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Abstract

In this paper, a new preconditioner for solving periodic boundary systems based on block
factorization is proposed. When the two-dimensional partial differential equations (briefly PDEs)
with periodic boundary conditions for z-direction are discreted by the finite difference method,
the linear systems with periodic boundary matrix elements (briefly PBEs) in diagonal blocks are
obtained. For these systems, the basic ideas of this preconditioner are splitting PBEs from the
diagonal block matrix by a rank-1 correction with the Sherman-Morrison formula. Several nu-
merical results show this preconditioner gives faster convergence than the conventional one.

AMS subject classificaton: 65F10.
Key words: block preconditioning, Sherman-Morrison formula.

1 Introduction
The discretization of PDEs by finite difference method leads to large and sparse linear systems
Ax =b. (1.1)

Especially, under the periodic boundary conditions, the coefficient matrix A has PBEs (In this
research, we call so) . The PBEs means the matrix elements corresponding to the periodic boundary
conditions generated by discreting the PDEs. To solve these systems, various preconditioned iterative
methods are applied to. For example, the preconditioned conjugate gradient (PCG) method [8]
is used for symmetric systems and the preconditioned BiCGSTAB [11] for nonsymmetric systems.
Here, preconditioners should be chosen to attain fast convergence. The “preconditioning” means the
transformation of a linear system to a nearby system which is easier to solve than the given one [2][6].
When deciding on which preconditioner K to use, several issues must be considered, of which the
most important are (i) resemblance between K ! and A™!, (i) cost of construction K and (iii) cost
of computing ' = K~1r [2]. Here, the decided preconditioner K = K K is applied to (1.1), such
that the preconditioned system '

(K'AKR")(Kpz) = (K. 'b) (1.2)

is converged faster than the given system (1.1).

In this paper, a new preconditioner for linear systems that arise from PDEs with periodic bound-
ary conditions is proposed. This preconditioner is based on the block preconditionings [1][4], and
algebraically equivalent to the complete factorization to block diagonal matrices. Consequently, the
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convergence of the iterative methods with this preconditioner is improved much more than the incom-
plete factorization to diagonal block. Nevertheless, its calculating cost increases only a little for the
incomplete one.

In section 2, physical model, the linear system and some typical solvers are presented.

In section 3, the conventional preconditioners are presented.

In section 4, a new preconditioner for linear systems that arise from periodic boundary problems
is proposed, and in section 5, some numerical results show that this preconditioner improves the

convergence and reduces the calculating time.

2 Model Problem and Numerical Solving

In this research, the diffusion-convection equation (2.1) in two-dimensional unit square domain ) =
0,1] < [0,1]

ou

Ou
_AU+U.1:‘6‘;U‘ +Uy8_y = (:c,y) € [07 1] x (0,1), (21)
u(0,y) = u(l,y), (periodic boundary conditions), (2.2)
u(z,0) = go, (Dirichlet conditions), (2.3)
u(z, 1) = g1, (Dirichlet conditions) (2.4)

is discussed. Here, v, is the z-direction’s convection term and v, is the y’s one.

2.1 Coeflicient Matrix

Eq.(2.1) is discreted by five-points central differences, with stepsize h = 1/(n + 1) in each direction.
Then, the coefficient matrix A is a sparse nonsymmetric matrix of size n(n + 1) x n(n+1) with PBEs.
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where P, By, C; (I=1,2,---,n) are block matrices whose size is (n + 1) x (n + 1).
The block diagonal matrix is

1 l A
g
af) i) b

1 i l

z agn)—l dfn);—l bfn)l—1

& 0 PO (O

which is tridiagonal matrix with PBEs. Here, pgl),qgg are PBEs of the [-th block, and m = n + 1.
By, C; are diagonal matrices.

2.2 Tterative Methods

To these systems, the iterative methods with preconditioning are often used. When the coefficient
matrix is symmetric, usually the PCG method is adopted [8, 9] (Algorithm 1).




Zo : is initial guess,
TOZb'—AmO; pOZK—lTl)v
for k=0,1,...,until ||rg|| <e} b do:
begin
(K“lrk,rk)
ap = —————*~
(Pr, Apy)
Ti+1 = Tkt apPyg,
Tyl = Tk — pApy,
B = (K™ rpqy, Trg1)
k (K_]'T'k,'l’k)
Pry1 = K vy + Bepy,
end

Algorithm 1 : Preconditioned CG

When the coefficient matrix is nonsymmetric, the PBICGSTAB method is one of the most effective[11]
(Algorithm 2).

Zo : is initial guess,
ry = K~ 1(b— Axg),
p0:t0:T0:T87
for k =0,1,..., until |rg|| < el b do:
begin
TS, Tk
ax *(_0’_15)_“7
(r§, K—1Ap,)
ty = r— K 'Ap,,
G = (K~ Aty tr,)
T (KAt KAL)
Thy1 = Tp+ Py + Gty
Trip1 = tr — G KT AL,
5 = ok (75, Tkt1)
Qc(T'S,T’k)
Piyr = Tre1 +Br(py — GE T Apy),
end

Algorithm 2 : Preconditioned Bi-CGSTAB

In these algorithms, the matrix K is the preconditioner. Usually, the preconditioning step is
calculated as solving the system, s’ = K~ !s in each iteration step. This nearby problem is solved
repeatedly (with appropriately chosen right-hand-side vectors b) in such a way that the solution to
the original problem can be obtained in the limit[3].

The details of the preconditioner are explained in the next section.




3 Conventional Preconditioning

3.1 Block Preconditioner

The block preconditioner K is defined as follows:

K, 0

K,

Kn——l

0 Ka

where K’s are block matrices with size (n + 1) x (n + 1).

By block preconditioning for (2.5), K is assigned for diagonal block (2.6) [4]. Usually K; is gen-
erated with the incomplete Cholesky (IC) factorization for symmetric, or the incomplete LU (ILU)
factorization for nonsymmetric in order to decrease its calculating costs[5]. In other words, the incom-
plete factorization without fill-in is done. Fill-in is the behavior that the zero elements of original
matrix change into non-zero by an exact factorization. That is to say,

K' o~ P. (3.2)
Then, the factorization is as follows:
5%1) 65” bgz) pgz)
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On the other hand, from a convergence point of view,
Kt = P! (3.4)

brings better convergence than (3.2) [4]. Namely this is algebraically equivalent to the complete

factorization to diagonal blocks.
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where “%” means the non-zero element by fill-in.
However, this costs more flops.

4 New Preconditioner

In this research, a new preconditioner is proposed. This preconditioner satisfies eq.(3.4), but the cost
of this new preconditioner increases little to one of the incomplete factorization. .

On one-dimensional periodic boundary problems, the way for the direct method had always been
proposed[12]. In this research, this way is developed as a preconditioner of two-dimensional systems.

The detail is as follows:



4.1 Splitting PBEs as the Correction Term

Firstly, PBEs are split from the original K;. Then the first and the last elements of the diagonal are

corrected.

(1 l ! 7
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Consequently, K; is split as tridiagonal matrix and the rank-1 matrix made up with PBEs. The
latter is represented as the correction term by two vectors’ product.
By using (4.1), the residual vector r; updated by preconditioning is represented as r;. That is

r; = K7l'r= (T +wol) iy (4.2)

4.2 Applying to the Sherman-Morrison Formula
For solving eq.(4.2), the Sherman-Morrison formula [7]
(T +uv?h)™ = 77T + 0T ) 1oT T, (4.3)
TeR™™, w,veR™
is applied to. Then, eq.(4.2) can be rewritten as follows:
rio= Tt =T (L of T ) Tl T

= Y, — 2z (1+’01TZ1)_1 vy,

yi
= y, —7z[10---01]
R
=y - +39)z. (4.4)
Here,
y = T,'m (4.5)
T .
= [ ]
z; = Tl”lul, (4.6)
Z; = Zzi (1+’UZTZZ)—1.

From the fact mentioned above, solving (4.2) is changed into solving (4.4). This calculating cost is
less than the complete factorization for the diagonal block. Because, on the linear equations (4.5) (4.6),



those coefficient matrix T is tridiagonal without PBEs. Furthermore, eq.(4.6)(4.7) are sufficient to
compute only one time at the first iteration step, because the u;, v; are invariant vectors for iterations.
Therefore each iteration step’s computation is to solve (4.5), and (4.4) with slightly amount of flop.
In this research, this preconditioner is named the “Splitting Correction (SC)”.
On the ratio of flop per iteration, the incomplete factorization for the diagonal block is set 1.00,
then the SC is 1.18 and the complete factorization for the diagonal block is 1.55.

5 Numerical Results

In numerical examination, some linear systems based on physical problem (2.1) was examined and
the analysis solution was u(z,y) = sin(2x(z + y)) in all cases.
For the coefficient matrix by discreting this problem, the comparison between the conventional
incomplete factorization and the SC was done by evaluating of convergence and CPU time.
Experiments were carried out in double precision and executed on IBM RS/6000 SP 1PE RISC
processor. Compiler is x1f based on Fortran77. In all cases, the iterations were started with x=0,

and stopped when ||7x||2/]|7o]l2 < 10712,

5.1 Symmetric Problems

The Poisson’s equation was discussed. The respective parameters of eq.(2.1) were set as v, = 0.0, vy =
0.0. Since this coefficient matrix was symmetric, the CG method was adopted as solver and the IC
factorization was compared as the conventional preconditioner. Namely, the effect of block precondi-
tioning by the conventional IC and the SC was compared. Calculating models were 65 x 64,97 x 96
and 129 x 128 (grid size).

Figure 1~ 3 are the performance of log scaled relative residual 2-norm.
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Figure 1: Peformance of convergence between IC and SC preconditioner (65 x 64).

Table 1 shows a summary of the iteration number and CPU time for each model.
These results show the using SC had faster convergence than the using conventional IC precondi-
tioner. On the calculating time, the using SC is about 20% shorter.
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Figure 2: Peformance of convergence between IC and SC preconditioner (97 x 96).
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Figure 3: Peformance of convergence between IC and SC preconditioner (129 x 128).

Table 1: The number of iterations until convergence for symmetric problem (CPU time[sec]).

grid size 65 x 64 97x96 129 x 128
1C 232(1.43) 338(4.53) 444(10.23)

SC 185(1.15)  264(3.56) 349( 8.32)
SC/IC [%] | 79.7(80.4) 78.1(78.6) 78.6(81.3)




5.2 Nonsymmetric Problems

The diffusion-convection equation was discussed. The respective parameters of eq.(2.1) were set as
v = (0.0, 0.1, 0.5, 1.0, 5.0, 10.0) , v, = (0.0, 0.1, 0.5, 1.0, 5.0, 10.0). Since these coefficient
matrices were nonsymmetric, the BiICGSTAB method was adopted as solver and the ILU factorization
was compared as the conventional preconditioner. Namely, the effect of block preconditioning by the
conventional ILU and the SC was compared. Calculating models were 65 x 64 (grid size) in all cases.

Figure 4~ 6 are the performance of log scaled relative residual 2-norm about (v, vy) = (0.0, 1.0),
(1.0, 0.0), (1.0, 1.0) cases and others are shown at Appendix A.

_14 1 1 1 1 1 1 1 I 1
0 20 40 60 80 100 120 140 160 180 200

Figure 4: Peformance of convergence between ILU and SC preconditioner (v, = 0.0,v, = 1.0).
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Figure 5: Peformance of convergence between ILU and SC preconditioner (v, = 1.0,v, = 0.0).

Table 2 shows a summary of the iteration number and CPU time for each model.
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Figure 6: Peformance of convergence between ILU and SC preconditioner (v, = 1.0,v; = 1.0).

Table 2: The number of iterations until convergence for nonsymmetric problem (CPU time[sec]).

grid size 65 x 64 65 x 64 65 x 64
(Ve, Uy) (0.0,1.0)  (1.0,0.0) (1.0,1.0)
ILU 181(4.37)  175(4.21) 178(4.32)
SC 141(3.43)  136(3.37) 141(3.49)
SC/ILU[%] | 77.9(78.5) 77.7(80.0) 79.2(80.8)

These results show the using SC had faster convergence than the using conventional ILU precon-
ditioner. On the calculating time, the using SC is about 20% shorter.

6 Conclusion

In this paper, we have proposed a new preconditioner “Splitting Correction (SC)” that is for solving
the linear systems that arise from periodic boundary problems.

This preconditioner is based on the idea of the blockwise complete factorization. This method costs
less than the blockwise complete one and increases only a little more than the blockwise incomplete one.
Some numerical results show the SC improves the convergence than the using incomplete Cholesky

factorization.
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A Other Numerical Results for the Nonsymmetric Problems

In this section, the several numerical results for eq.(2.1) are shown and are size of 65 x 64 (grid size). In
these case, the parameters were set asv, = 0.0, 0.1, 0.5, 1.0, 5.0, 10.0, », = 0.0, 0.1, 0.5, 1.0, 5.0, 10.0.
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Figure 9: 65x64 : v, = 0.5,vy = 0.0
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Figure 11: 65x64 : v, = 5.0,v, = 0.0
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Figure 12: 65x64 : v, = 10.0,v, = 0.0
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Figure 13: 65%x64 : v, = 0.0,v, = 0.0
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Figure 14: 65x64 : v, = 0.0,v, = 0.1
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Figure 15: 65x64 : v, = 0.0,v, = 0.5
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Figure 16: 65x64: v, =0.0,v, = 1.0
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Figure 17: 65x64: v, = 0.0,vy, = 5.0
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Figure 19: 65x64 : v, = 0.1,v, = 0.0
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Figure 20: 65x64 : v, = 0.1,v, = 0.1
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Figure 21: 656x64 : v, = 0.1,v, = 0.5
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Figure 22: 65x64: v, =0.1,v, = 1.0
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Figure 23: 65x64:v, =0.1,v, = 5.0
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Figure 24: 65x64 : v, = 0.1,v, = 10.0
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Figure 25: 65x64 : v, = 0.5,v, = 0.0
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Figure 26: 65x64 : v, = 0.5,vy = 0.1
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Figure 27: 65x64 : v, = 0.5,vy = 0.5
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Figure 28: 65x64 : v, = 0.5,v, = 1.0
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Figure 29: 65x64 : v, = 0.5,v, = 5.0
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Figure 30: 65x64 : v, = 0.5,vy = 10.0
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Figure 31: 65x64 : v, = 1.0,v, = 0.0
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Figure 33: 65x64: v, = 1.0,vy = 0.5
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Figure 34: 65x64:v, = 1.0,v, = 1.0
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Figure 35: 656x64: v, = 1.0,v, = 5.0
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Figure 36: 65x64 : v, = 1.0,v, = 10.0
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Figure 37: 65x64 : v, = 5.0,v, = 0.0
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Figure 38: 65x64 : v, = 5.0,v, = 0.1
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Figure 39: 65x64 : v, = 5.0,v, = 0.5

16

Relalive Residual 2-Norm

Relative Residual 2-Norm

Relative Residual 2-Norm

EXAMO/TSTCONVECY=1/ALG2_ResB5_64 (TEST2)
T T T T T

T
ILDU —
sC

80 100
Number of iteration

Figure 40: 65x64: v, = 5.0,v, = 1.0
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Figure 41: 65x64 : v; = 5.0,vy, = 5.0
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‘Figure 42: 65x64 : v, = 5.0,v, = 10.0
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Figure 43: 65x64 : v, = 10.0,v, = 0.0
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Figure 44: 65x64 : v, = 10.0,vy, = 0.1
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Figure 45: 65x64 : v, = 10.0,v, = 0.5
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Figure 46: 65x64 : v, = 10.0,v, = 1.0
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Figure 47: 65x64 : v, = 10.0,v, = 5.0
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Figure 48: 65x64 : v, = 10.0,v, = 10.0




