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Abstract

The study of equilibria in networks has gained much interest in recent years with
the emergence of new application areas. Along with the ongoing research on road
traffic equilibria, there has been new interest in understanding competitive situations
in telecommunications as well as in parallel and distributed computing. In addition
to the classical Wardrop equilibria, which have been the main solution concept for
road traffic assignment problems (in which a single player is atomless, i.e. it has a
negligible impact on performance of other players), there has been a growing interest
in the study of Nash equilibria that allow to handle atomic players (such as service
providers). In this paper we study the combination of several types of equilibria in a
single network. More precisely, we consider the situation in which some finite number
of players are atomic; each one of these has a large amount of traffic to ship, and
the decisions of these players have a nonnegligible effect on the performance (or on
the cost) of other players. At the same time, there may also be some other classes of
players; each one of an infinite number of individual players within the latter classes
is assumed to be atomless. We study both qualitative as well as quantitative issues
in such mixed equilibria occurring in a distributed computer network. We focus on
networks that have some symmetry properties and establish the uniqueness of the
equilibria and analytic expressions for them. :

keywords Distributed decision, Braess paradox, Nash equilibrium, Wardrop equilibrium,
performance optimization, parallel queues, load balancing.

1 Introduction

The study of equilibria in networks has gained much interest in recent years with the emer-
gence of new application areas. Along with the ongoing research on road traffic equilibria,
there has been new interest in understanding competitive situations in telecommunications
as well as in parallel and distributed computing.

The competition in telecommunications has increased with the deregulation of public
monopolies. Hence, many optimization issues in telecommunication networks can no more
be handled in a framework of a single decision maker, and equilibria notions have to be
introduced. In the framework of computing, we have witnessed a rapid increase of the
performance of computers and of interconnecting networks, and computers nowadays are
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often part of computer networks. This allows users, or classes of users, to distribute
the execution of tasks among several connected processors. In this context too, classical
optimization issues often cannot be handled using the framework of a single decision maker,
and equilibria notions have to be introduced.

Both road traffic networks as well as computer and communication networks can be
modeled as systems that consist of a finite number of facilities and arriving threads or
flows of infinitely many customers to be served by the facilities. For example, distributed
computer systems have continuing arrivals of infinitely many jobs to be processed by
computers, communication networks have flows of infinitely many packets or calls to pass
through communication links, and transportation flow networks have incoming threads of
" infinitely many vehicles to drive through roads, etc. We may have various objectives for
distributed optimization of performance for such systems depending on the degree of the
distribution of decisions.

(A) [Completely distributed decision scheme]: Each of infinitely many individuals,
users, jobs, etc., optimizes its own cost or the expected response time for itself indepen-
dently of others. In this optimized situation each of infinitely many individuals cannot
receive any further benefit by changing its own decision. It is further assumed that each
individual is atomless, i.e. the decision of a single individual has a negligible impact on
the performance of other individuals. This optimized situation is called the individual op-
timum, Wardrop equilibrium, or user optimum (by some people). We call it the individual
optimum or Wardrop equilibrium here.

(B) [Intermediately distributed decision scheme]: Infinitely many users, jobs, packets,
or vehicles are classified into a finite number (N > 1) of groups, each of which has its
own decision maker and is regarded as one player, user, or class. Each decision maker
optimizes non-cooperatively its own cost or the expected response time over only the jobs
of the class. Each decision maker is an atomic player, i.e. the decision of a single decision
maker of a class has a nonnegligible impact on the performance of other classes. In this
optimized situation each of a finite number of users, classes, or players cannot receive
any further benefit by changing its decision. This optimized situation is called the class
optimum, Nash non-cooperative equilibrium, or user optimum (by some other people).
We call it the class optimum or Nash equilibrium here. We may have different levels in
the intermediately distributed optimization. '

Under quite general conditions we know that (B) approaches (A) when the number of
players becomes infinitely many (N > 1) [7].

Unlike Wardrop equilibrium, for which the equilibrium is known to be unique under
quite general conditions (see e.g. {2, 20] and references therein), the situation in the case
of Nash equilibrium is more complicated. Counterexamples are known in which there are
several different equilibria [19]. Only in some special cases (for special topologies or special
cost functions) the uniqueness of Nash equilibrium has been established [1, 2, 9, 13, 19].
Another complication of Nash equilibrium is that it is harder to compute: it cannot be
transformed into a convex optimization problem as is the case for Wardrop equilibrium
(see e.g. [20]). v

For further references to the related work on load balancing and paradoxes, see [11,
12, 13, 14, 15, 23] and [3, 4, 5, 6, 8, 9, 10, 16, 17], respectively.

In this paper we study the combination of several types of equilibria in a single network.
More precisely, we consider the situation in which some finite number of players are atomic;
each one of these have a large amount of traffic to ship, and the decisions of these players
have a nonnegligible effect on the performance (or on the cost) of other players. At
the same time, there may also be some other classes of players; each one of an infinite



number of individual players within the latter classes is assumed to be atomless. We
study both qualitative as well as quantitative issues in such mixed equilibria occurring
in a distributed computer network. We focus on networks that have some symmetry
properties. We establish the uniqueness of the equilibria and obtain analytic expressions
for them.

The structure of the paper is as follows. In Section 2 we introduce the model for the dis-
tributed computing and define the decision variables. Moreover, we define more precisely
the mixed-type equilibria in which some classes may seek for an individual (Wardrop-type)
equilibrium whereas others may seek for different types of Nash equilibria. In Section 3
we then establish the uniqueness of the equilibria and provide analytical expressions for
the mixed-equilibrium. In Section 4 we provide numerical examples, and the paper ends
with a Concluding section.

2 The Model and Assumptions

We consider a system with m nodes (host computers or processors) connected with a
communication means. The jobs that arrive at each node ¢, i = 1,2,.--,m, are classified
into n types k, k = 1,2, --,n. Consequently, we have mn different job classes R;;. Each
of class R;; is distinguished by the node ¢ at which its jobs arrive and by the type & of
the jobs. We call such a class local class, or simply class.

We assume that each node has identical arrival and identical processing capacity. That
is, the system has multiple nodes that are identical with one another. Jobs of type k arrive
at each node with node-independent rate ¢r. We denote the total arrival rate to the node
by ¢ (= Xk ¢x), and we have the time scale whereby ¢ = 1.

We also consider what we call global class J, that consists in the collection of local
class Rk, i.e., Jr = U; Rix. Jx thus consists of all jobs of type k. Whereas, for local class
R;), all the jobs arrive at the same node ¢, the arrivals of the jobs of global class Jj are
equally distributed over all nodes z.

The average processing (service) time (without queueing delays) of a type k job at
any node is 1/pk and is, in particular, node-independent. We denote ¢/ui by pr and
P = 2k Pk-

Out of type k jobs arriving at node ¢, the ratio z;;; of jobs is forwarded upon arrival
through the communication means to another node j (# %) to be processed there. The
remaining ratio z;r =1 — Zj(#) z;;k is processed at node i. Thus Zj z;;x = 1. That is,
the rate ¢rz;; of type k jobs that arrive at node i is forwarded through the communication
means to node j, while the rate ¢z of local-class R;; jobs is processed at the arrival
node 7. We have 0 < z;;5x < 1, for all 4, j, k. Within these constraints, a set of values of
zy (1=1,2,---,m,k=1,2,--+,n) are chosen to achieve optimization, where '

Zitk = (Titk, 1 Timk)

is an m-dimensional vector and called ‘local-class R;; strategy.’
We define a global-class Jj strategy as the mm-dimensional vector

Zi = (zlkaa:?ka te azmk)°

We will also denote z the vector of strategies concerning all job classes, called strategy
profile, i.e., the vector of length mmn,

z= (311a312a'"azl‘nv3217"'732n1"'1$m17°",$mn), or T = (31,32,"',2'”).
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For a strategy profile z, the load 3; on node 7 is

Bi = Bi(@) =D prtjik- (1)
. j’k

The contribution ﬁz(k) on the load of node i by the global-class & jobs is

ﬂ}k) = ﬂfk) @) = prjiks (2)
J

and clearly 8; = ﬂzm + ﬁi(z) +-+ ﬂfn).
We denote the set of z's that satisfy the constraints (¢.e., 37 zyr = 1,745 > 0, for all
i,J,k) by C. Note that C is a compact set.

We have the following assumptions:

Assumption I11 We assume that the expected processing (including queueing) time of a
typ - k job that is processed at node i (or the cost function at node i), is a strictly increasing,
strictly convex and continuously differentiable function of 3;, denoted by ung(ﬂg) for all
i, k.

Assumption I12 We assume that the mean communication delay (including queueing
delay) or the cost for forwarding type k jobs arriving at node i to node j (i # j), denoted
by Gk (x), is a positive, nondecreasing, convex and continuously differentiable function of
z. We assume that Gy () = 0. We assume further that each job is forwarded at most
once and is not forwarded further from the node to which it is forwarded.

Example 1 We may consider the following simple functions for the mean processing
time and the mean communication delay. For the mean processing time:

1/px
1-8;

For the mean communication delay:

1/upD(6;) = for 8; < 1, otherwise it is infinite. (3)

Gijk (z) =t. (4)

Equation (3) holds, e.g., if we have a simple assumption of the external time-invariant
Poisson arrival for each local class, and the mean service time (without queueing delays)
for each type k jobs is ,u;l at each node 7. The service discipline is processor sharing or
preemptive-resume last-come first-served. When uy = u for all k£ and when no forwarding
of jobs occurs, the mean processing time is, simply, 1/(u — 1).

Equation (4) holds, e.g., if we assume that one communication line is provided sepa-
rately for sending jobs from one node to another. The line (i5) is used for forwarding a job
that arrives at node 4 to node j (# 7). The expected communication time of a job arriving
at node ¢ and being processed at node j (# i) is expressed simply as ¢, i.e., independent
of the traffic and of the job class, with no queueing delay. O

In particular we assume that the following assumption holds true:

[Assumption I13] We assume that Giji(x) is one of the following functions, where wy are
constants, o = ¢r/wi and G(z) is a nondecreasing, convez, and differentiable function



of x with G(0) = 1.

Type G-1
Gije@® = wi'Glokzijk) ‘
(one dedicated line for each combination of a pair of origin and

destination nodes, and a local class: i.e., m(m — 1)n lines in total),
Type G-II(a)
-1
Gijx®) = wy, G( Z Ok pgk)

PaFEP
(one bus line for each global class: i.e., n bus lines in total),
Type G-11(b)
Gijr(®) = w;Zl.G.( Z OkTpqgk)
pa(#p)hk
(one common bus line for the entire system: i.e., 1 bus line),

Remark 2.1 w,?l can be regarded as the mean communication time (without queueing

delays) for forwarding a type k job from the arrival node to another processing node.
oxzijk(j # 1) is the traffic intensity of the communication line for the local-class Ry jobs
being forwarded to node j.

Example 2 We use the same definition (3) for the mean processing time as in Example
1. We define Gji(2) for the mean communication delay as follows. We assume wy = 6
for all £ and thus o = ¢1/0, and set

1/60
Gijk(®) = for Z OkTper < 1, and otherwise infinite. (5)
1= Yopatn) b TkTpak pa(#p):k
This is identical to:
Gijk(x) = = for Z OrTpgk < 0, and otherwise infinite.  (6)

6 - Zp,q(aﬁp),k PrTpak pra(#p).k

This delay is obtained in particular if we assume that one bus-type communication line
is provided commonly for all the nodes to be used for forwarding of jobs to other nodes
in the same way as in Example 1, whereas the transmission time without queueing delay
is exponentially distributed with mean #~! and the scheduling discipline is First-Come-
First-Served. Thus, the expected communication time of a job arriving at node ¢ and
being processed at node j (# ¢) is expressed as 1/(6 — Zp’q(;&p),k PkZpgr) i.€., independent
of the job class and the origin and destination nodes. O

We refer to the length of time between the instant when a job arrives at a node and
the instant when it leaves one of the nodes after all processing and communication, if any,
are over as the response time for the job. The expected response time of a local-class R
job that arrives at node 7, Tjx (%), is expressed as,

Tie(®) = > 24k Tijk(3), (7)
J
where
Tir(®) = pgp D(Bi(x)), and (8)
Tijr(@) = pi'D(B;(x)) + Giji(®), for j # i 9)

5,



The expected response time of a global-class Jj jobs is
1
Ti(z) = - > Tul=). (10)
B
The overall expected response time of a job that arrives at the system is

T = Y oTi(®) = %Z%Tik(z),
P o

1
= —{PA@DB@)+ Y iinGijr(@)}- (11)

i 63 (#1).k :
Remark 2.2 Note that as a consequence of Assumptions I11 and 112, the functions T'(-),
Tix(+) and Ti(-) are strictly convex and differentiable with respect to the strategy profile x.

We consider several decision strategies for different job types. That is, each type of
jobs may have a distinct decision strategy.

(A) In the individual optimization strategy for type k jobs, we consider that each single
job of type k chooses the node to be processed. Thus for global-class J; there exist
infinitely many decision makers. The resulting optimal ratio of jobs of local class
R;;, that choose the node j to be processed will be &;;;. This optimized situation is
the individual optimum for type k jobs. We denote the individually optimal strategy
profile for type k jobs by .

(B-I) In the local-class optimization strategy for type k jobs, each local class R;; has its
own decision maker (ik). The amount of forwarding for local-class R; jobs is chosen
by the corresponding decision maker (ik). The optimal strategy for decision maker
(ik), or equivalently local-class job R;, is denoted by the m-dimensional vector

Zi = (Zirk, Tioks ***  Fimk)s
and an optimal strategy profile for type k jobs, that we will denote by Zj, is the

~ collection of strategies ;5. We call this optimized situation the local-class optimum
for type k jobs.

(B-II) In the global-class optimization strategy for type k jobs, jobs of local classes R for
all 7 are united into one global class J; that has a single decision maker (k). Each
decision maker (k) of global class J; chooses the amount of job forwarding for the
m local classes, Ry, Rog,..., Rmp- The optimal strategy for decision maker k is
consequently an mm-dimensional vector

Zp = (ilkaiﬂm T ’imk)'
We call this optimized situation the global-class optimum for type k jobs.

We denote by Z such a strategy profile that all type & jobs achieve their own performance
optimization. We call such an optimized situation a mized optimum.

We define z;_(;;x) to be an m(m — 1)-dimensional vector such that the elements z;;,
for all 7, k, are excluded from the mm-dimensional vector z; whereas all its elements are
the same as the remaining m(m — 1) elements of zj.

We define (i'_(k);a:k) to be an mmn-dimensional vector such that the elements 7,
for all i, j, are replaced by the mm-dimensional vector z; whereas all other elements are
the same as the remaining m(m — 1)n elements of Z.

We define ﬂ_; = Bi(£).



3 Results

We show that the solution for each type k jobs is unique and given as follows.

(A) [Individual optimization] If type k jobs seek the individual optimum (i.e., the
Wardrop equilibrium), the solution is given by such #; as satisfies the following for all 4,

Tik @-(ry5&5) = min{Tije(E_x); %)} and (E_);8) € C. (12)

We define §;;x(z) as
9ijk(®) = kGiji (@) (13)

By Assumption I3, we have

Gijk (@) = orG(oxzijx) for type G-I,
dijx(®) = opG(z) for type G-1I

(z= Z OkZper for type G-II(a),
P19FEP

Z OkZpgr for type G-II(b)).
pv?(#l’)ik

Therefore we have the property, for i # j, 7,

Gijk(®) 2 Gije(®) if @350 > Tijp. (14)
We define
tije(®) = ok Tiji (@) (15)
The solution & for (12) is characterized as follows: For all 7,5 we have
tijhE_r)i®e) = Guk,  Eijp > 0,
tijk(E_ky;2k) > Gk, &ijp =0, (16)

D din =1,
jl
where G = min;{¢pD (B, (Z_(x); x))}-

(B-I)[Local-class opfimization] If type k jobs seek the local-class optimum, the
solution is given by such Zj as satisfies the following for all z,

Tin(Z_(x);Zx) = min Tin (T (k); Ex—(ik); k) (17)
with respect to Z;; such that (Z_(k); Zx—(ix); Zik) € C,

where (Z;_(ir); Zix) and (Z_(x); Zx—(ix); Zik) denote mm and mmn-dimensional vectors in
which the elements corresponding to Z;; and i have been replaced by z;; and (Z¢_ (ik); Zik)
whereas all the other elements are the same as the remaining m(m — 1) and mm(n — 1)
elements of #; and Z, respectively.

Let us define §j;;x(-) as

0
0z;jk

{61 D ipkGipk (%)} (18)

p#i

Gijk(®) =



By Assumption I13, we have

gz-jk(z) = Uk[_G_(O'k:Bijk) + kaijkgl(okl‘ijk)]v for type G-I,
Gijk@ = ok[G(z) + ok(1 — 24i)G ()], for type G-1I,

where z = E OkTper for type G-11(a), and
p,q9(#p)
z = Z OkZper for type G-II(b).
p.a(#p).k

We see that, under the assumption II3, functions G; ¢ (z) satisfy for all i, J(# 1),5' (# 1),
Giik(®) > Gijr(®) if Tije > zijin. (19)
If Assumption II3 holds, for z such that z;;5 = z, for all 4, j(# i), we denote
Gi(z) = Gijr(x) and Gr(x) = giju(®).

We defi
e define 5

tijk(®) = ok = Tix. (z). (20)

Because T are convex functions and C is a convex set, the solution £ of the problem
exists, and the Kuhn-Tucker condition gives the following relations (see, e.g., [22]): There -
exist @ such that, for all 7, j,

I

Eijk (B_ (k) Er) @ik, Fijr > 0,
tijh (E_ (k)3 Er) Gk, Ziyk =0, (21)

& = 1,
jl

(@i, are the Lagrange multipliers). From Definitions (1), (7) to (9), (18), and (20), we
have

v

3Tz
tik(x) = (%J (z)

TLk (g) = pulD(B (@) + priss D' (Bi@)] + i) for j#5. (23)

Tijk

pe[D(Bi () + priix D' (B:(x))], (22)

i

z]k( ) ¢k

(B-II)[Global-class optimization] If type k jobs seek the global-class optimum the
solution is given by such #; as satisfies the following for all i,

Tk (%~ x); k) = min Tx(F_(z); k), with respect to z; such that (£_(xy;2x) € C.  (24)

where (Z_(x);Zx) denotes an mmn-dimensional vector in which the elements corresponding
to the coordinates of #; has been replaced by the vector z;. We note that

$emTy(z Zﬂ"% Bi@) + 3 $rzijGijn(@). (25)
1,JF#1

Note that we have the assumption II3 on the function G;ji(2).
We define §;;x(z) as

Gijk(T) = Bm, {Z DT pokGpqi(T) }- (26)

P.g#Dp
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By Assumption I13, we have
Gijk(@® = ok[G(zijr) +0k2ikG (245)] for type G-I,
Gik(®) = ox[G(z) + o Z(l — Zpp)G' (z)] for type G-II
P

(z= Z opa;jr for type G-1I(a),
4,5 #1
Z oz for type G-1I(b)).
(D) k

Therefore we have the property
Giik(®) > Gije(®) if Tije > Tijo. (27)

We define

fz-jk(z) = moy Ti(z). (28)

0
0zijk
Again, because T} is a convex function and C' is compact, the solution # of the problem

exists (see [21]) and from the Kuhn-Tucker condition it is characterized by the relations
(see, e.g., [22]):

fijk(i_(k);ik) = &y for &;;% such that #;;; > 0,
v,-]-k(:i:'_(k);a':k) > &y for &5 such that &, = 0. (29)
Z:i:,-jk =1, for all 7,k
J
where ¢&;; are the Lagrange multipliers. From the definitions (1) to (10), (26), and (28),
we have

Liik (@) = may, ;x Tkk = pe[D(B:) + ﬁfk)D'(ﬂi)]»_ (30)
. T,
tijk(®) = mes ai:k = pe[D(B;) + ﬂ]('k)D'(ﬁj)] + Gije, for j#i. (31)

[Mixed optimization] Now we recall the definition of the mixed optimum given near
the end of Section 2. That is, a strategy profile Z is called a mixed optimum if, for all &,
its kth component is an optimum for type k jobs given £_;). In other words, if type &
jobs seek individual optimization then ), = #;, where & is given in eq.(12), if type k jobs
seek local-class optimization then Z}, = &, where %, is given in eq.(17), and if type k jobs
seek global-class optimization then & = &, where & is given in eq.(24).

Lemma 3.1 Consider a network with several types of jobs, where each type optimizes
according to (A), (B-I) or (B-II). If there exists a mized optimum in the network, then
in the mized optimum, we must have

ﬂ:» =p, foralli.

Proof: We show by contradiction that ,B; = /3’}/ for every pair of (7, j), and consequently,
G; = p for all :.

Assume that ,8, > ﬂj for some 7 and j'. Then there must exist k such that ﬁk) > B’(k)
The type k seeks either one of the individual, local-class, and global-class optlmlzatlons



(al) Assume first that the job type k seeks individual optimization. We define
Eijhsirjrk = Ligh (&) — b (@). (32)
From (15) we have for i # j, j/ v
Sikiie = prlD(B;) — D(Bin)] + G — Gijok- (33)

(al-1) Since 3; > fj, we have

£k @) > peD(B;) > puD(Br) = t0r1c(E).

Therefore, from the fact that D is increasing (Assumption I11) and from Property (14),
we have &,/ = 0 and consequently &;/;; < Z;jk.

(al-2) Suppose we have &;;; > & for some i(# j7,;j'), then necessarily §;;x > §ijx by
Property (14). Since, by Assumption II1, D(-) is increasing, =;;k;;;x() > 0. However,
from (16), we have

Siiksije < 0, (34)
which contradicts the above. Thus, we must have
&35k < &ij for all < # j, j'.
Therefore, from ﬁgk) > ﬁyc), we must have
Ejjk + Ejejk > Ejejn + T
Thus we have from (al-1)
Ejk 2 Tk and T > T,

(al-3) Since, from #;;; > 0, B
oD () = di,
peD(By) > éjn,

we have &;p > O, :
We next show that &, > ;4 (I # 7,7') by contradiction. Assume 2 ;i < ;4x. Then
& > 0, and we have from (16),

pD(BY) + Gjne @) = éyo,

peD(B1) + Gi1k(E) > ik > o,

which contradicts the assumption, as we see by noting that g, (%) < §;4x(£) for both of
G-I and G-II. Therefore we must have

&1k 2 Tjiik-

From this and (al-2),

ﬁijjk > "Ej’j'kv
Tijk 2 Tk

A~ A~ . .,
& > &y forall I(# 4,5).

10



This implies

1= Zi'jlk > Zi'j'lk =1,
I l

‘which is impossible. That is, the assumption leads to a contradiction and we do not have
ﬁ§k) > ﬂ:ffc) for the type £ with individual optimization.

(b1) Secondly assume that the type k seeks local-class optimization.
We define
Eijkarin (®) = tije (®) — Ly (). (35)

(b1-1) Assume &;j; > Z;;; for some i(# j,j'). Then, we have §;;x(£) > G;jx(£) by (19).
From Equation (23) and Definition (35) we have

Eijkii(@®) = pp[D(B;(z)) — D(Bj(z))]
+  PilzijeD (Bj (@) — zij D' (B ()] + Giji(®) — Gijo (). (36)

Together with the fact that D(-) and D’(-) are increasing (II1), it follows that
Eijkijk(E) > 0.
However, from (21) we must have
Eijkiijn(®) <0, (37)
which contradicts the above. Thus, we must have Z;;; < &;; for all i(# j, j').
(b1-2) Then, from the assumption ,@}k) > ﬂ}(f ), we have,
Tijk + Ejjk > Zjje + Zjrjik.
(b1-2-1) If Zjr;5 = 0, we have
Tk > Zjn and &5 > &% (Condition T).
(b1-2-2) If &1 > 0, since gj/jix(2) = 0, we have

Ejikgik@) = pe[D(Bj(=)) — D(Bj(=))]
+ pilejnD' (8;(2)) — ¢ji D' (B (@)] + Gjrje (=) > 0.

Thus, similarly as in (b1-1), we see that if &;/;z > &1, we have Eji x50 (£) > 0, which
contradicts (37). Thus we have ;155 < &j1;i5. Then &;55 > &% and &;j; > 0. Thus from
(21), (22), and (23),
£k (E) = prlD(B;) + pr ;D' (By)] = i,
Ejejn(E) = pr[D(5)) + préjoin D' (B5)] + Givjn &) = ok
Then we have, by adding the last two equations,
P(2D(B)) + pi (&35 + &5158) D' (B))] + Gy0in &) = Gjn + éjue. (38)

Note that we have from.(21), (22), and (23),

k(&) + Tk (&) = pe2D(By) + pr(&jyrn + &1 ) D' (Bir)] + Gijor @) > &k + Gyrn (39)
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Since D and D’ are increasing, ,6_; > ﬁ_:,v and Zj;x + %51 > %1 + 515 by assumption,
the only possibility for (38) and (39) not to contradict each other is

Gk (E) > §jtik (F). (40)

Therefore, in the special case where §;;:% (%) = §;;x(£), these two relations contradict each
other. For the other cases, we investigate in the following (b1-2-2-1) and (b1-2-2- -2).

(b1-2-2-1) Consider the Type G-I case. From the above (40), the relation (19) on §, and
Ejik + Tjrjk > Tjjrk + Tjrjik, we have T > 05k, from which 5, > x] 1 follows. We

thus have
T > Tjr and &5 > &5 (Condition I),

which is the same as (b1-2-1).

(b1-2-2-2) Consider the Type G-II case. From the above (40), and the relation (19) on §
and ijjk + jj'jk > .‘Ejjtk + 'ij’j’ka we have jj’j’k > .’Z’jjk, from which fij’jk > fzjj'k follows.
We thus have

Zjpp > Tjje and Tjx > &5 (Condition IT).

(b1-3) Now we examine each of Conditions I and I, respectively, in the followmg (b1-3-1)
and (b1-3-2), and will show that both lead to contradlctlons

(b1-3-1) Consider the case where Condition I holds. Since
jjk(@) = pr[D(55) + P jjeD' (B)] = G,
Ej'j'k & = pk[D(,gj/) + pkfl'?j/jrkD'(ﬁjl)] > Qg

we have 63 > @&;r, because D and D' are increasing and ,C:f; > B}; by assumption.
We next show that Z;;; > &; by contradiction. Assume &;;; < Z;1. Then Z ;1 > 0,
and we have from (21) and (23),

tink(®) = pe[D(B1) + prZ D' (B)] + Gk &) = &jo,

(@) = pr[D(B) + pr&u D' (B)] + G5u6 &) > G > Gk,

which contradicts the assumption, as we see by noting that here for G-I
Gite (@) < Gjnw(Z)
due to the fact that Z;; < iﬂlk. Therefore we must have |
T 2 Tjug.

From this and Condition I, it follows

Tie > Tjjk,
Ejpe 2 Tjjk,
~ ~ . o,
Tk Z Tk for all l(#],] )

This implies

=Y > Zi‘jfzk =1,
1

l
which is impossible. That is, the assumption leads to a contradiction.
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(b1-3-2) Consider the case where Condition II holds. This implies Z;;, > 0 and we have
Ej0ji @) = pe[D(B)) + pi e D' (7)) + G771 @) = Gy,

£k (@) = pe[D(Byr) + pr& i D' (B)] + Gk (@) > ai.
Since D and D' are increasing, §; > 8 and &/ > &g, we have

)
e

@y — G (®) > @x — §j51(F)

By noting that for type G-II, we have §;x (%) = §;;+(%) and §;x(£) = §;1;x (&) for any
1(# 7,7'), and from the Kuhn-Tucker condition, we have

pr[D(B1) + pri D' (B)] = éjux — Gjuk(@) = G, — G051 (@), Fjux > 0,
pe[D(G)) + P& e D' (B1)] > &k — Gjux (&) = &jur, — Gi1in (@), &5 = 0,
prlD(B) + prE D' (B)] = @51 — G5 (E) = &5k — G556 &), &1 > 0,
plD(B) + pr D' (B)] > @k — 51 (&) = &5k — G556 (&), &6 = O,
which can hold only when &, < & for all I(# j,5').
From this and Condition 1I,

Tijk < jrjrks
Tije < Zjk
~ -~ . .,
Zjar < &gy for all I(#7,7').

This implies

1= Zf:juc < Z-ﬁj'lk =1,
I

l

which is impossible. That is, the assumption leads to a contradiction.
Thus we see that the assumption §8; > G; leads to either Condition I [(b1-2-1) and
(b1-3-1)] or Condition II [(b1-3-2)], both of which lead to contradictions.

Therefore, we cannot have [3’](}0) > ﬁ;{c) for the type k with the local-class optimization.

(c1) Thirdly assume that the type k seeks global-class optimization. We define
Bijkiritk = ik (%) = fojog (2). (41)
From (31) we have, for j, j'(s )
= k k < o
Ziiksie = PRD(B;) = D(Bi))+ prlBI D' (B}) — B D' (Bl + Bige = g (42)

(c1-1) Since ,Bj(k) > Bj(fc), we have from (29), (30), and (31)

Erin @ = o[ D) + B D (Bl = @y, Ejrg > 0,
£y (@) = peD(Byr) + B D' (Bj0))
£05(@) = px[D(B;) + 85 D' (B))) + G711 @)

i@ = pelD(G;) + B D' (B)] + djein @) > @y Ejoj = 0.

Y

&jlk, j]’]'k =0,

Gjrky ik > 0,

Il

\Y
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Therefore, from the fact that D and D’ are increasing functions (Assumption I11) and
from Property (27), we have &;/;; = 0 and consequently &;/;x < Z;;sk.

(c1-2) Suppose we have &z > &;;; for some i(# j,j’), then necessarily Fijk > Gijie by
Property (27). Since, by Assumption II1, D(:) and D’(-) are increasing, Z;;z.;;+ (&) > 0.
However, from (29), we have
Eijkiiik (@) < 0, (43)
which contradicts the above. Thus, we must have \
Eijk < E45 for all 4.
Therefore, from ,Bj(k) > B;fc), we must have
Ejin+ Ejijk > T+ Tk
Thus we have from (c1-1)
Ejjk 2 Ejrj and Ejjx > Ty
(c1-3) Since
pilD(B) + BV D' (5)) = e,
pe[D(By) + B D' ()] > g,

we have & > &jig. _
We next show that &;;; > &;; by contradiction. Assume Z;;x < ;1. Then 2, > 0,
and we have from (29), (30), and (31),

pelD(B) + B D' (B)] + 65 &) =

- - k — . - . . '
ok DB + BE D (B + g5 @) > djx > &,
which contradicts the assumption, as we see by noting that §;1x(Z) < §;1%(Z) for both of
G-I and G-II due to the fact that & < &;px for G-I and g;ix (F) = §;1x(Z) for G-II.
Therefore we must have
ik 2 Tjik-

From this and (c1-2),

Tijk > Tjrjtks
Eik 2 ik
>

j’jlk iij’lk for all ’(# ]’],)

This implies

1= &> Y &me =1,
1 ]

which is impossible. That is, the assumption leads to a contradiction and we do not have
B}k) > ,5;5“) for the type k& with global-class optimization.

Thus we see that the assumption ﬂ—; > f;: leads to a contradiction. Therefore neces-
sarily §; = ,5’3, and consequently f; = p for all i. O
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Lemma 3.2 If there exists a mized optimum for the network, then in the mized optimum,
the solution &, for type k with individual optimization is unique and given as follows:

. ik—(iik) =0, ve, 2, =0, and T, =1, for all 'L,](;é i),
The mean response time is '
Ty (@& = Tu@ = py ' D(p), for alls.

Proof: From lemma 3.1 this can be easily seen in the following way. We can easily see
that the set of relations (16) is satisfied if and only if Z;;;, = 0 for all 7, j(# 7). O

Lemma 3.3 We denote Iy = pkagl If there exists a mized optimum for the network, '
then in the mized optimum, the solution X, for type k jobs with local-class optzmzzatzon is

unique and is given as follows:
For Types G-I and G-1(a)

(i) For local class Ry such that p2D'(p) < §x(0) = o, i.e., TxD'(p) < 1
Zijk =0, and Ty, = 1, for all i, j(# 1).
The mean response time is

Ty (&) = Tux @ = pi; ' D(p), for alli.

(it) For local class Rii such that piD'(p) > Gk (0) = oy, i.e., [\ D'(p) > 1, the solution
is given as follows:

Bijk = Er, for alld, j(# 1), (44)
where Ty, is the unique solution of

pi(1 — mi k) D' (p) = gu(x)
vé

= ok[G(m(m — 1)ogér) + ox(m — 1)&G' (m(m — 1)okis)). (45)
The mean response time is
Tr(@ = Tix @) = p; ' D(p) + (m — 1)&,G (&), for all i. (46)

For Type G-II(b)

The solution is given as in the following. We first change the numbering of k such
that T'y > Ty > --- > T > -+ > 'y, where n’ is the number of job types that seek the
local-class optimization. The following three situations can occur:

We can find K such that TxD'(p) > 1 and Tgy1D'(p) < 1, (47)
or TuD'(p) > 1 (ie, K =n), (48)
or T1D'(p) < 1. ' (49)

When (49) holds, we have a unique solution of & = 0 for all k < n'. When (47) or (48)
holds, we can find a unique solution as follows. Let us define the function Fj,(X) as

o[l D'(p) — G(X)] X

{Z TR D ()  (m = DaG(X)) ~ m(m = 1) (50)

15



We obtain the largest k = k < K and X = X;(> 0) that satisfies F(X;) = 0 and

03[0y D' (p) — G(X})] > 0. Then by using
ox[TxD' (p) = G(Xp)] = 0x&x[mTs D' (p) + (m — 1)ox G’ (Xp)], (51)

fork =1,2,---,k, we can obtain the unique set of values, such that . > 0,k=1,2,--- k,
and Tjp1 = Tjupg =+ = Tt = 0, that satisfies the above relation, which is a unique
solution. The mean response time is

Ty (@) = Tk @ = u; ' D(p) + (m — 1)@rGr (&), for all i. (52)

Proof: (bl) By Lemma 3.1, we have shown that 3; = B}/ for every pair of (j,7’), and
consequently, 3; = p for all i. ‘
(b2) Hence for all 7, j(# 1), j'(#£ ),

Eijkiijk (&) = pi(Figh — Fijn) D' () + Gijn (@) — Gijrr(@). (53)

Thus, if &;;1 > &; for some 4, j(# ), j'(# i), we have Zjjp,55% > 0 since D'(p) > 0, which
contradicts (37). Therefore, we must have

&5k = &y for all 4, j(# 7). (54)

(b3) We note that since 37, z;; = 1, from the assumption on the arrival ratio of each
local-class job, & has to belong to the interval [0,1/(m — 1)]. We discuss the case for
Types G-I and G-1I(a) and that for Type G-II(b), separately.

The case for Types G-I and G-II(a)

We have '
Eijkiiik () = —pi(1 — m&k) D' (p) + Gr (Zx)-

where

ge(Zk) = or[G(okik) + or@rG (okk)] (Type G-I) or
Gx(Er) = op[G(m(m — 1)oxZ) + (m — 1)okErG'(m(m — 1)ok k)] (Type G-11(a)).

Let us define the function Hjy as
Hi(2) = —pf(1 — ma)D'(p) + §i(z). | (55)
Clearly, Hy, is continuous and monotonically increasing.

(i) For local class Ry such that p?D’'(p) < §x(0) = oy, we have Hy(z) > Hy(0) > 0 for
any z > 0, which proves that ¢ = &3 = 0 is the unique optimal solution.

Therefore, for local class R, such that p2D’(p) < §x(0) = oy,
Ty =0, and Zy = 1, for all ¢, j(# ).
The mean response time is

- Ti(@) = Ty (®) = uEID(p), for all 4.
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(43) For local class Ry, such that p7D’(p) > §x(0) = 0%, the optimal solution is uniquely
given as follows:

Zijk = Tg, for all 4, j(# 1), . (56)
where %, is the unique solution of

pi(1 — m&x) D' (p) = gi (k).
Therefore, the mean response time is

Tir(E) = p; ' D(p) + (m — 1)3,Gx(F), for all i.

Therefore, we have a unique local-class optimum solution for type k.

The case for Type G-I1I(b) We have

Eijksiik (&) = —pp(1 — m&x) D' (p) + Gx (%)

We can find the set of &, k = 1,2, -, n, as the unique solution of the following system
of relations:

pi(1—mz)D'(p) = Gi(&) and &k >0,

piD'(p) < gr(@) and & =0, (57)
0< & <1/(m-1),

where i (Z) = ox[G(m(m — 1) }p 0k&k) + ox(m — 1)ELG' (m(m — 1) 3k 0kFi)]-

The relations (57) are equivalent to the following:

ax[TeD'(p) - G(X
ax[LkD'(p) = G(X
' 0

)] = orEx[mIeD (p) + (m — 1)oxG'(X)] and & >0, |
)] < 0 and & =0, (58)
Tr < 1/(m — 1),

where we recall T'y = pfo;! and we denote X = m(m — 1) 3" 04 #;. Thus if denote by k
the set of &k such that Zx > 0, then we have

aleD'(p) ~G(X)]  _  aX

:292 mIkD'(p) + (m ~ )opG'(X)  m(m—1)’ .

(59)

We easily see that we can change the numbering of k£ such that I'y > Ty > --- > 'y >
-++ > I'yr. The following three situations can occur:

We can find K such that TxD'(p) > 1and Tg41D'(p) <1, (rel. (47))
or TyD'(p) > 1 (ie., K=n'), (rel. (48))
or T1D'(p) < 1 (rel. (49)).

When (49) holds, we can find a unique solution of Zx = 0 for all k¥ < n’, where we
recall that n’ is the number of job types that seek local-class optimization.
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When (47) or (48) holds, we can find a unique solution as follows. Recall the definition
(50) of the function Fj(X) as

o} FlDl(p) Q(X)] X
{Z kaD’ )+ (m — l)UIQ'(X)} B m(m—1)

Clearly, for k¥ < K, Fi(0) > 0 and Fj(X) is continuous and monotonically decreasing
with increase in X (> 0). Thus for each k& (< K) there exists X = Xk(> 0) that satisfies
Fp(Xy) = 0. Since (47) or (48) holds, we can find the largest k¥ = k such that >0
(t.e., Ty D'(p) — G(Xk) > 0). Then given X;, from the first equation of (58) we can obtam
a unique set of values for #;,1 < k < k. We easily see that this equation assures that
0<Z<1l/m<1/(m-1),1<k<FK. The set of values, &, k = 1,2,---,k, as obtained
above and &y =0, k=k+ 1,k +2,- , is the unique solution.
We can see it as follows: From deﬁmtion (50) we have

o3 [T D'(p) — G(X;3)]

mTyD'(p) + (m — 1)o3G' (X)) (60)

F(Xp) = F_, (Xp) +

Thus we have F,;_I(X',;) < 0 since Fj, (X ) = 0 and the second term of the right hand side

of (60) must be positive. i
Assume that we have another feasible solution for ' = k — 1. Then we have X 7oy >0
such that F;_,(X;_;) =0 and Z; = 0. Therefore we have

FE—I(XIE) <0= F§—1(X7c—1)-

Therefore, since Fj_,(-) is monotonically decreasing, we must have X % > Xj_, and thus
G(X;) > G(X;_,). Consequently, since I;D'(p) — G(X;) > 0, we have I:D'(p) —
G(Xj;_;) > 0. Therefore, from (51), i.e., the first relation of (58), we must have &; > 0,

which is a contradiction.

In a similar way, for k& and &’ such that T'y = 'y, we can show that either &#; = Zp = 0
or .'Zk,:i‘kl > 0.

Therefore, we see that we have the unique solution. That is, we can obtain the unique
set of values such that #; > 0,k = 1,2,---,k, and Eppq = Epyg = o+ = &y = 0, which
satisfies the above relation.

The mean response time (52) is obtained by noting the definitions (1), (7), (8), (9),
and (11). O

Lemma 3.4 If there exists a mived optimum for the network, then in the mized optimum,
the solution & for type k jobs with global-class optimization is unique and is given as
follows:

Zfo— (3ik) =0, i.e, &, =0, and T, =1, for all i, j(# 1).

The mean response time is
Ty, (&) = Ti @) = ' D(p), for all i.

Proof:

(c1) By Lemma 3. 1, we have shown that ,6-; = ﬂ_}: for every pair of (j, ), and consequently,
B; = p for all <. :
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(c2) We next show by contradiction Bj(k) = ﬂj(fg) for every pair of (j, j’ ), which implies that

B,'(k) = py, for all <.
From (42) we have for all %, j(# %), 7' (# 1),

Sk @® = a8 - BIND(B) + 5@ - Giin@. - (61)

Assume B,('k) > ,B'yc) for some j and j'. We can follow the same line of logic as (c1-1),
(c1-2), and (c1-3) in the proof of Lemma 3.1, even though 8; = p for all i, and we see

that the above assumption leads to a contradiction. Therefore necessarily Bj(k) = Bj(f“), and
consequently ﬁgk) = py, for all 7.
(c3) Now from (42) we have for all %, j(# 7), j'(# ©),

Rijkiin @) = Gin(@) — Gij (@) (62)

Thus, if #;;5 > ;1 for some 1, j(# i), j'(# 1), k, we have Eijk;ij’k > 0, which contradicts
relation (43). Therefore, we must have

&ijk = &y for all ¢, j(# 1),
and from (31) and (42) we have for all ¢, j(# 1),
Rijksin (&) = (&) > 0,
and consequently from (29) we have &, = 0. O
Now we have the main result of this paper.

Theorem 3.1 Consider a network of homogeneous computers with several types of jobs
where each type optimizes according to (A), (B-I) or (B-II). Then for the network there
exists a unique mized optimum, which is given as follows.

(A) The solution & for type k with individual optimization is unique and given as follows:

Zp_(iik) =0, ie., B =0, and & = 1, for all i, j(# 1),
The mean response time is
Tv@) = Tic® = pg ' D(p), for all i.

(B-I) The solution & for type k jobs with local-class optimization'is unique and is given
as follows:
For Types G-I and G-II(a)

(3) For local class R such that piD'(p) < §x(0) = o%, i.e., [xD'(p) < 1,
Eijr =0, and i, = 1, for all 1, j(# ).
The mean response time is

T (&) = Ty @ = p; ' D(p), for alli.
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(#) For local class R such that plD'(p) > Gr(0) = 0%, i.e., [xD'(p) > 1, the solution
is given as follows:

Eijk = Tk, for all i, j(# 1), (63)
where %y, is the unique solution of '
PE(1 = mZk)D'(p) = Gi (%)
= o}[G(m(m — 1) okdk) + ok(m — 1)3,G' (m(m — 1) ok 3k)]. (64)
Thefmea,n response time is

Ty(@) = Tir@ = p; ' D(p) + (m — 1)&xGi(@), for all i. (46)

For Type G-II(b)

The solution is given as in the following. We first chaﬁge the numbering of k such
that T'y > Ty > -+ > Ty > -+ > I'yy, where n' is the number of job types that seek the
local-class optimization. The following three situations can occur:

We can find K such that TgD'(p) > 1 and g1 D'(p) <1, (47)
or TpwD'(p) > 1 (ie., K =17'), (48)
or 'D'(p) < 1. (49)

When (49) holds, we have a unique solution of & = 0 for all k < n’. When (47) or (48)
holds, we can find a unique solution as follows. Let us define the function Fy(X) as

d FzD'(P) G(X)) X
{Z mle D' (p) + (m — 1)oyG'(X) b= m(m —1)" (50)

We obtain the largest k = k < K and X = X}E(> 0) that satisfies F,;(f(,;) = 0 and
oL D' (p) — Q(X,;)] > 0. Then by using ‘

ox[TxD'(p) — Q_(X;;)] = opdx[mIe D’ (p) + (m — 1)oxG'(Xp)],  (51)

~ for all k. fork=1,2,---,k, we can obtain the unique set of values such that & > 0,k =
1,2,---,k, and that 1 =8jy =" =8&p=0 that satisfies the above relation, which
is a unique solution. The mean response time is

T (&) = T @) = p; " D(p) + (m — DEGi(E), forall i. (52)

(B-II) The solution & for type k jobs with global-class optzmzzatwn is unique and is given
as follows:
k) =0, i.e, T55 =0, and ;i =1, for all 5, Ji(#1).

The mean response time is
Ti(&) = Tiu@® = p; ' D(p), for all i.

Proof: We have shown that, under the assumption that there exists a mixed optimum, a
unique solution is given as shown in the above lemmata 3.1, 3.2, 3.3, and 3.4. On the
other hand, we can see that solution given by these lemmata and shown in this theorem
satisfies the definition of mixed optimum. We therefore see that a mixed optimum exists
and is uniquely given as above. O
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Remark 3.1 From the above we see that Braess-like paradozical performance degrada-
tion occurs only for the type of jobs seeking local-class optimization and that among such
types the chances of it vary on the basis of the values of Ty (= pi/or = drwr/p2). That
is, the performance for the types that have larger arrival rate (¢y), larger processing time
requirement (p; "), and smaller communication time requirement (wj '), has more chances
to be degraded. The performance for all the types has more chances to be degraded with a
larger value of p (= Yy pr). The chances of paradozes are independent of the number of

nodes, m
The types of jobs seeking individual or global-class optimization are not influenced by

such performance degradation.

4 Numerical Examples

We consider here Examples 1 introduced in Section 2. We assume that y; = u and that
¢ = 1/n for all k. We have p=1/p, pp = 1/(np), D(p) = 1/(1 — p), and wi! =+t.
Consider that type k jobs seek local-class optimization. We therefore note that

FkD,(p)—].—-¢k kD’( )—1-"—{':-(/';-1:-1-)—2-—1

(i) If t > 1/{n(p — 1)?}, then % is unique and given by
i_(ﬁk) =0, e, T;;; =0, Tye=1, forall Z,y(;é 7).
The mean response time is

N N _ 1 '
Tk(t):fl-;k(z)zule(p)=ﬁ, Z=1,2,“"m.

It is the same for other types of jobs that seek individual, and global-class optima.
(i) If t < 1/{n(p — 1)?}, % is given by
Eijp = -—{1 nt(p—1)%}, Fup = ———{1+(m Dnt(u—1)%}, for all 4, j(# i). (65)

The mean response time is

T = T ()
1 m —
= —+

— Ll —nt(u—1)2}, forall i (66)

- For some parameters (u, m, n),j’k = Ty (%) attains its maximum in ¢ (i.e., the worst
performance), that we denote Ty max (1, m, n), for

t=t —_ ]‘ (67
= lk max = 9 ( 1)2 . | )
We have

T, m,1m) = - 1+ ) (68)
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Thus if we add the communication lines with delay ¢ = tgmax = 1/{2n(n — 1)?} to

the system that has had no communication means, the mean response time T;(%)
m-1

for each class increases in the amount of (i.e., the performance de-

dmn(p — 1)?
grades). This is a Braess-like paradox. We define the worst ratio of the performance
degradation Ag(p, m,n) in the paradox for type k jobs, given u,n, to be

Tk,max (:u’ m, n) - Tk,O (ru’)
Ti,0(1)

where T} o(t) = 1/(p — 1) denotes the mean response time of type k jobs for given
1 when the system has no communication means. We have

Ak(/‘u m, n) = ’ (69)

m—1

dmn(p - 1) (70)

Ak (/1', m, n) =

We examine Example 1 with m = 5, i.e., the system with five nodes, and consider
the case: g = 1.01. We consider the case where n = 4, i.e., the total number of classes R;;,
is 20. Types 1, 2, 3, and 4 jobs seek individual, individual, local-class, and global-class
optimization, respectively.

The mean response time is Tpo(p) = 1/( — 1) = 100 in the individual optimum
(types 1 and 2, i.e., k = 1,2), in the global-class optimum (type 4, i.e., k£ = 4). That is,
Ty = T30 = T4p = 100 independently of the value of the communication time parameter
t. On the other hand, 735 = T}3 depends on ¢ and takes its maximum value

T3(1.01,5,4) = 600 (see (68)),
and the worst ratio of the performance degradation Az(x, m,n) in the paradox is
A3(1.01,5,4) = 5 (i.e., 500% degradation) (see (69)),
when t = 1/{2( — 1)*} = 1250 (see (67)). Then, from (65)

Ei3 = (1/5){1 — 4t(u — 1)*} = 1/10, for all 4, j(# 9),
Fius = (1/5){1+4 x 4t(u—1)*} = 3/5, for all 4.

In this case, ;3 (= &), © # j, decrease from 1/5 down to 0 as ¢ increases from 0 to 2500
(= 1/4(p — 1)2), and for ¢ > 2500, no forwarding of jobs occurs.

" It is amazing that only local classes R;3, i = 1,2,--+,5, forward a part of their jobs
equally to the other nodes even though the communication delay for forwarding is much
greater than the processing delay at the node at which their jobs arrive.

Furthermore we consider other values of i while the other situations are kept the same
as above.

For = 1.0001, A3(1.0001,5,4) = 500 (i.e., 50000% degradation),

and for p = 1.0000001, A3(1.0000001,5,4) = 500000 (i.e., 50000000% degradation),

etc.
In this way, we see that the worst ratio of the performance degradation As(p, m,n) in

the paradox becomes unlimitedly large as y approaches 1.
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5 Concluding Remarks

In this paper, we examined the model consisting of symmetrical nodes with identical
arrivals to all nodes where forwarding of jobs to the other nodes through communication
means with nonzero delays may clearly lead to performance degradation. We considered
the mixed optimization where each job type seeks distinct level of distributed optimization.
‘We computed explicitly the equilibrium. We observed a paradoxical behavior in which in
equilibrium there is mutual forwarding among nodes. We saw, however, that such a
paradoxical behavior may occur only with the job types seeking local-class optimization
and does never occur for the job types seeking the individual (Wardrop) and global-class
optima, in this symmetrical node model.

We established the uniqueness of a mixed-equilibrium in which different classes may
have different types of distributed optimization (local-class, global-class and individual
optimization). This was done under different possible assumptions on the communication -
means (i.e., dedicated lines and bus-type connections). It has been quite hard to extend
the proofs to more general assumptions. It is not certain whether in some cases of the
communication means the optima may still be unique. It has been also difficult for us to
analyze asymmetrical models. These are open future problems.
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