A Branch-and-Bound Algorithm for

Maximizing the Sum of Several Linear Ratios
Takahito Kuno*
September 8, 2000

. ISE-TR-00-175

Institute of Information Sciences and Electronics

University of Tsukuba,

Tsukuba, Ibaraki 305-8573, Japan

Phone: +81-298-53-5540, Fax: +81-298-53-5206, E-mail: takahito@is.tsukuba.ac.jp

* The author was partly supported by Grant-in-Aid for Scientific Research of the Min-
istry of Education, Science, Sports and Culture, Grant No. (C2)11650064.

A Branch-and-Bound Algorithm for Maximizing
the Sum of Several Linear Ratios

Takahito Kuno*
Institute of Information Sciences and FElectronics

University of Tsukuba

September 2000

Abstract. In this paper, we develop a branch-and-bound algorithm for maximizing a sum
of p (> 2) linear ratios on a polytope. The problem is embedded into a 2p-dimensional space,
in which a concave polyhedral function overestimating the optimal value is constructed for the
bounding operation. The branching operation is carried out in a p-dimensional space, in a
way similar to the usual rectangular branch-and-bound method. We discuss the convergence
properties and report some computational results, which indicate the algorithm is promising.
Key words: Global optimization, nonconvex optimization, fractional programming, sum of

linear ratios, branch-and-bound algorithm.

1. Introduction

Since the classical paper [3] by Charnes and Cooper in 1962, intensive research has
been done on fractional programs [18]. Fractional programming is one of the most
successful fields today in nonlinear optimization. In fact, the linear fractional program
which optimizes a single linear ratio has been proved equivalent to a linear program
by Charnes and Cooper [3]; and hence it can be solved in polynomial time now using
interior-point algorithms [10]. Even in the multi-ratio case, the problem of maximizing
the minimum value of linear ratios can be solved quite efficiently using a local search
algorithm similar to Newton’s method [6]. Unfortunately, however, there is still no
decisive method for optimizing a sum of linear ratios on a polyhedron though it is also
a multi-ratio problem.

The optimization of a sum of linear ratios arises in various areas: multi-stage stochas-
tic shipping [1], cluster analysis [19] and multi-objective bond portfolio [14], to name but
a few. While there is much demand for solution to this problem, all the theoretical results
reported so far make us pessimistic about the existence of efficient algorithms [5, 17].
The only thing known about the optimality is that a globally optimal solution lies on the
boundary of the feasible set if it exists [5]. For the last decade, however, some promising

*The author was partly supported by Grant-in-Aid for Scientific Research of the Ministry of Edu-
cation, Science, Sports and Culture, Grant No. (C2) 11650064.

algorithms that use the low-rank nonconvexity [13] have been proposed for the problem
with a few ratios [15, 11, 16]. As for the problem where the number of ratios is not lim-
ited, Falk and Palocsay suggested an interesting approach in an “image space” [8]. They
‘associated a new variable with each of the ratios and defined the image space, in which
- optimization is easy in certain directions. Sequentially optimizing in these directions,
they yielded a globally optimal solution. In their recent paper [12], Konno and Fukaishi
also associated a new variable with each of the ratios, thereby moving nonlinearities into
the constraints. They further transformed the ratio constraints to multiplicative ones.
To solve the resulting problem, they applied a branch-and-bound algorithm. In a special
case that the dimensionality of the problem is fixed at two, Chen et al. very recently
developed a remarkably efficient algorithm using computational geometry [4].

In this paper, we will develop a branch-and-bound algorithm for maximizing a sum
of p (> 2) linear ratios on a polytope. We associate a new variable with each of the
denominators and numerators and define a 2p-dimensional space. We construct a con-
cave polyhedral function overestimating the value of the sum of ratios in this space and
compute a lower bound on the optimal value. Therefore, the bounding operation is
carried out mainly in the 2p-dimensional space. In contrast to this, the stage of the
branching operation is substantially the p-dimensional image space, i.e., we subdivide
the range of each ratio successively in the algorithm. The organization of the paper is
as follows. In Section 2, after giving the formal definition of the problem, we embed
it into the 2p-dimensional space. We also explain the outline of the branch-and-bound
algorithm there. In Section 3, we construct the function overestimating the value of the
sum of ratios. We then show that the lower bound can be computed by solving a linear
program. Section 4 is devoted to the branching operation. We discuss the convergence
of the algorithm and show that it is guaranteed if we subdivide the range of each ratio
according to the the same rules as adopted in the usual rectangular branch-and-bound
method for separable concave minimization problems [9, 20]. In Section 5, we summarize
the algorithm and prove that it generates a globally e-optimal solution in finite time.

Lastly, we report computational results in Section 6.

2. Reduction to 2p-dimensional problem

Let us consider a problem of maximizing a sum of p linear ratios

maximize z=) ————
~ cix + (2.1)
subject to Ax=b, x>0,

where A € R™ ", b € R™, ¢!,d' € R" and 7;,4; € R for i = 1,...,p. We assume that
the feasible set

X={xeR'|Ax=b, x>0}

is nonempty and bounded, and that
cx+v, >0, d'x+6>0, Vxe€X, i=1,...,p. (2.2)

As is well known, under condition (2.2) each ratio (d'x + &;)/(c'x + ;) is continuous
and quasimonotonic on X (i.e., both quasiconvex and quasiconcave; see [2] for details).
The sum of quasimonotonic functions is, however, nether quasiconvex nor quasiconcave
in general. Therefore, (2.1) can have multiple locally optimal solutions, many of which
fail to be globally optimal though at least one exists by compactness of X. What 1s
even worse, no vertex of X might provide a globally optbimal solution. This means that
vertex enumeration often used in multiextremal global optimization [9] does not work
on this problem (2.1). ,

For convenience, let us introduce two vectors £ and m, each of p auxiliary variables,

and define a 2p-dimensional set:

Q={(&n) eR”|€=Cx+~, n=Dx+4, xc X},

where
C1 Y1 Cl1 51
C=|:]|, v=| |, D=} 1], 6d=1:
c? Ve d? dp
For eachi=1,...,p, we also introduce four numbers s}, t},u; and v; satisfying

0< s! <min{(dx +&)/(c’x+7) | x € X}
0o > th > max{(d'x + &)/(c'x + v) | x € X}
0< u; <min{(c'+d)x|x€ X}+v+8
0o > v; > max{(c'+d)x |x € X} +v+ 6.

(2.3)

Notice that we can easily obtain each of these numbers by solving a linear programming

problem [3]. Let

Ui = {(&n) € R} | wi <& +m < vi}
Al = {(&m) € R} | sféi <mi < 81E3,

where R denotes the nonnegative orthant of IR’; and let
=Ty x---xTp A=A} x---xAL

Since {2 is a subset of [N Al, problem (2.1) reduces to a 2p-dimensional master problem

P
maximize z = i /&
P E;l ni/€

subject to £&m)eQNTNAL

3

We apply a branch-and-bound method to this problem, instead of the original problem
(2.1) of dimensionality n. '

In our algorithm, while partitioning the cone A! successively into
Aj:A{X--'XAé, jEJ, | (24)
we solve each subproblem of MP with a feasible set 2 N T' N A7, where

Al = {(fi’ni)'e IRi | sl& < i <t} , (2.5)
Al =Ujes AL AINAF=0 ifj# k. '
The outline is as follows:

Let J := {1} and k := 1. Repeat Steps 1 — 3 while J # 0.

Step 1. Take an appropriate index j from J and let A := AJ. Define a
subproblem

p
maximize z= Y n;/&
=1

subject to &n)eQanlnA.

P(A)

Step 2 (bounding operation). Compute an upper bound Z(A) on the value
of P(A). If Z(A) is less than or equal to the value of the best feasible

solution obtained so far, discard A and return to Step 1.
Step 8 (branching operation). Otherwise, divide A into two cones A% and
A+ Add {2k,2k + 1} to J and k:=k+1.

Needless to say, the efficiency of this algorithm is most influenced by Steps 2 and 3. We
will show how to carry them out in order. Throughout the paper, we identify J with
the set of cones A’ 5 € J.

3. Bounding operation (Step 2)

The cone A defining problem P(A) is a direct product of p cones, each in a two-
dimensional plane:

Ay ={(&,n) eRY | & <m <&}, i=1,...,p.
Therefore, I'; N A; for each 7 constitutes a trapezoid with four vertices:
S = (uiy siu:)/(s; + 1), T = (vi,8:05)/ (55 +1)
U= (vi,t;v:)/(t; + 1), V = (us,tu;)/(t; +1)
(see Figure 3.1). Let

Jil&rm) = (b + 1)(mi — &) Jui + s } (3.1)
9i(&sm) = (8i + 1)(ms — t:i&) [vi + .

4

Figure 3.1. Trapezoid I'; N A;

As is shown in Figure 3.2, f; is an affine function passing 7;/&; at vertex V and side S-T
of the trapezoid; and g; passes it at vertex 7' and side U-V. Using these two functions,
we define

¢i(&iyms) = min{ fi(&i,), 9:(&ismi) }- (3:2)
Lemma 3.1. The function ¢; is concave, polyhedral and satisfies the following for any
(‘517772) € P‘i:)

¢i(&m) 2 mif& if (&i,mi) € A (3.3)

$i(&vm) <mi/& if (&.mi) & A
In particular, the value of ¢; agrees with n;/&; at two sides S-T (mi/& = si) and U-V
(mi/& = t;) of trapezoid T'; N A;.
Proof: Let us divide I'; = {(&,7:) | wi < & + m < v;} by line T-V into

Pl =Tin{(&m) | fil&m) < gl m)}

I =T {(&,m) | fil&:m) > gi(&i:ni)}

(see Figure 3.2), and take an arbitrary point (¢;,7;) from I'/. We then have ¢;(€, 7)) =

2

fi(&l,mh). If ni = 0, then (&,7n!) cannot be a point in A;; and hence the second of (3.3)

Y

Figure 3.2. Overestimator ¢; of 7;/¢;

holds. Assuming 7 # 0, we have
bi(&imi) — i/ & = (i + 1) (n; — s:&]) [ui — (0} — 8:€1) /€]
= (0} — s:&)(L:&i + & — wi) [(wi).
If (& mi) € A, then s, <7} < 1€} and

®i(&omi) — i/ & > (nf — si€l)(8i€l — ml) [/ (wi) > 0.
Otherwise, ! < s;¢ < t;¢! and

i€, mt) — mi/ €& < (mi — s:€l)(8:€] — i) [(wsl) < 0.

Similarly, (3.3) holds for any point in I'Y. The rest follows from definition. u

We refer to ¢; as the overestimator of m/f{on I'; N A;. Replacing n;/& by its

overestimator for each ¢ in P(A), we have a concave maximization problem

‘P“(A) maximize z = ;Qéi(fia)

subject to EneQnl'nA.

Let (€,77) be an optimal solution to P(A) and Z(A) the value of (€,7). Also let z(A)
denote the optimal value of P(A). If @ N T'N A =), we interpret both z(A) and Z(A)

as —oo. The following is an immediate consequence of Lemma 3.1.

6

Lemma 3.2. IfZ(A) > —oo, then
SOT/E < (8) < HA). | (3.0

SOLUTION TO P(A)

We should remark that P(A) is equivalent to a linear programming problem

p
maximize 2z = Z i
=1

subject tb Ax=Db, x>0 (3.5)
(ti + 1)(dl — SiCi)X — uiCi Z (8%)
(i + 1)(d' — tic)x — vi(; > Bi t=1,...,p,
$i <G <t
where
o; = (ti + D)(siys — &) — siui, B = (s + 1) (tiys — &) — tivs.
To see this, we need first to prove the following:
Lemma 3.3. Let (§,n;) be a point in T';. Then
(&oms) € A; iff s < @i&iymi) < i (3.6)

Proof: Let T { and T'Y denote the subsets of I'; defined in the proof of Lemma 3.1. Then
I'Y N A, is a triangle with vertices S, T and V (see Figure 3.2). It is easy to check
that side S-T and vertex V provide the minimum value s; and the maximum value t;,
respectively, for ¢; = f; on I'{ N A;. If (&,m) € T{\ A;, then & < s and hence
i(&i,mi) = (t + 1)(mi — s:&i)/ui + si < s;. Therefore, (3.6) holds for any (&, m:) € rs.
Similarly, we can show (3.6) for (&, n;) € Y.]

Proposition 3.4. If (8.5) is infeasible, then Z(A) = —oo. Otherwise, for any” optimal
solution (X,) to (3.5) we have '

£=Cx+~v, m=Dx+4, 7A)=>C.

=1

Proof: We see from (3.6) that P(A) is equivalent to

»

maximize z= 3 (
=1

subject to (&n) e
G=atem) |
8; < Cz <t

7

This problem reduces to (3.5); and hence the assertion follows. ' n

Problem P(A) itself is actually a linear programming problem even if we do not
replace the constraint (&;,7;) € A; by s; < ¢i(&i,mi) < ¢; for each ¢. This transformation,
however, enables one to compute Z(A) using the upper bounding simplex method and
to reduce the total computational time considerably (see [7] for details). Anyway, by

solving a linear programming problem, we obtain an upper bound Z(A) on the value of
P(A) and its feasible solution (&,7), both needed in Step 2 of the algorithm.

4. Branching operation (Step 3)

In Step 3, we have to divide A in such a way that the resulting sets A% and AZ+1
satisfy (2.4) and (2.5). This can be done by giving an index ¢ € {1,...,p} and a number
w; € [s;,t;]. Namely, '

A=Ay xce x Ay X Al X Ay X - X A, =2k,2k+1, (4.1)
where
AP = {(&nm) € RE | st <mi < wiks) (42)
AP = {(&sm) € R | iy < mi S ti&i}- |

In general, no matter how we select ¢ and w;, the finiteness of the algorithm cannot

be guaranteed without a tolerance for the optimal value of problem (2.1). In that case,

the algorithm generates an infinite sequence of cones A%, £ = 1,2, ... such that
AP DA D QﬂFﬂ(ﬂAj‘)#@. (4.3)
£=1

Let us denote A simply by Af and the sequence by the index set £ = {1,2,...,¢,...}.
We assume that for each £ € £, cone A**! is generated from A’ via (4.1) and (4.2)
for some i¢ € {1,...,p} and wf € [sf,tf], where A! = {(&,m,) € RL | sim, <

&, < tf,ﬂiz}- ‘The following lemma shows that £ possesses a property similar to nested
rectangles generated by the rectangular branch-and-bound method for separable concave

minimization problems (see Lemma 5.4 in [20]):

Lemma 4.1. There exists an infinite subsequence L, C L such that iy = q for all
e Ly Also, {st| L€ L} and {t; | £ € L} have limits s and t} such that s; < 7;
and {w} | £ € L} converges to w} € {s}, 11}

Proof: Since i, is an element of the finite set {1,...,p}, we can take an infinite sub-
sequence £, such that i, = ¢ for all £ € £,. Assuming £, = {1,2,.. .} without loss

generality, we have
1 ¢ 241 2% R 1
8, <5, <8 <t <t <, VWEL,

8

Hence, for some s; and ¢; such that 5; <s; <7 < t; we have
lim 8¢ = lim st = s*, lim ¢¢ = lim ¢ = ¢
’ g g
00 ¢ f=o0 1 4 {—o0 £—rc0

These also imply that limy—e wﬁ = w; € {s},t7} because w! coincides with either st

or t5*1 for each £ € L,. |

In the rest of this section, we will give two different rules of selecting (ig,wf,) to

divide A? for each £ € £. The sequence L generated by each of these rules satisfies

lim [—z(N) -3 /Efi] =0, (4.4)

£—00 =1

where (ZZ, 77°) is an optimal solution to P(A?) and Z(A*?) the optimal value. The condition
(4.4) is the key to guarantee the finiteness of the algorithm when a positive tolerance is
allowed for the optimal value of problem (2.1).

BISECTION

On the analogy of the rectangular branch-and-bound method, the easiest way to divide
A* is bisection. For each £ € L, let us select

ig € argmax{t! —s¢|i=1,...,p}; 4.5
; p

and divide Afe by the line n;, = wflﬁie for

wf, = (1= A)s{, + At

1e?

(4.6)

where A € (0,1) is a constant. We refer to this selection rule of (i;,wf,) as bisection of

ratio .

Lemma 4.2. If L is generated according to the bisection rule of ratio A € (0,1), then
(4.4) holds.

Proof: As in Lemma 4.1, let £, C £ denote the infinite sequence where 1, = ¢ for all
¢. Then we have s; — 855 tt — ¢7 and vl — w} € {s},%;} as £ — oo in Ly. From (4.6),
however, we have ’

(1= XN)sy 4+ M, =w, € {s],17},
which holds only if w} = s} = ¢}. This, together with (4.5), implies that if £ — 0o in L,
cone Af shrinks to a half-line:

A*={(&n) e R¥ | & =win, i=1,...,p}, (4.7)

where w} is some pint in [s},?}].

For each ¢, the sequence {(Ef,ﬁf) | £ € L} is generated in the compact set [;NA}, and

hence has at least one limit point (£7,7}), which satisfies £ = win} by (4.7). Therefore, -

9

lim nz/f = w; (4.8)

£—00

On the other hand, we have sf < qﬁ’z(fz, 7¢) < tf from Lemma 3.3, where ¢¢ denotes the

overestimator of 1;/& on T'; N Af. Hence,

BT oFt —oy
Lim (&, 7;) = wi (4.9)
Since Z(Af) = 37, gb"(27771) the condition (4.4) follows from (4.8) and (4.9). u
w-DIVISION

The bisection rule is simple but does not entirely exploit the characteristics of problem
P(A?). As stated in Lemma 3.1, the overestimator ¢¢ composing the objective function
agrees with n;/&; on two sides of trapezoid I'; N Af. The next selection rule of (i, w! f
uses this property of ¢f to fulfill the condition (4.4).

For each £ € L, let us select

. -t =, .

iy € arg max {¢f(§z,ﬁf) —m/E li=1,... ,p}; (4.10)
and let |

wi, =7/ (4.11)

This kind of selection rules is often called w-division in global optimization branch-and-

bound methods (see [9]); and we follows the custom.

Lemma 4.3. If L is generated according to the w-division rule, then (4.4) holds.

£y wy = s7 as k — oo in £, C L, where £, is an infinite

£+1

Proof: Suppose that w;
sequence with 1, = ¢ for all £ € L,. Let L), be a subsequence of £, such that w = s,
for all £ € £. Then we have nq/§ = 5“1 from (4.11), and ¢é+1(§q,nq) = s"’“ from
Lemma 3.1. IfE — oo in L, then nq/§ — s, and ¢Z+1(€q,nq) —+ s;. Hence, we have

. £ = '
Jim [g4(E,,m%) —7L/E] = 0. | (4.12)
Even when w} = t;, we have the same result. The condition (4.4) follows from (4.12). m

5. Description of the algorithm
The last thing to be discussed is how to select a cone A? from the set J in Step 1. In

the usual branch-and-bound methods, either of the following rules is adopted:

Depth first. The set J is maintained as a list of stack. A cone AJ is taken from the top
of J; and cones A% and A%*! are added in this order to the top.

Best bound. The set J is maintained as a list of priority queue. A cone A? of largest
Z(AY) is taken out of J.

10

We can naturally use the either in our algorithm. In addition to this, if we incorporate
the bisection or w-division rule into Step 2, our algorithm is completed.

Let ¢ > 0 be a given tolerance for the optimal value of problem (2.1). Then the
algorithm is summarized as follows:

algorithm SUMRATIO.

begin ;
for:=1,...,p do begin
compute s}, t}, u; and v;;
Di:={(&,m) € RL |ui <& +m <wviks Ay = {(&,m) € RY | sj& <mu S &)
end;

Fi=Ty X xTp Ali= Al x - x AL T :={1}; 2° = 0; k == 1;
while 7 # 0 do begin

- select 7 € J by a fixed rule (depth first or best bound); /% Step 1 %/
J =T\ {j}; set A := A’ and define a subproblem P(A); |
fori=1,...,pdo /* Step 2 %/

determine the overestimator ¢; of n;/& on I'; N Ay;
construct the concave maximization problem P(A) using ¢;’s;
solve P(A) to obtain an upper bound Z(A) on the value of P(A);
if Z(A) — 2° > € then begin [* Step 3 x/
let (£,7) be a solution of value Z(A) to P(A);
if 30, 7/€; > 2¢ then .
update 2 := S, 7,/F, and (€5,7°) = (€, 7);
select 1 € {1,...,p} and w; € [s;,¢;] by a fixed rule (bisection or w-division);
AP = {(Gm) € Ry | si& <m S wilih
AP = {(&,m:) € RE | wibi <y <t}
A= Ay x Ay X AL X Ay x -0 XA for § = 2k,2k + 1
J=JU{2k,2k+1} k:=k+1
end
end; ‘
let x¢ be a feasible solution to (2.1) such that £ = Cx® 4« and ° = Dx* + 4
end;

Theorem 5.1. When ¢ > 0, the algorithm SUMRATIO terminates in finite time and
yields a globally e-optimal solution x° to problem (2.1).

Proof: Let us assume the contrary: the algorithm SUMRATIO is infinite. Then it
generates an infinite sequence £ of Aj‘ s satisfying (4.3). The back tracking criterion
Z(A) — 2¢ > ¢ implies that the following inequalities hold at the end of each iteration in
which j¢ for £ € £ is taken out of J:

11

p |
SOTE < 2 <EAY) —¢,

i=1

where A’ = A, From Lemmas 4.2 and 4.3, however, lim,_,, Z(A%) — Y0, 7 /Ef =0
whichever rule we adopt for selecting (i,w;) in Step 3. Therefore, ¢ < 0, which is a

contradiction. The e-optimality of x¢ follows from the back tracking criterion. [|

Corollary 5.2. Suppose e = 0. If the best bound rule is adopted in Step 1, the sequence
of (€,7)’s generated by the algorithm SUMRATIO has limit points, each of which is a
globally optimal solution to problem MP.

Proof: If the algorithm happens to be finite, the assertion is obvious from the back
tracking criterion. Assume that it is infinite and generates an infinite sequence £ just
stated in the proof of the previous theorem. The best bound rule then implies the
following at the beginning of each iteration in which j, for £ € £ is taken out of J:

Z(A%) > 7(AY) > 2(A), Ve T,

where Al = At, However, limy_,o, Z(A%) — S, ¢ /Ef = 0; and besides max{z(A%) | j €

J} is nothing but the optimal value of MP. Hence, every limit point {(Ee,ﬁe) | £ e L}
is a globally optimal solution to MP. u

6. Experiment with the algorithm
In this section, we will report computational results of testing the algorithm SUMRATIO

on randomly generated problems, which were of the form:
P Sh dijzig + ¢

maximize 2z = Z —
o1 =1 GijTij e
nl

6.1
subject to Zak]'xj <1.0, k=1,...,m (6-1)

i=1

2;>00, j=1,...,n"

Data c;j, d;; € [0.0,0.5] and a;; € [0.0,1.0] were uniformly random numbers. All constant
terms of denominators and numerators were the same number ¢, which ranged between
4.0 and 100.0.

The algorithm was coded in double precision C language according to the description

1 41

1, ¢!, u; and v;, which

in Section 5. The tolerance € was fixed at 107°. As to the numbers s
are not specified in the description, we exploited the structure of (6.1) and determined
‘them by solving a single linear programming problem for each . First, u; was set to 2c
because both Z;’_'__l ¢ijZ;;+c and Z;*':l d;;z;; + ¢ have the same minimum value c in (6.1).
Then, a linear programming problem was solved to determine the maximum value v; of

»_(cij+di;)zi; +2c. Finely, s! and t} were set to ¢/(v; — ¢) and (v; — ¢)/c, respectively.

12

It is easily seen that these s}, t}, u; and v; satisfy (2.3), though the resulting I' N A is
somewhat baggy to wrap up {2. In Step 1, depth first was adopted as the rule for selecting
j from J in order to save on memory. In Step 2, the linear programming problem (3.5)
was solved to compute (§,7) and Z(A). Starting from the preceding solution, we restored
the primal feasibility of (3.5) by applying some dual simplex pivoting operations. As
the rule for dividing A in Step 3, we tried both bisection and w-division. The code
adopting the former was named SR-2 and the latter SR_O. Both were tested on a Unix

workstation (UltraSPARC-IIi, 440MHz).

COMPUTATIONAL RESULTS

Figure 6.1 depicts the average performance of the algorithm SUMRATIO on ten in-
stances of size (m,n’) = (60,40) for each p when the value of ¢ was fixed at 10.0. The
size of p was made to change by 2 each from 2 to 12. We see from the line graph at
the top that SR_O requires more branching operations than SR_2 for p greater than 7.
This is an unexpected result in comparison with the usual rectangular branch-and-bound
method for separable concave minimization problems (see e.g., Remark 5.6 in [20]). As
is shown by the graph at the bottom, however, SR_O requires less CPU time than SR.2
for all p except p = 12. In the w-division rule, (£,7) always belongs to both A% and
A+l Therefore, the feasibility of (3.5) can recover quickly whichever cone is chosen
from J in the next iteration. In other words, the less CPU time of SR_O is due to its
fewer simplex pivoting operations.

Figure 6.2 gives the results on instances of size (m,n’, p) = (60,40, 5) for ten different
values of ¢ from 4.0 to 100.0. These two line graphs show that the algorithm SUMRATIO
is very sensitive to the magnitude of ¢, whether it uses bisection or w-division. For a
small ¢, each trapezoid I'; N A; is defined near the origin in the {-n; plane. In that
case, 1;/&; is quite different from linear in shape; and hence ¢; defined only by two affine
functions is too simple to estimate n;/&; precisely. In contrast to this, ¢; can make a fine
estimate of n; /& if ['; N A; is far away from the origin, i.e., ¢ is a large number. We can
recognize from the figure that such a fine estimate is given when ¢ is greater than 20.0.

Based upon the above observations, we tried to solve larger-size problems with ¢
fixed at 10.0 using the w-division code SR_O. The results are listed in Table 6.1. The
columns labeled branch and time contain the average number of branching operations
and the average CPU time in seconds, respectively, required to solve ten instances of size
up to (m,n’,p) = (120,100,6). We see from this table that SR_O is rather insensitive
to the size (m,n’) and can solve fairly large-size problems as long as p is less than
7. Since we have not yet compared our algorithm with other existing ones, we cannot
make a final conclusion. At least for the randomly generated class (6.1), however, these
computational results will support our claim that SUMRATIO can serve as a practical
deterministic algorithm.

13

log(# of branching operations)

log(# of CPU seconds)

1000

1 T T T

"SR 2 —+—
'SR_O’ ~-—+---

0.1

12

Figure 6.1. Behavior of SUMRATIO when (m, n’) = (60,40) and ¢ = 10.0.

14

'SR_ 2" —+—

"SR_O’ -—-—+--

(suonerado Junyouelq ‘#)3of

10

100

80

60

40

20

’SR_ 2" —+—

SR_O’ -+

{ spuodss ndD)30l

0.1

100

80

60

40

20

Figure 6.2. Behavior of SUMRATIO when (m,n’,p) = (60,40, 5).

15

Table 6.1. Computational results of SR_O when ¢ = 10.0.

p=3 p=4 p=>5 p=256
mx n' branch time branch time branch time branch time
40x 60 38.9 .712 83.4 1.42 232 3.97 291 4.62
80x 60 479 1.41 76.6 2.15 145 4.05 441 113
60x 80 56.0 2.27 120 4.58 469 16.3 396 13.1
100x 80 76.7 447 135 7.52 506 28.2 916 43.5
80x100 73.1 6.67 141 113 397 23.0 1,303 92.2
120%100 45.3 5.37 180 16.1 416 334 1,389 103

References

[1] Almogy, Y. and O. Levin, “Parametric analysis of a multi-stage stochastic shipping
problem”, Proc. of the fifth IFORS Conference (1964), 359 — 370.

[2] Avriel, M., W.E. Diewert, S. Schaible and I. Zang, Generalized Convezity, Plenum
Press (N.Y., 1988).

[3] Charnes, A. and W.W. Cooper, “Programming with linear fractional functionals”,
Naval Research Logistics Quarterly 9 (1962), 181 — 186.

[4] Chen, D.Z., O. Daescu, Y. Dai, N. Katoh and W. Xiaodong, “Optimizing the
sum of linear fractional functions and applications”, Proc. of the 11th ACM/SIAM
Symposium on Discrete Algorithms (2000), 707 - 716.

[5] Craven, B.D., Fractional Programming, Heldermann (Berlin, 1988).

[6] Crouzeix, J.P., J.A. Ferland and S. Schaible, “An algorithm for generalized frac-
tional programs”, Journal of Optimization Theory and Applications 47 (1985), 35
—49.

[7] Dantzig, G.B. and M.N. Thapa, Linear Programming 1: Introduction, Springer-
Verlag (Berlin, 1997).

[8] Falk, J.E. and S.W. Palocsay, “Image space analysis of generalized fractional pro-
grams”, Journal of Global Optimization 4 (1994), 63 — 88. :

[9] Horst, R. and H. Tuy, Global Optimization: Deterministic Approaches, 2nd ed.
Springer-Verlag (Berlin, 1993).

[10] Karmarkar, N., “A new polynomial-time algorithm for linear programming”, Com-
binatorica 4 (1984), 373 - 395.

[11] Konno, H. and N. Abe, “Minimization of the sum of three linear fractional func-
tions”, Journal of Global Optimization 15 (1999), 419 — 432.

[12] Konno, H. and K. Fukaishi, “A branch-and-bound algorithm for solving low rank lin-

ear multiplicative and fractional programming problems”, Research Report, Tokyo

16

Institute of Technology (1999).

[13] Konno, H., P.T. Thach and H. Tuy, Optimization on Low Rank Nonconvex Struc-
tures, Kluwer Academic Publishers (Dordrecht, 1997).

[14] Konno, H. and H. Watanabe, “Bond portfolio optimization problems and their
applications to index tracking”, Journal of the Operations Research Society of Japan
39 (1996), 295 - 306.

[15] Konno, H., Y. Yajima and T. Matsui, “Parametric simplex algorithms for solving a
special class of nonconvex minimization problems”, Journal of Global Optimization
1 (1991), 65 — 81.

[16] Konno, H. and H. Yamashita, “Minimization of the sum and the product of several
linear fractional functions”, Naval Research Logistics 46 (1999), 583 — 596.

[17] Schaible, S., “A note on the sum of a linear and linear-fractional function”, Naval
Research Logistics Quarterly 24 (1977), 691 — 693.

[18] Schaible, S., “Fractional programming”, in R. Horst and P.M. Pardalos (eds.),
Handbook of Global Optimization, Kluwer Academic Publishers (Dordrecht, 1995),
495 - 608..

[19] Rao, M.R., “Cluster analysis and mathematical programming”, Journal of the
American Statistical Association 66 (1971), 622 — 626.

[20] Tuy, H., Convez Analysis and Global Optimization, Kluwer Academic Publishers
(Dordrecht, 1998).

17

