. Singh. Transparent Run-Time Defense Against
Stack Smashing Attacks. In Proceedings of the USENIX Annual Technical
Conference, June 2000.

[4] D. G. Bobrow, J. D. Burchfiel, D. L. Murphy, and R. S. Tomlinson.
TENEX, a Paged Time Sharing System for the PDP-10. Communication
of ACM, 15(3):1135-1143, Mar. 1972.

[5] CERT. Sendmail Daemon Mode Vulnerability. CERT Advisory CA-96.24.

[6] D. R. Cheriton and K. J. Duda. Logged Virtual Memory. In Proceedings of
the 15th ACM Symposium on Operating Systems Principles, pages 26-39,
Dec. 1995.

[7] T. Chiueh, G. Venkitachalam, and P. Pradhan. Integrating Segmentation
and Paging Protection for Safe, Efficient and Transparent Software Exten-

13

[13]

[14]

[15]

18]

[19]

20]

sions. In Proceedings of the 17th ACM Symposium on Operating Systems
Principles, pages 140-153, Dec. 1999.

C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton. StackGuard: Automatic Adaptive
Detection and Prevention of Buffer-Overflow Attacks. In Proceedings of
the 7th USENIX Security Symposium, pages 63-78, Jan. 1998.

C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer Overflows:
Attacks and Defenses for the Vulnerability of the Decade. In Proceedings
of the DARPA Information Survivability Conference and Ezpo, Jan. 2000.

FastCGI. http://uwww.fastcgi.com/.

J. Hu, S. Mungee, and D. Schmidt. Principles for Developing and Mea-
suring High-Performance Web Servers over ATM. Technical Report 97-09,
Department of Computer Science, Washington University, 1997.

K. Li, J. F. Naughton, and J. S. Plank. Real-Time Concurrent Checkpoint
for Parallel Programs. In Proceedings of the 2th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, pages 79-88,
Mar. 1990.

Mindcraft. WebStone Benchmark. http://www.mindcraft. com/
webstone/.

Openwall Project. Non-Executable User Stack. http://www.openwall.
com/linux/.

R. Rashid, A. Tevanian, M. Young, D. Golub, and R. Baron. Machine-
Independent Virtual Memory Management for Paged Uniprocessor and
Multiprocessor Architectures. In Proceedings of the 2nd International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, pages 31-39, Oct. 1987.

J. H. Saltzer and M. D. Schroeder. The Protection of Information in Com-
puter Systems. Proceedings of the IEEE, 63(9):1278-1308, Sep. 1975.

M. Takahashi, K. Kono, and T. Masuda. Efficient Kernel Support of Fine-
grained Protection Domains for Mobile Code. In Proceedings of the 19th
IEEE International Conference on Distributed Computing Systems, pages
64-73, June 1999.

NetBSD Security Alert Team. at(1) vulnerabilities. NetBSD Security Ad-
visory NetBSD-SA1998-004.

D. Wagner, J. Foster, E. Brewer, and A. Aiken. A First Step Towards
Automated Detection of Buffer Overrun Vulnerabilities. In Proceedings of
the Network and Distributed Systems Security Symposium, Feb. 2000.

WWW Homepage Access Counter and Clock. http://www.muquit . com/
muquit/software/Count/Count .html.

14

