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Abstract

In this paper necessary and sufficient conditions for a disturbance-rejection problem with dynamic com-
pensator which was investigated by Grasselli and Longhi to be solvable is given for linear w-periodic discrete
time systems without assuming that the order of dynamic compensator is equal to that of system plant.
Further, the minimal order of compensator which is necessary for the solution of the problem is also inves-
tigated.
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1 Introduction

In the framework of the so-called geometric approach Grasselli and Longhi[l, 2] studied the notion of
(A("), B(-))-invariance and (C(-), A())-invariance for linear w-periodic discrete time systems, and disturbance-
rejection problem with state feedback has been studied. Further, they studied the notion of (C(),A(), B("))-
pair for linear w-periodic discrete time systems and by using the pair necessary and sufficient conditions for
the disturbance-rejection problem with dynamic compensator (DRPDC) to be solvable were given under the
assumption that the order (n) of system plant is equal to the order (x) of dynamic compensator[3].

The objective of this paper is to give necessary and sufficient conditions for the DRPDC to be solvable with-
out assuming n = p. Further, the minimal extension order which is necessary for the solution of the DRPDC
is given.

The present investigation is organized as follows. Section 2 gives the notions of two invariances which were
investigated by Grasselli and Longhi. In Section 3 the notion of (C(-), A("), B(*))-pair and its useful results are

given. In Section 4 the main results are given. Finally, we make some concluding remarks in Section 5.

2 Preliminaries

The following notations are used throughout this investigation. IV := the set of all natural numbers, Z :=
the set of all integers, Z% = {ko+1,ko+2,...,kg+w}forko € Zandw € N, R’ := s dimensional Euclidean
space and RP*? := the set of all p X ¢ real matrices. For a linear map A from a vector space X to a vector
space Y ImA := the image of A, KerA := the kernel of A, Alv := the restriction map of A on a subspace V'
of X and A~12 := {x € X | Az € 2} for a subspace {2 of Y. The notations @,2 and ¢ indicate the direct
sum, the isomorphic and the empty set, respectively. And A(") is said to be w-periodic for a given w € N if
A(k) = A(k + w) for all k € Z. For a subspace-valued function V(-) (V(k) C R’ k€ Z), V() is said to be
w-periodic for a given w € N if V(k) = V(k+w) forall k € Z.




Now, consider a linear w-periodic discrete-time system S given by

S:{ 2k +1)
y(k)

where z(k) € X := R" is the state, u(k) € U := R™ is the input, y(k) € Y := RP is the measurement output
and A() (A(k) € R™*™), B(-) (B(k) € R**™) and C(-) (C(k) € R?*™) are w-periodic.

A(k)x(k) + B(k)u(k)

Ck)z(k), ke Z

Definition 2.1  Let V(-) (V(k) C X) be w-periodic subspace-valued function.

(i) V() is said to be (A(-), B(-))-invariant if A(k)V (k) C V(k + 1)+ ImB(k) for all k € Z.

(ii) V() is said to be (C(-), A(:))-invariant if A(k)(V (k) " KerC(k)) CV(k+1)forallke Z. O
Lemma 2.1 [1, 2] Let V(-) (V(k) C X) be w-periodic subspace-valued function.

(1) V(-)is (A(-), B(-))-invariant if and only if there exists an w-periodic feedback F(-) (F(k) € R™*") such

that
(A(k)+ B()F(k))V(k) cV(k+1) forallke Z.

(i) V() is (C(+), A("))-invariant if and only if there exists an w-periodic G(-) (G(k) € R"*?) such that
(Ak) + G(E)C(R)V(E)CV(k+1) forallke Z. O

For a given w-periodic subspace-valued function A(-) (A(k) C X), define the following two classes of w-

periodic subspace-valued functions.
V(A(), B(-); A()) = {V(.) | V() is (A(-), B(-))-invariant and V (k) C A(k) for all k € z}.
V(A();C(), AC) = {V() | V() is (C(), A())-invariant and A(k) C V(k) for all k € Z .
Further, the following definitions are introduced.
F(V() = {F(") : w-periodic | (A(k) + B(k)F(k))V (k) C V(k+1) for all k € Z}.

G(V (") := {G(") : w-periodic | (A(k) + G(k)C(k))V (k) C V(k+1) for all k € Z}.

Definition 2.2
(i) V*(-) is said to be a maximal element of V(A(-), B(+); A(:)) if V*(-) € V(A(:), B(-); A(-)) and V (k) C
V*(k) (k € Z) for all V(-) of V(A(-), B(-); A()). '

(ii) Vi(-) is said to be a minimal element of V(A(-); C(-), A(")) if Vi(:) € V(A(:); C(-), A(:)) and Vi (k) C
V(k) (k€ Z) for all V() of V(A(-); C(+), A(")). O
Then, the following lemma has been given.

Lemma 2.2 [1, 2]
(1) V(A("), B(\); A(")) has a maximal element V*(-) in the sence of Definition 2.2 and its computational

algorithm is given as
V0= Ak) (ke Z),
Vi(k) = A(k)N A=Y (k) (Vi (k+ 1) + ImB(k)) (k€ Z), i=1,2,--

(ii) V(A());C(-), A(-)) has a minimal element V,(-) in the sence of Definition 2.2 and its computational



algorithm is given as
Vo= A(k) (k € 2),
Vi(k) = Ak + 1) + A(R)(Vi~Y(k) NKerC(k)) (k€ Z), i=1,2,---. O
3 (C(),A(), B(-))-pairs
In this section the properties of (C(-), A(+), B(-))-pair which will be needed in the Section 4 are investigated.

Consider the following linear w-periodic discrete-time system X :

p(k+1) = A(k)z(k) + Bk)u(k) + M(k)E(R),
y(k) = C(k)z(k),
«(k) = D(k)z(k), k € Z,

where z(k) € X := R", u(k) € U := R™, (k) € Q := R*, y(k) € Y := RF and z(k) € Z := R are the state,
the input, the disturbance, the measurement output and the controlled output, respectively.
Now, introduce a compensator (K (-), L(-), M(-), N(-)) defined in W := R* of the following form :

{ w(k +1) = N(k)w(k) + M(k)y(k), o
u(k) = L(kyw(k) + K (k)y(k),

where N (k) € R**#, M(k) € R**?, L(k) € R™** and K (k) € R™*".

If a compensator of the form (1) is applied to system %, the resulting extended system 3¢ on the extended state

space X®:=X @ W is easily seen to be

A(k) + B(k)K (k)C(k) B(k)L(k) ] [ z(k) ] + [ M(k) ]ﬁ(k)’

o(k+1)
M(k)C(k) N(k) w(k) 0

w(k+1)

2(k)=| D(k) 0 ] [ Z((';’c)) ]

For the system X.°, define

() ::[xoc) } 2408) :[A<k)+B<k>K(k)c<k> B(k)L(k)], M) ::{
w(k) M(E)C(k) N(k)

D(k) = [ D(k) 0], ®(k ko) := A°(k — 1)A(k = 2)-+- A°(ko) for k > ko (k,ko € Z) and

M(k)
0 )

®°(k, k) := I,yu (k € Z), where I, is the identity matrix of dimension (n + ).

Now, the difinition of (C(-), A(-), B(-))-pair is given.
Let Vi (+), Va(-) (Vi(k), Va(k) C X) be w-periodic subspace-valued functions. A pair (Vi(-), Va(+))

Definition 3.1
is said to be a (C(-), A(+), B(+))-pair if the following three conditions are satisfied.

(1) Vi() is a (C("), A(-))-invariant.
(it) Vo(-) is an (A(:), B(-))-invariant.




(iii) Vi(k) C Va(k) for allk € Z. O
For an extended system X¢, we give the following definitions.

Definition 3.2 Let V¢(:) (V¢(k) C X°) be an w-periodic subspace valued function. V() is said to be an
A¢()-invariant if A°(k)Ve(k)CcVeé(k+1)forallke Z. O

Definition 3.3 Let V() (V°(k) C X°¢) be an w-periodic subspace valued function. Then, the following two

subspace-valued functions V; () and V,(-) are defined:

€ Ve(k)} and

Vp(k)z{xeXH y

= Px(V*(k)),

€ Ve(k) for some w € W}

where Px is the projection map from X° onto X along W. 0O
The following lemma was given by Grasselli and Longhi.

Lemma 3.1 [3] If V¢(-) is an A®(-)-invariant w-periodic subspace-valued function, then the pair (V,(.), V(-))
is a (C(+), A(-), B(*))-pair. 0O

The following two lemmas are used to prove Lemma 3.4.

Lemma 3.2 If a pair (Vy(-),Va(")) is a (C(-), A(-), B(:))-pair, then there exist F(-) € F(V5(:)), G(-) €
G(V1(+)), Go(k) € R*™?, Fyo(k) € R™*" and K(k) € R™*? such that

F(k) = K(k)C(k)+ Fo(k), G(k) = B(k)K (k)+Go(k), Ker Fo(k) D Vi(k) and ImGy(k) C Va(k+1) for all k € Z.

(Proof) Suppose that a pair (Vi(-), Va(+)) is a (C(-), A(+), B(-))-pair.
Claim 1: There exists a G(-) € G(Vi(+)) such that ImG(k) C Vo(k + 1)+ImB(k).

To prove Claim 1, choose an arbitrary element Gi() € G(Vi(-)). Define a subspace Q(k) such that ¥ =
C(k)Vi(k) ® Q(k). Further, define an w-periodic linear map G(k) from Y to X such that

Glk) = Gi(k) on C(k)Vi(k),
"] 0 on Q(k).

Then, it can be easily obtained that G(-) € G(Vi(-)) and ImG(k) C Va(k + 1)+ImB(k).

Claim 2: There exists a K(k) € R™*? and Go(k) € R"™*? such that G(k) = B(k)K(k)+ Go(k) and
ImGo(k) C Va(k + 1).

To prove Claim 2 let {y1,---,yp} be a basis of Y. Then, it follows from Claim 1 that there exist an z;(k) €
Va(k+ 1) and a u;(k) € U such that G(k)y; = z;(k) + B(k)u;(k). Define linear maps K (k) from Y to U and
Go(k) from Y to X such that K(k)y; := ui(k) (i =1,---,p) and Go(k)y; := z4(k) (¢ = 1,---,p). Then, we have
G(k) = B(k)K (k) + Go(k) and ImGy(k) C Va(k + 1) which proves Claim 2.

Now, it can be easily obtained that Va(:) is ((A(:) + G(-)C(-)), B(:))-invariant.

Claim 3: There exists an Fy(k) from X to U such that Ker Fo(k) D Vi(k) and (A(k)+G(k)C(k)+B(k)Fo(k))Va(k) C




To prove Claim 3 define a subspace A(k) such that X = V1 (k) & Q(k) ®A(k). Since Va(-) is (A()+G()C()), B("))-
N ——

Va(k)
invariant, there exists a linear map F'(k) from X to U such that (A(k)+G(k)C(k)+ B(k)F(k))Va(k) C Va(k+1).

Further, define a linear map Fy(k) from X to U such that

Fo(k) = F(k) on Q(k) & A(k),
71 0 on Vi (k).

Then, Fy(k) satisfies KerFo(k) D Vi(k) and (A(k) + G(k)C(k) + B(k)Fo(k))Va(k) C Va(k + 1) which proves
Claim 3. Finally, define F(k) := K(k)C(k) + Fo(k). Then, it can be easily obtained that F(-) € F(Va(-)). This
completes the proof. O

Define a class of pairs of maps as follows.

P(Vi(),V2(?) = {(F(-),G(-) € F(Va(-)) x G(V1(+)) | there exists a K(k) € R™*F such that Ker(F(k) —
K(K)C(k)) D Vi(k) and Im(G(k) — B(k)K (k) C Va(k + 1) for all k € Z.}

In fact, if (Vi(-), Va(-)) is a (C(-), A(+), B(-))-pair, then P(V1(-), Va(")) # ¢.
Lemma 3.3 Suppose that V; and V5 are subspaces of X satisfying V1 C Vo and W = Rdimv2_dimv1. Then,

a linear map R from V, to W can be defined such that KerR = V.

(Proof) Since the proof follows easily, it was omitted. O
The following lemma plays an important role to prove the main theorem in the next section.

Lemma 3.4 If a pair (Vi(-), V(")) is a (C(-), A(:), B(:))-pair, then there exist a compensator (K(-), L(-),
M(), N(-)) on W and a V°(-) such that

dimW = dim( Y Va(k)) — dim( Y Vi(k)), Va(k) = Vi(k), Va(k) = V,(k) and V°(") is A°(-)}-invariant.
kez;:o kEZ;O
(Proof) Suppqse that (V1(+), Va(+)) is a (C(-), A(-), B(-))-pair.

Define W := R*, where p := dim( Z Va(k)) — dim( Z Vi(k)). From Lemma 3.3 it can be defined that a
kezy kezy,

linear map R from ( Z Va(k)) to W such that
kezy
KerR=( Y Vi(k)).
keZy,

Further, define

Ve(k) = { [ ];Ef]z) ] (k) € Vg(k)} CXaoW

Then, it can be easily obtained V,(k) = V1(k) and V,(k) = Va(k) for all k € Z. Now, it follows from Lemma 3.2
that there exist F(-) € F(Va(+)), G(-) € G(Vi(")), Go(k) € R**?, Fy(k) € R™*™ and K (k) € R™*? such that

F(k) = K(k)C(k) + Fo(k), G(k) = B(k)K (k) + Go(k), KerFo(k) D Vi(k) and ImGy(k) C Va(k) for all k € Z.

Then, there exists a linear map L(k) from W to X satisfying
L(Kk)R = Fo(k .
R= 00N S e
kezy

Further, there exists a linear map N (k) from W to W satisfying




N(k)Rlv,(x) = R(A(K) + B(k)F(k) + Go(R)C(k)) v,y
Define M (k) := —RGo(k). Then, it can be proved that V¢(-) is A®(-)-invariant. This completes the proof. O

4 Disturbance-Rejection

In this section a disturbance-rejection problem with dynamic compensator is formulated and then necessary
and sufficient conditions for the problem to be solvable are given without assuming that the order of dynamic
compensator is equal to that of system plant. |

Consider an extended system X° in the Section 3. The disturbance-rejection problem can be stated as follows.
Given w-periodic matrix-valued functions A(-), B(:), M(-), C(:) and D(-) of the system X, find (if possible) a
compensator (K(-), L(-), M(:), N(-)) such that

k-1
De(k) Y ®¢(k,h+ 1)M°(h)é(R) = 0

h=kg

for all £(-) and all k € Z, where kg is an initial time.
k-1

Noticing that a subspace generated by the disturbances £(-) is Z ®°(k, h+ 1)ImM*(h), disturbance rejec-
h=kgo
tion problem with dynamic compensator can be formulated as follows.

Disturbance-Rejection Problem with Dynamic Compensator (DRPDC) Given w-periodic matrix-

valued functions A(-), B(-), M(-), C(-) and D(:) of the system X, find (if possible) a compensator (K(-), L(-),

M(-), N(-)) such that
k-1

> ®°(k,h+ 1)ImM*(h) C KerD*(k)
h=ko

forallke Z. O

The following theorem is the main result.
Theorem 4.1 The DRPDC is solvable if and only if there exists a (C(-), A(:), B(-))-pair (V1(-), Va(+)) such
that

ImM(k — 1) C Vi(k) C Va(k) C KerD(k) forall ke Z.

In this case, the minimal extension order which is necessary for the solution of the DRPDC is given by

min{dim( Y " Va(k)) —dim( Y _ Vi(k)) | (Va(), Va(")) is a (C("), A(-), B(-)) — pair and

kezy, keZY,

ImM (k — 1) C Vi (k) C Va(k) C KerD(k) for all k € Z}.

(Proof) (Necessity) Suppose that the DRPDC is solvable. Then, there exists a compensator (K(-), L(-)‘, M(),
N(-)) such that

k-1

Z ®°(k,h + 1)ImM*(h) C KerD®(k) forallk € Z.

h=kg




Define, a subspace
k-1

Ve(k) = Y ®°(k, b+ 1)ImM°(h).
h=ko

Then, since V*() is w-periodic and A°(-)-invariant, it follows from Lemma 3.1 that (V;(-), V»(")) is a (C(-), A("),
B(-))-pair. Futher, it can be easily obtained that

ImM (k — 1) C Vi(k) and V,(k) C KerD(k).

Thus, we have

ImM(k —1) C V,(k) C V,(k) C KerD(k) for all k € Z.

(Sufficiency) Suppose that there exists a (C(-), A(-), B(+))-pair (Vi(-), Va(+)) such that
ImM(k —1) C Vi(k) C Va(k) C KerD(k) forallk € Z.

Then, it follows from Lemma 3.4 that there exist a compensator (K(-), L(-), M(-), N(-)) on W and a V¢(-) such
that
dimW = dim( 3 Va(k)) — dim( 3> VA(k), Va(k) = Va(), Va(k) = Vp(k) and
kezy, kezy
z(k)

Ve(.) is A®(:) — invariant, where V°(k) :=
(is 4°() —inv ere V(k) { )

| 2(k) € Vz(lc)}.

Then, we have
ImM*®(k — 1) C V4(k) C KerD®(k).

Thus,
k-1 k-1
> @°(k,h+ )ImM®(h) C Y V°(k) = V(k) C KerD*(k) forallk € Z.
h:ko h:ko

which implies the DRPDC is solvable.

The minimal extension order of compensator which is necessary for the solution of the problem follows from

the proof of sufficiency. O

Corollary 4.1 The DRPDC is solvable if and only if Vi(k) C V*(k) for all & € Z, where
V*(:) :=maxV (A("), B(:); KerD(-)) and V,(-) :=minV (ImM (- — 1); C(), A(")).

(Proof) The proof follows from Theorem 4.1. O

5 Concluding Remarks

In this paper necessary and sufficient conditions for a disturbance-rejection problem with dynamic compen-
sator to be solvable were given for linear w-periodic discrete-time systems without assuming that the order of
dynamic compensator is equal to that of system plant. Further, the minimal extension order of compensator
which is necessary for the solution of the problem was given. The results in this paper are extensions of the

results of Schumacher[4] to w-periodic version.
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