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Abstract

In this paper the three notions of generalized controlled (Aa(:),Bg(-))-invariance, generalized condi-
tioned (C(+),Aa(-))-invariance and generalized (Aq(-),Bs(-),C(-))-invariance for uncertain linear w-periodic
discrete-time systems are studied, and then the parameter insensitive disturbance-rejection problems are for-
mulated and their solvability conditions are presented.
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1 Introduction

The notions of controlled (A4, B)-invariant subspaces and conditioned (C, A)-invariant subspaces were stud-
ied by Basile and Marro[2] and Wonham[14] and then various disturbance-rejection problems have been studied
using those invariant subspaces (e.g., [1], [5], [11], [14]). Further, from the practical viewpoint the parameter
insensitive disturbance-rejection problem with state feedback was first considered by Bhattacharyya[3] in the
case in which the matrices depend linearly on uncertain parameters using the notion of generalized controlled
(A, B)-invariant subspaces. Recently, the present author[9], [10] investigated the notions of generalized condi-
tioned (C, A)-invariant subspaces and generalized (C, A, B)-pairs, and the corresponding problems with static
output feedback and / or with dynamic compensator were studied. Further, simultaneous versions of con-
trolled (A, B)-invariant subspaces, conditioned (C, A)-invariant subspaces and (C, A, B)-pairs were investigated
by Ghosh[4] and Otsuka et al.[8] and various parameter insensitive disturbance-rejection problems for uncertain
linear systems in the sense that system’s matrices are represented as convex combinations of given matrices
were investigated.

On the other hand, Grasselli and Longhi[6] investigated the w-periodic versions of controlled (A, B)-invariance
and conditioned (C, A)-invariance and Shiomi, Otsuka and Inaba[12] investigated the w-periodic versions of si-
multaneous controlled (A4, B)-invariance and simultaneous conditioned (C, A)-invariance.

The objective of this paper is to study the notions of generalized controlled (A4(-),Bg(-))-invariance, gener-
alized conditioned (C,(-),Aq(-))-invariance and generalized (A4(-),Bs(-),Cy(+))-invariance for linear w-periodic
discrete-time systems and to study the parameter insensitive disturbance-rejection problems.

The present investigation is organized as follows. Section 2 gives the notions of some generalized invariances
and their properties. In Section 3 the parameter insensitive disturbance-rejection problems are studied. Finally,

we make some conclusions in Section 4.

2 Generalized Invariances

First, the following notations are used throughout this investigation. IN := the set of all natural numbers,
Z = the set of all integers, Z%, = {ko+1,ko+2,...,ko+w|ko € Z} for w € N, R’ := s dimensional



Euclidean space and RP*? := the set of all p x ¢ real matrices. For a matrix-valued function A(.) (A(k) €
RP*? | € Z), ImA(k) := the image of A(k), KerA(k) := the kernel of A(k) and A= (k)2 := {x € R! | A(k)z €
2} for a subspace 2 of R?. And A(-) is said to be w-periodic for a given w € N if A(k) = A(k + w) for all
k € Z. For a-subspace-valued function V() (V(k) C R’,k € Z), V(-) is said to be w-periodic for a givenw € N
if V(k) = V(k+w) for all k € Z. Further, O indicates the zero vector of a linear space X and a subspace V of
X dimV indicates the dimension of V.

Next, consider a family of linear w-periodic discrete-time systems {S(«, 3,%)} given by

[ 2k +1) = Aa(k)a(k) + Bp(k)u(k),
e { u(k) = Cy(W)a(k), k € 2

where z(k) € X := R™ u(k) € U := R™, y(k) € Y := R’ are the state, the input and the measurement
output, respectively. And matrix-valued functions 4,(-), Bg(-) and C,(-) are all w-periodic and have unknown

parameters in the sense that

Ag(k) = Ag(k) + a1 A1 (k) + - -+ ap Ap(k) := Ag(k) + AAq(k) € R™"
Bﬁ(k’) = Bo(k) + ﬂlBl(k) + -4+ ﬁqu(k’) = Bg(k) + ABﬁ(k) S Rnxm’
Cy (k) = Co(k) +71C1(k) + - -~ + 7-Cr (k) := Co(k) + AC(7)(k) € R™",

where a := (a1, -+, ap) € RF, 8:= (b1, -+,B8;) € R?and v := (11, -, %) ER".

In system S(e, 3,7v) (Ao(k), Bo(k),Co(k)) and (AAq(k), ABg(k), AC,(k)) represent the nominal system model

and a specific uncertain perturbation, respectively.

Definition 2.1 Let V(+) (V(k) C X) be w-periodic subspace-valued function.
(1) V(') is said to be a generalized controlled (Aq(+),Bg(-))-invariant if there exists an w-periodic feedback
F() (F(k) € R™*") such that
(Aa(k) + Ba(k)F(k))V(k) C V(k+1)
for all (o, 8) € R” x R? and k € Z. Further, for a given w-periodic subspace-valued function A(-) (A(k) C X),
define the following class of w-periodic subspace-valued functions.
V(Ax(),Bs(); A(+)) == {V() | V() is a generalized controlled (A4(-), Bo(-))-invariant and
V(k) C A(k) for all k € z}.
(ii) V(-)issaid to be a generalized conditioned (Cy(-),Aq(-))-invariant if there exists an w-periodic G(-) (G(k) €
R™%*) such that
(Aa(k) + G(E)Cy(k))V (k) CV(k+1)
for all (o,7) € R x R” and k € Z. Further, for a given w-periodic subspace-valued function e(-) (e(k) C X),
define the following class of w-periodic subspace-valued functions.
V(e(-);Cy(1), Aa()) == {V() | V(-) is a generalized conditioned (C(:), Aa(-))-invariant and
e(k) C V(k) forall k € z}.
(i) V() is said to be a generalized (A4(-),Bg(-),Cy(-))-invariant if there exists an w-periodic feedback
H(") (H(k) € R™**) such that
(Aa(k) + Bg(k)H(E)Cy(k))V (k) CV(k+1)
for all (o, 3,7) € R? x R x R" and k € Z. Further, define the following class of w-periodic subspace-valued

functions.

V(Aa(-),Bp(:),Cy(1)) := {V() | V() is a generalized (Aq(+), Bs(+), Cy(-))-invariant } n



Definition 2.2
(i) V*()) is said to be a maximal element of V(Au(-),Ba(-); A()) if V*(-) € V(Aa(-), Bs(-); A(-)) and
V(k)y CV*(k) (ke Z) for al V() € V(A,(-), Bs(-); A(+)).

“(ii) Vi(-) is said to be a minimal element of V(g(-); Cy(-), Aa(+)) if Va(:) € V((-); C(+), Aa(-)) and Vi(k) C
V(k) (k€ Z)for al V() € V(e(-); Cy(-), Ax(")). m

The following two theorems are the w-periodic versions of the results of Bhattacharyya[3].

Theorem 2.3 Let V() (V(k) C X) be w-periodic subspace-valued function. Then, the following three

statements are equivalent.
(i) V() € V(Aal), Bp(); A())-
(ii) There exists an w-periodic feedback F'(-) (F(k) € R™*") such that
(Ao(k) + Bo(k)F(k)V(k) C V(k+ 1) and Bi(k)F(k)V(k) CV(k+1) (i=1,---,9)

forall k € Z,and A;(k)V(k) CV(k+1) C A(k+1) (i=1,---,p)forall k€ Z.

g
(iil) Ag(k)V (k) C Bo(k')ﬂBi_l(k)V(k + 1)+ V(k+1)and Aj(k)V(k) CV(k+1)C Alk+1) (i=1,---,p)
i=1
forallk € Z.
Proof. ((i) < (ii) = (iii)) Since the proofs easily follow, they are omitted.

((iii) = (ii)) Suppose that (iii) holds. Noticing that V'(-) is w-periodic, let {v1(k), - -, v, (k)} be a basis of V (k)
and let {vy(k), -, vy, (k), v 41, -, Va(k)} be a basis of X satisfying v; (k) = vj(k+w) (j = 1,---,n). Then,

there exist w-periodic vector-valued functions ;(-) and w;(:) (j = 1,---, %) such that
q
Ao(k)v; (k) = Bo(k)v;(k) +w;(k), where v;(k) € ﬂBi‘l(k)V(k +1) and w;(k) € V(k+1).
i=1
Define w-periodic feedback F(-) (F(k) € R™*") such that

—y; (k) (=1, )
O(i:tk—l-l,---,n).

F(k)vi (k) = {
Then,

(Ao(k) + Bo(k)F(k))vj(k) = wi(k) e V(k+1) (j=1,---,t)

and
Bi(k)F(k)v;(k) = Bi(k)(—v;(k)) e V(k+1) (¢=1,---,¢;5=1,-- yth),

which proves (ii). m
The following theorem gives a computational algorithm of the maximal element of V(Aq«(-), Bs(:); A(-))-

Theorem 2.4 Let A(-) (A(k) C X) be w-periodic subspace-valued function. For each k € Z, define the

sequence V*#(k) according to
VO(k) := A(k) and

Vetl(E) = VE(E)N Agl(lc)(Bo(k)ﬁBfl(k)V"(lc + 1)+ VAE+D)NAT R VHAR+1)N - -mA;l(k)V”(k +1)

i=1

(n 2 0).



Then, the following statements hold.
(1) VHEtL (k) C VH(k) for all k € Z and p > 0.

(ii) For fixed ko € Z there exists a jo < max {dim[4(k)] | k € Z% } such that V() is the maximal
element of V(A,(-), Bg(-); A(%)).

Proof. Since the proof of (i) follows easily, we prove (ii). To prove (ii) it suffices to show the following two
claims. ‘

Claim 1 : There exists a jo < max {dim[A(k)] | k € Z%, } such that VI°o(:) € V(A4 ("), Ba(); A(+)).

Claim 2 : V(k) C V*(k) (k€ Z, > 0) for all element V(-) € V(A ("), Bg(-); A(-)).

(Proof of Claim 1) It remarks that w-periodicity of V#(-) (g > 0) is obvious. Further, it follows from (i) and
w-periodicity of A(-) that there exists a jo < max {dim[A(k)] | k € Z%, } such that

Vio(k) = Vj“(k)ﬂAal(k)(Bo(k)ﬁB{l(k)V”(k+1)+Vj°(k+1))ﬂAI1(k)Vj°(k+1)ﬂ- A RV (k+1) (k € Z).

i=1

Hence,

Vio(k) C A(k), Ao(k)VIe(k) C Bo(lc)ﬁB;l(k)vjo(k+1)+Vfo(k+1) and A;(kB)V° (k) c VI (k+1) (i =1,---,p).

i=1

It follows from Theorem 2.3 that V7o(:) € V(Au(-), Bs(+); A(+)).
(Proof of Claim 2) Let V(-) be an arbitrary element of V(Aqa(-), Bs(:); A(-)). Then, V(k) C A(k) = Vo(k) for
all k € Z. Assume that V (k) C V#(k) for all k € Z. Then, it follows from Theorem 2.3 that

V(k) C V“(k)ﬂAgl(k)(Bo(lc)ﬁBi’l(k)V(k—i—1)+V(Ic+1))ﬂA1‘1(k)V(k+1)n-~ﬂA;1(lc)V(k+1)

1=1

c VKN Aal(k)(Bo(k)ﬁBfl(k)V“(k + 1)+ VAR + D)) AT (VAR + D) 0 N AT (R V(R + 1)

= V**i(k) (k € Z),

which proves V (k) C V”(k’) for all k € Z and pu > 0. This completes the proof of Theorem 2.4. m

The following two theorems are w-periodic versions of the results of Otsuka[10] and are dualities of Theorems

2.3 and 2.4, respectively.

Theorem 2.5 Let V(-) (V(k) C X) be w-periodic subspace-valued function. Then, the following three

statements are equivalent.

(1) V() € VI(e(); Oy (), Aal))-

(i) There exists an w-periodic G(-) (G(k) € R™**) such that
(Ao(k) + G (k) Co(k))V (k) C V(k +1) and G(R)Cs(B)V (k) C V(k+1) G =1,---,7) forall k € Z, A;(k)V (k) C
V(k+1)(i=1,---,p) and (k) C V(k) forallk € Z.

(ifi) Ao(k)(V (k)N c;l(k)ic,.(k)wk)) CV(k+1), 4(k)V(k)CV(k+1) (i=1, --,p) and (k) C V (k)

forallk e Z. m

Theorem 2.6 Let ¢(-) (e(k) C X) be w-periodic subspace-valued function. For each k € Z, define the

sequence V,(k) according to

Vo(k) :=e(k) and



Vira(k +1) 1= Vu(k + 1)+ Ao(B)(Va () 1 G (1) GoRIVa(8)) + s )V (k) + -+ Ap(R)Vk) (1 > 0)

Then, the following statements hold.
(1) Vu(k) C Vyga(k) forall k € Z and p > 0.

(ii) For fixed ko € Z there exists an iy < max{n — dime(k) | k¥ € Z%,} such that V;,(:) is the minimal
element of V(e(-); Cy(-), Aa()). m

The following two lemmas are used to prove Theorem 2.9.

Lemma 2.7 [7] Let V,W (C X) be subspaces. Then, there exist subspaces X, and X; such that V =
XléB(VﬂW), X:XO@WaHdX]_ CXD [ ]

Lemma 2.8 [13] Let F € R™ "™ and T € R*™"™. Then, there exists a K € R™** such that F = KT if and
only if KerT' C KerF'. m

Theorem 2.9 Let V() (V(k) C X) be w-periodic subspace-valued function. Then, the following three

statements are equivalent.

(D) V() € V(Aal-), Bs (), Cy (1))

(ii) There exists an w-periodic feedback H(-) (H(k) € R™**) such that
(Ao(k)+Bo(k)H (k)Co(k))V (k) C V(k+1)and B;(k)H(k)Cj(k)V (k) C V(k+1)(i=0,---,¢,§ =0,---,7; (3, ) #
(0,0)) for all k € Z, and A;(k)V (k) C V(k+1) (i=1,---,p) for all k € Z.

¢ r
(iil) Ao(k)V (k) C Bo(k)[ B (k)V (k+1)+V(k+1), Ao(k)(V(k)NC3 (k)>_ Ci(k)V(k)) C V(k+1) and
i=1 i=1
Aik)VE)cV(k+1) (=1, --,p) forallke Z.
Proof. ((i) < (ii)) The proofs follow easily.
((i1) = (iii)) The proof follows from Theorems 2.3 and 2.5.
((i11) = (ii)) Suppose that (iii) holds. Then, from Lemma 2.7 there exist subspaces ®(k) and Xo(k) such that
V(k) = o(k)® (V(k)NCy ' (k)Y Ci(k)V(k)), X = Xo(k) ® C5 (k) Ci(k)V (k) and &(k) C Xo(k).

i=1 i=1

Now, let L(k) : R™ — R", be a projection map onto Xo(k) along C'O_l(k)ZC’i(k)V(k). Further, let
. i=1
q q
Qv(x+1) ' B™ — R™, be a projection map onto ﬂBi_l(lc)V(k + 1) along (ﬂB{l(Ic)V(Ie + 1)t
i=1 i=1

Then, since Ao(k)V (k) C ImBo(k)Qv(xs1) + V(k + 1), there exists an Fy(k) € R™ ™ such that (Ao(k) +
Bo(k‘)QV(k.,.l)Fo(k))V(k) CV{k+1).

Define F(k) := Fy(k)L(k). Further, let Py : R’ — R, be a projection map onto (E C;(k)V(k))* along

i=1
ZC’Z(Ic)V(k) Then, it can be easily obtained that Ker Py () Co(k) = C’o'l(lc)z C;(k)V (k). Thus, we have
i=1 i=1
KeI‘(Pv(k)Co(k)) C KerF(k).
Hence, it follows from Lemmma 2.8 that there exists a K (k) € R™** such that F(k) = K(k)Py)Co(k). Now,
define H(k) := Qv(x4+1)K(k)Py(r).
Then, we have

(Ao(k) + Bo(k)H (k) Co(k))V (k) .
= (Ao(k) + Bo(k)Qv (b+1) F (k) B(k) + (Ao(k) + Bo(k) Qv (k1) F(R))(V (k) N CH (k)Y Cilk)V (k)
i=1



= (Ao(k)+Bo(k)Qv (5+1)Fo (k) L(k)) @(k)+(A0(k')+30(k)QV(k+1)K(k)PV(k)CO(k))(V(’C)ﬂCE1(k)i Ci(k)V (k)

=1

= (Ao(k) + Bo(k)Qv(rs1)Fo(k)) B(k) + Ao(k)(V(k) N co-l(k)zr: Ci(k)V (k)
C V(k+1). =

On the other hand

Bi(kYH(R)C; (R)V (k)

(l

Bi(k)Qv (k4+1)K (k) Py 1) C; (k)V (k)
C  Bi(k)Qv1yK (k) Prgyy . Ci(k)V ()

=1
= {0}
C V(k) (i:0,~--,q,j:1,-”,7").

Further,

B;(k)H (k)Co(k)V (k)

I

Bi(k)Qv (k+1) K (k) Py 1y Co(k)V (k)
C  Bi(k)ImQv (541

q
= Bi(k)( B '(k)V(k +1)
=1
= Vk+1) (=1,---,9).
‘This completes the proof. m

Concerning the three generalized invariances, the following corollary holds.
Corollary 2.10 V(-) € V(Au(-), Bg(-),C,(")) ifand only if V/(-) € V(Aa ("), B(-); X()NV(0(-); Cy(-), Ax(")),
where X (k) := X and O(k) :=0forallk € Z. m
3 Parameter Insensitive Disturbance-Rejection

Consider the following linear w-periodic discrete-time systems S(e, 3,7, é, 7).

e(k+1) = As(k)z(k)+ Bp(k)u(k) + Mo (k)E(k)

S(“?ﬁ)’)’a&: 0) : y(k) C’Y(k)x(k)>
z(k) Ds(k)z(k), ke Z

[l

Il

where z(k) € X := R", u(k) € U := R™, £(k) € Q := R", y(k) € Y := R* and 2(k) € Z := R* are
the state, the input, the disturbance, the measurement output and the controlled output, respectively, and
Ax(), Bg(-),C4(+), Ds(-) and M,(-) are all w-periodic and have uncertainties which are assumed to have the

following unknown parameters, respectively.

Aa(k) = Ao(k)+ a1 Ai(k) + - + apAp(k) := Ao(k) + AAa(k) € R*™",
Bs(k) = Bo(k)+ BiBi(k)+ -+ B, By(k) := Bo(k) + ABs(k) € R™™,
Cy(k) = Colk) +71Ca(k) + -+« + 7, Cr(k) := Colk) + AC, (k) € R™™,
Ds(k) = Do(k)+8:Di(k) + -+ 8, D (k) = Do(k) + ADs(k) € R,
My(k) = Mo(k)+ o1 My(k)+ -+ o My(k) := Mo(k) + AM, (k) € R,



where a = (a1,---,ap) € RP, 8 := (B1,---,8y) € R, v := (71, -,v) € B", § := (61,---,65) € R’,
o:= (01, ,01) € R

In system S(o, 3,7, 6,0) (Ao(k), Bo(k), Co(k), Do(k), Mo(k)) and (A A (k), ABg(k), AC,(k), ADs(k), AM,(k))

represent the nominal system model and a specific uncertain perturbation, respectively.

Now, we apply to system S(«, 3,7, §, 5) a static output feedback of the form u(k) = H(k)y(k), where H(-) (H(k) €

R™**%) is an w-periodic. Then, we obtain the following closed loop system Su (e, 8,7, 6, ).

r(k+1)
z(k)

(Aa(k) + Bp(k)H(k)Cy(k))z(k) + Mo (k)¢ (k)
Ds(k)z(k), k€ Z.

Scl(a’ﬁ)’}/?éia) : {

For the system S.(a,B,7,6,0) we use the notations Aam(k‘) = Aq(k) + Bp(k)H(k)C, (k), @5 (k, ko) =

Al (k= 1Al (k—2)--- Ally (ko) for k > ko and ®Zy (k, k) := I, where I, is an (n x n) identity matrix.
Our parameter insensitive disturbance-rejection problem with static output feedback (PIDRPSOF) can be

stated as follows. Given w-periodic matrix-valued functions 4;(-), B;(-), Ci(), D;(-) and M;(-) of the system
S(a, B,7,6,0), find (if possible) a static output feedback H(-) (H(k) € R™**) which is w-periodic such that

D;s(k) Z o, (k,h + 1)M,(h)E(h) = 0
h=k—nw

for all parameters (a,3,7,6,0) E R x R x R" x R* x R', £(-) and k € Z (cf. see e.g., [12]).

This problem can be rephrased as follows.

Problem 3.1 (PIDRPSOF) Given w-periodic matrix-valued functions A;(-), B;(), Ci(-), Di(-) and M;(-)
for system S(«, 8, 7, 6, o), find (if possible) a static output feedback H(-) (H(k) € R™**) which is w-periodic
such that
Z @, (k,h -+ 1)ImM,(h) C KerDs(k)
h=k—-nw

for all parameters (o, 3,7,6,0) ERP x RIx R' x R° x R' and k€ Z. m

Remark 3.2 If Cy(k) = I, for all k € Z, then the Problem 3.1 reduces to the parameter insensitive
disturbance-rejection problem with state feedback (PIDRPSF). m

First, necessary and sufficient conditions for the Problem 3.1 (PIDRPSOF) to be solvable are given.

Theorem 3.3 The problem 3.1 (PIDRPSOF) is solvable if and only if there exists an (Aa(-), Bg(-),C(:))-
invariant ( or equivalently (Aq(+), Bg(+)) controlled invariant and (C,(-), As(-)) conditioned invariant ) subspace-

valued function Vyg4(+) such that

@) ZImM —1) C Vapy(k) C ﬂKerD (k) for all (o, 3,7) € RP x R? x R and k € Z,
=0

(i) () H(Aa(), Bs(), Cy(); Vapy () # 0

@By
where H(Aa("), Bp(+), Cy(); Vapy () :=A{ Hapy(-) (Hapy(k) € R™) : w-periodic |

(Aa(k) + B (k) Hapy (k)Cy (k) Vapy (k) C Vapy(k + 1)}



Proof. (Necessity) Suppose that the Problem 3.1 is solvable. Then, there exists a measurment output feedback
H() (H(k) € R™**) which is w-periodic such that

k-1
> @H, (k,h+1)ImM,(h) C KerDs(k)

afy
h=k—nw

for all parameters («,3,7,6,0) ERP x R x R" x R* x R' and k € Z.

Define a subspace-valued function

k-1 t
Vapy(K) = D @8 (k,h+ 1)) ImM;(h).

h=k—nw i=0

Then, V,g,(k) is w-periodic and satisfies

ZImMi(kA— 1) C Vapy (k) C ﬁKerDi(k)

=0 1=0

for all «, 3,4 which proves (i). Further, Afﬁv(k)vam(k) C Vapy(k + 1) which proves (ii).

(Sufficiency) Suppose that there exists an (A4 (+), Bs(-), Cy(+))-invariant ( or equivalently (Aq(-), Bg(-))-controlled
invariant and (Cy(-), Ax(-))-conditioned invariant ) subspace-valued function Vg, (-) satisfying the stated above

conditions (i) and (ii). Now, it can be easily obtained
ImM,(k — 1) C Vapy(k) C KerDs(k) for all o, 3,7,6,0.

Then, we have

k-1 k-1
S° o8, (kh+ DImM () C D 5 (k,h+ 1)Vapy(h+1)

h=k—nw h=k—nw
k=1
C Z Vapy (k)
h=k—nw
= Vapy(k)
C  KerDs(k)

for all parameters (v, 8,7, 6, o) which proves that the Problem 3.1 is solvable. m

It remarks that the solvability conditions for Theorem 3.3 depend on uncertain parameters o, and 7.
Further, since it is not easy to find a subspace-valued function V,g,(-) satisfying the conditions (i) and (ii) in
Theorem 3.3, we consider a generalized (Aq(+), Bs(+), Cy(+))-invariant subspace-valued function as one of Vop+(+)

satisfying those conditions.
Theorem 3.4 If there exists a V() € V(4a(-), Bs(:), Cy(-)) such that
i s
> ImM;(k — 1) C V(k) C [ |KerDi(k) for k € Z,
i=0 i=0
then the Problem 3.1 (PIDRPSOF) is solvable.

Proof. Suppose that there exists a V(-) € V(Aq(+), Bg(:),Cy(-)) such that the stated above conditions are
satisfied. Then, there exists an w-periodic feedback H(-) (H (k) € R™**) such that

AR (k)V (k) CV(k+1) forall (o, 8,7) € R” x R! x R" and k € Z.



Further,

T s
ImM,(k—1) C Y ImM;(k —1) and (|KerD;i(k) C KerDs(k) for all (0,6) € R' x R* and k € Z.

=0 =0
Then,
o, (k,h+1)V(h+1) = A (k- 1AL (k—2)- - Ay (h+ 1)V (h+1)
C Ay (k= 1)AHs (k= 2)- Al (h+ 2V (h +2)
C V(k) forallk,h+1€ Z (k> h+1).
Hence,

Z ®H, (k,h+1)ImM,(h) C Z o, (k,h+1)V(h+1)
h=k—nw h=k—nw

c 5
h=k-nw

= KerDs(k) for all (a,8,7,6,0) € R x R x R" x R’ x R,
which imply that the Problem 3.1 is solvable. m

) s
Corollary 3.5 Suppose that V*(-) is a maximal element of V(Aq(-), Bs(-); mKerDi(-)) and Vi(-) is a

=0

¢

minimal element of V(ZImMi(~ —1);Cy(-), Ax(’)). If V*(-) = Vi(), then the Problem 3.1 (PIDRPSOF) is
i=0

solvable.

Proof. The proof follows from Corollary 2.10 and Theorem 3.4. m
The following three results are the state feedback versions of Theorem 3.3, Theorem 3.4 and Corollary 3.5.

Theorem 3.6 The PIDRPSF is solvable if and only if there exists an (A4(-), Bg(+))-controlled invariant
subspace-valued function V,g(-) such that :

13 8
(i) Y ImM;(k—1) C Vap(k) C [ |KerDi(k) for all (o, f) € R” x B! and k € Z,
1=0 =0

(i) [F(Aal(), Bs(-); Vas(-) # 0,

a,p
where F(Aq("), Ba(-); Vap(*)) := { Fap(’) (Fap(k) € R™*"™) : w-periodic |

(Aa(k) + Bp(k)Fap(k)Cy(k))Vap(k) C Vap(k +1).} m
Theorem 3.7 Assume that C,(k) = I, (k € Z). If there exists a subspace valued function V() €

V(Aa("), Bg(-); X(+)), where X (k) := X for all £ € Z such that

t s
> ImM;(k 1) C V(k) C [ |KerD;(k) forall k € Z,
=0 1=0

then the PIDRPSF is solvable. m



Corollary 3.8 Assume that Cy(k) = I, (k € Z) and suppose that V*(-) is a maximal element of
8
V(Aa(), By (); [ KerDy()). 1

=0
> ImM;(k—1) C V*(k) forallk € Z,
1=0

then the PIDRPSF is solvable. m

4 Conclusions

In this paper the notions of generalized controlled (A4 (+),Bg(-))-invariance, generalized conditioned (C,(-),Aq(-))-
invariance and generalized (A4(-),Bgs(+),C,(:))-invariance were introduced for linear w-periodic discrete-time
systems and then their properties were studied. Further, the parameter insensitive disturbance-rejection prob-
lems with static output feedback and / or with state feedback for uncertain linear w-periodic discrete-time

systems were formulated, and then their solvability conditions were presented.
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