Confluence of Orthogonal Higher-Order
Rewrite Systems: Proof by Parallel Moves

Toshiyuki Yamada

Institute of Information Sciences and Electronics

University of Tsukuba, Tsukuba 305-8573, Japan

toshi@score.is.tsukuba.ac. jp

ISE-TR-00-169

Abstract

In this paper we propose higher-order rewrite systems with-
out bound variables. In order to prove their confluence un-
der the assumption of orthogonality, we study a simple proof
method which employs a characterization of the diamond
property of a parallel reduction. By an application of the
proof method, we obtain a new confluence result for orthog-
onal higher-order conditional rewrite systems.

Confluence of Orthogonal Higher-Order
Rewrite Systems: Proof by Parallel Moves

Toshiyuki Yamada

Institute of Information Sciences and Electronics

University of Tsukuba, Tsukuba 305-8573, Japan

toshi@score.is.tsukuba.ac. jp

February 1, 2000

Abstract

In this paper we propose higher-order rewrite systems without
bound variables. In order to prove their confluence under the assump-
tion of orthogonality, we study a simple proof method which employs
a characterization of the diamond property of a parallel reduction. By
an application of the proof method, we obtain a new confluence result
for orthogonal higher-order conditional rewrite systems.

1 Introduction

Higher-order rewriting is a computation model which deals with higher-order
terms. Higher-order functions and bound variables are usually used for con-
structing the set of higher-order terms. The use of bound variables enriches
the descriptive power of higher-order rewrite systems. However, it makes
the computation mechanism more complicated. For example, consider the
following two specifications of the addition function in Peano arithmetic.
The rewrite rules on the left is of first-order rewriting and on the right is of
higher-order rewriting.

O+z — =z . .04+z — Az.z
S(z)+y — S(z+y) IAzy.S@)+y — Azy.S(z+y)

The presentation of the higher-order rewrite system in this introduction is
based on [vR99] with a slight change in notation. Examples of computations

in two systems are:

S(S(0)+0) — S(S(0+0)) S(S(0)+0) — S((Azy.S(z)+ y)00)
- S((Azy.S(z + y))00)
— S(S(0+0))

Here, the underlined subterm is computed in each step. The computational
mechanism in first-order rewriting is simple: we replace a subterm which
matches the left-hand side of a rule to the corresponding right-hand side.
On the other hand, additional steps for dealing with bound variables (beta
expansion and reduction) are required in higher-order rewriting.

In this paper, we propose higher-order rewrite systems whose compu-
tational behaviour is the same as first-order rewriting. Based on the new
definition of higher-order rewrite systems (given in the next section) we in-
vestigate the confluence property of the rewrite systems. We first study
a method for proving confluence using parallel reduction (in Section 3).
Based on the proof method introduced, we prove the confluence of orthog-
onal higher-order rewrite systems (in Section 4). This confluence result is
further extended to the case of conditional higher-order rewriting (in Section
5).

2 Higher-Order TRS without Bound Variables

We assume the reader is familiar with abstract rewrite systems (ARSs) and
(first-order) term rewrite systems (TRSs). In this section we propose a sim-
ple extension of first-order rewrite systems (cf. [DJ90], [Klo92], [BN98])
to the higher-order case. As opposed to previous works (e.g. Combina-
tory Reduction Systems [Klo80], Higher-Order Rewrite Systems [NP98]),
our higher-order extension dispenses with bound variables.

Arities are used for the purpose of constructing well-formed terms. In
the first-order setting, an arity is just a natural number denoting the number
of arguments of a function. We generalize the notion of arity in order to
construct higher-order terms.

Definition 1 (arity)

The set of arities is the smallest set A which contains the base arity 0 and
satisfies the property that (a1 - - - apa) € A whenever a4, ... ,an,a € A with
n > 1. We call a non-base arity a function arity. The outermost parentheses
of an arity may be omitted when no confusion can arise.

Example 2 (arity)
The following table contains some examples of arities and their intuitive
meanings.

arity | meaning

0 a value
00 a function with one argument
000 a function with two arguments

(00)0 | a function which takes a function as an argument
0(00) | a function which returns a function

Definition 3 (term)

Let V1 be a set of variable symbols of arity o and C¥ be a set of constant

symbols of arity a, for every arity a. The set T(V,C)l of (higher-order)

terms of arity « is the smallest set satisfying the following two proper-

ties:

(1) Ift e vidycl then t € T(V,C),

(2) Ifn>1,t € T(V,0)leaeme] and ¢; € T(V,)™l for i = 1,... ,n,
then (tgty---t,) € T(V,).

We also define

v=J vyl ¢= U o and T(V,C) =) T(V,C)ll.

acA a€A a€A
In order to be consistent with the standard definition of first-order terms, we
use to(t1,-.. ,t,) as an alternative notation for (tg¢; - - ¢,). The outermost

parentheses of a term can be omitted. To enhance readability, infix notation
is allowed. We use the notation t/* to make the arity o of a term ¢ explicit.

Note that we do not confuse non-variable symbols with function symbols
as in the first-order case, because a variable symbol of non-base arity express
a function. The term ¢y in a term of the form (¢g ¢; - - - £,,) expresses a function
which is applied to the arguments #;,--- ,%,. In the higher-order case we
allow arbitrary terms, including variables, at the position of ¢, while only
constant symbols are allowed in the first-order case. Thus a set of first-
order terms is obtained as a subset of higher-order terms which satisfies
both VI = & whenever « # 0, and Cleranal — o whenever # 0 for
some % or a # 0.

Definition 4 (head symbol and variable set)
Let ¢t be a term in T(V,C). The head symbol head(t) of ¢ is defined as

follows:
¢ ifteVuc,

head(t) = { head(tg) if t = (toty---tn)-

3

The set of variable symbols contained in ¢ is denoted by Var(t).

The term ¢y in a term (¢o¢1---¢,), which expresses a function, may be
rewritten in higher-order rewriting. This fact should be reflected to the
definitions of position and substitution.

Definition 5 (position)

A position is a sequence of natural numbers. The empty sequence ¢ is called
the root position. Positions are partially ordered by < as follows: p < ¢ if
there exists a position r such that pr = q. The set of positions in a term ¢ is
denoted by Pos(t). The subterm t), of ¢ at position p is defined as follows:

b = t if teVUC and p =,
P = ti]q iftz(totl-“tn) and p = 1q.

The term obtained from a term s by replacing its subterm at position p with
a term ¢ is denoted by s[t],. The set Pos(t) is divided into three parts. We
say p € Pos(t) is at a variable position of t if tp €V, at a constant position
if 1), € C, otherwise p is at an application position. We denote the set of
variable positions, constant positions, and application positions in a term ¢
by Posy (t), Pos.(t), and Pos,(t), respectively.

Definition 6 (substitution)

A substitution o is a function from V to T(V, C) such that its domain, de-
fined as the set {z € V | o(x) # z }, is finite and o(z) € T(V, C)!™ when-
ever z € VI®l. A substitution o : V — T(V, C) is extended to the function
o:T(V,C) - T(V,C) as follows:

s =d o) ifte Vuc,
o) _{ (@(to) T(t1) ---T(tn)) if t = (bgt1---tn).

We will write to instead of G(t). A renaming is a bijective substitution from
V to V. Two terms t and s are unifiable by a unifier o if so = to.

Definition 7 (rewrite rule)
Let T(V,C) be a set of terms. A rewrite rule is a pair of terms, written as
[— 7, such that

e Var(r) C Var(l),

e head(l) € C, and

e [and r are of the same arity.

The terms | and r are called the left-hand side and the right-hand side of
the rewrite rule, respectively. Let R be a set of rewrite rules. We call
R = (R,V,C) a higher-order term rewrite system (without bound variables).
In this paper, we simply call R a TRS.

Definition 8 (rewrite relation)

Let R = (R,V,C) be a TRS. We say a term s rewrites to t, and write
s =g t, if there exists a rewrite rule | — r € R, a position p € Pos(s) and
a substitution o such that sj, = lo and ¢ = s[ro],. We call the subterm s,
a redex of s. In order to make the position p of a rewrite step explicit, we
also use the notation s D t. Especially, a rewrite step at root position is
denoted by % and a rewrite step at non-root position is denoted by Z5%.
When the underlying TRS R is clear from the context, we may omit the
subscript R in —x.

It is easy to see that every variable symbol is in normal form because of
the second restriction imposed on the rewrite rules. The following example
shows that a simple functional programming language with pattern match-
ing can be modeled by higher-order term rewrite systems without bound
variables.

Example 9 (higher-order rewriting)

Let C = {0091, S[00] [Jl0] .[000] 1y55[(00)00] '5[(00)(00)(00)] 4yyicel(00)(O0]} wwhere :
and o are 1nﬁx constant symbols, and the set of variable symbols V' contains
zl0, zs[0 Fl00) and GO0, We define the set of rewrite rules R as follows:

map F || -
R map F (z:a2s) — Fz : map F as
) (FoG)z — F (Gx)
twice ¥ — FoF

Examples of rewrite sequences of the TRS R = (R, V, C) are:

map (twice S) (0:[]) —= map (SoS) (0:]])
: —r (50S)0 : map (So5S)]

—r S(S0) : map (SoS) []
—r S(S0) :]

map (twiceS) (0:[]) —x (twice S) 0 : map (twice S) []
—r (S0S)0 : map (twice S) [|
—r S(S0) : map (twice S) [|
= 5(S0) :]

where underlined redexes are rewritten.

3 Confluence by Parallel Moves

In this section we develop a method for proving confluence using parallel
reduction. We assume the reader is familiar with the basic notions of ab-
stract rewrite systems (ARSs). For more detailed descriptions on abstract
rewriting, see, for example, Klop’s survey [Kl092].

Definition 10 (properties of an ARS)
Let A = (A,—) be an ARS. We use the following abbreviations:

property l definition | abbreviation
A has the diamond property — > C - (=)
A is confluent B S G S CR(—)

Lemma 11 (confluence by simultaneous reduction)
Let (A,—) and (A,—) be ARSs.

(1) O(—=) = CR(—).

(2) If -* = —* then CR(—) <= CR(—).

Proof. Straightforward.

Definition 12 (parallel reduction)

Let R = (R,V,C) be a TRS. The parallel reduction relation induced by R
is the smallest relation {5 such that

(1) ift € VUC then t b t,

(2) if s St then s 4p ¢, and

(3) ifn>1lands; {pg tifori=0,...,n,then (sgs1---5,) g (Lot --tn).
We may omit the underlying TRS R in {5 if it is not important.

One can easily verify that every parallel reduction relation is reflexive.
Note also that — C 4 C —*, hence {* = —*. From Lemma 11 we know
that the diamond property of a parallel reduction relation is a sufficient
condition for the confluence of the underlying TRS: O(4p) = CR($) <
CR(—). The following lemma gives a characterization of the diamond prop-
erty of a parallel reduction, which is inspired by Gramlich’s characterization
of the strong confluence of a parallel reduction [Gra96].

Lemma 13 (parallel moves)

We have 4} - S CHb -4l <= 4 - C - 4.

Proof. The implication from right to left is obvious by — C 4. For the
reverse implication, suppose <} - — C b - <. We show that if ¢ <} s 4b
then there exists a term v such that ¢ 4 v <} w, for all terms s, ¢, and u.

The proof is by induction on the structure of s. We distinguish three cases
according to the parallel reduction s p¢t. f s=¢t € VUC thent pv=u
by taking v = u. If s <> ¢ or s > u then we use the assumption. Otherwise,
we have s = (s981---8n), t = (tot1---tn), and u = (uguy ...uy) for some
n > 1 with ¢; 4} s; 4 u; (¢ = 0,... ,n). By the induction hypothesis, we
know the existence of terms v; (i =0,... ,n) such that ¢; 4> v; ¢} u;. Let
v = (vov1...vp). Then we have ¢t 4 v <} u by definition.

This lemma allows us to partially localize the test for the diamond prop-
erty of a parallel reduction, though the complete localization is impossible
as shown in the following example.

Example 14 (complete localization of parallel moves)

In this example we show that the implication <— - 5 C b - d}f = 4} - 5 C
4 - 4} does not hold in general. Let V = @ and C be the set consisting of
the constant symbol f of arity 000 and constant symbols a,b,c,d,e of the
base arity. Consider the set R of rewrite rules defined by

faa —- ¢ a — b

R— fab - d ¢ — d
fba - d d — e
fbb — e

It is easy to see that the inclusion < - <> C 4 - <} holds. We have f b b <}
faa-Sscbutfbb{h- 4 cis not satisfied.

Definition 15 (parallel moves property)
We say a TRS satisfies the parallel moves property, and write PM(—), if

the inclusion 4} - = C 4 - <} holds.

Lemma 13 states that the parallel moves property is equivalent to the
diamond property of a parallel reduction. The parallel moves property is a
useful sufficient condition for proving the confluence of orthogonal rewrite
systems.

Lemma 16 (confluence by parallel moves)
Every TRS with the parallel moves property is confiuent.

Proof. We have PM(—) <= ¢({) = CR(—) by Lemmata 13 and 11 with
#* = —=*, see Fig.1.

— -t —,
PM(—>):£ S O(4k) : — CR(—)
AT T T 57

Figure 1: confluence by parallel moves

4 Confluence of Orthogonal Higher-Order TRSs

In this section, we give a simple pfoof of the confluence of orthogonal TRSs
based on the parallel moves property. For the definition of orthogonality,
we need the notions of left-linearity and overlap.

Definition 17 (left-linearity)
A TRS is left-linear if none of left-hand sides of rewrite rules contain multiple
occurrences of a variable symbol.

Definition 18 (overlap)
A TRS is overlapping if there exist rewrite rules | — r and I’ — ' without
common variable symbols (after renaming) and a non-variable position p €
Pos. (1) U Pos, (1) such that
e [, and I’ are unifiable, and
e if p = € then [— r is not obtained from !’ — ' by renaming variable
symbols.

Example 19 (overlapping TRS)
Let C be the set consisting of constant symbols f, g, h of arity 00 and a, b of
arity 0. Let V contain variable symbols F' of arity 00 and z of arity 0. We

define
f(Fz) —» Fb
R= .
ga — hb

The TRS (R, C, V) is overlapping because the left-hand sides of the rewrite
rules are unifiable at an application-position. In this TRS the term f (g a)
has two different normal forms: gbgr<«f (ga) - f (hb) —% hb. Note
that the redex (g a) in the initial term is destroyed by the application of the
first rewrite rule.

Definition 20 (orthogonality)
A TRS is orthogonal if it is left-linear and non-overlapping.

Now we are ready to give a proof that orthogonal TRSs are confluent.
‘We first extend the use of parallel reduction to substitutions.

Definition 21 (parallel reduction of a substitution)
Let o and 7 be substitutions and X be a set of variable symbols. We write
o) 7 if o(z) 4 7(2) for all z € X.

Lemma 22 (parallel reduction of a substitution)
Let o and 7 be substitutions and ¢ be a term. If o H%[X] 7 and Var(t) C X
then to b ¢7.

Proof. An easy induction on the structure of ¢.

Lemma 23 (key properties for confluence)

Let R = (R,V, C) be an orthogonal TRS.

(1) & - 5SC=

(2) For all rewrite rules | — r € R, substitutions o, and terms ¢, if ¢ <}
lo 5 ro and not lo < ¢ then there exists a substitution 7 such that
t=I7 with o 'H')[Var(l)] T.

Proof.

(1) Since R is non-overlapping, we can only use (two renamed versions of)
the same rewrite rule in R for rewriting a term at the same position.
Hence we always obtain the same term.

(2) Since R is non-overlapping, there is no term s’ with lpo 5 ¢, for all
non-variable position p in . Hence we have [, {}» ¢}, for all variable
positions p in [. Define the substitution 7 by 7(z) = tp if ljp, = = and
7(z) = x otherwise. This substitution is well-defined because there are
no multiple ocuurences of z in [by left-linearity. It is easy to see that
o 'H-)[Var(l)] 7 and ¢t = 7 by construction.

Lemma 24 (Parallel Moves Lemma)

Every orthogonal TRS R = (R,V, C) has the parallel moves property, i.e.,
#oSCh- 4

Proof. Suppose t 4 s <> u. We show ¢ 4 - 4 u. If s 5 ¢ then the desired
result follows from Lemma 23(1). Otherwise, we do not have s — ¢. Since
there exists a rewrite rule ! =+ r € R and a substitution o such that s = lo
and v = ro, we know the existence of a substitution 7 such that ¢ = 7
with o 4fyapy 7 by Lemma 23(2). Therefore, t = Ir = r7 4f ro = u by
Lemma 22 and Var(r) C Var(l). Note that the case s =¢ € V is impossible
because every variable symbol is in normal form and that the case s =t € C
is contained in the case s = u.

Note that the Parallel Moves Lemma does not hold for orthogonal higher-
order rewrite systems with bound variables as observed in the literature, see
[vO97] and [vR99]. A proof of confluence in such rewrite systems can be
found in [MN98]. Now we conclude this section by the main result of this
section and an example of its application.

Theorem 25 (confluence by orthogonality)
Every orthogonal TRS is confluent.

Proof. By Lemma 16 and the Parallel Moves Lemma (Lemma 24).

Example 26 (confluence by orthogonality)
The example TRS given in Example 9 is confluent because it is orthogonal.

5 Confluence of Orthogonal Higher-Order CTRSs

In this section, we generalize the confluence result presented in the previous
section to the case of conditional rewriting. Bergstra and Klop proved the
confluence of first-order orthogonal CTRSs in [BK86]. Their proof depends
on the notion of development and the fact that every development is finite.
Our result in this section generalizes their result to the higher-order case and
also simplifies their confluence proof, based on the parallel moves property.

Definition 27 (conditional rewrite rule)

Let T(V,C) be a set of terms. A conditional rewrite rule | — r < c consists
of a rewrite rule [— r and the conditional part c. Here c is a possibly
empty finite sequence ¢ = I3 = r1,...,l, = r, of equations such that every
pair of terms /; and r; are of the same arity and Var(r) C Var(c). If the
conditional part is empty, we may simply write [— r. Let R be a set of
conditional rewrite rules. We call R = (R, V, C) a (higher-order) conditional
term rewrite system, or simply a CTRS.

A variable in the right-hand side or in the conditional part of a rewrite
rule which does not appear in the corresponding left-hand side is called an
extra variable. In this paper, we allow extra variables only in the conditional
part but not in the right-hand sides of rewrite rules.

Definition 28 (rewrite relation)
The rewrite relation - of a CTRS R = (R,V,C) is defined as follows:
s —g t if and only if s —%, ¢ for some k > 0. The minimum such % is

10

called the level of the rewrite step. Here the relations —, are inductively
defined:

—Ro = J,
—Rppr = { (t[lolp,t[rolp) | Il 52 r<=c€R, co C ——>;‘2k }.

Here co denotes the set {'oc = r'c | I’ = 1’ belongs to c}. Therefore co C
——>;‘zk withe=1{ ~rq,...,l, = r, is a shorthand for [; —é}‘zk Tlyeee 3ln _)%—k
T,. We may abbreviate —x, to — if there is no need to make the underlying
CTRS explicit.

Properties of CTRSs are often proved by induction on the level of a
rewrite step. So, it is useful for proving the confluence of orthogonal CTRSs
to introduce the parallel reduction relations which are indexed by levels.

Definition 29 (parallel reduction relations indexed by levels)

Let R be a CTRS. We define -H—)Rk as the smallest relation such that

(1) t4pg, t for all terms ¢,

(2) if s Sg, t then s tz, ¢, and

(3) if kK > j; and s; -|-|-)R]_ t; for ¢ = 0,...,n, then (sos1---8n) thp,

(toty - ty).
We may abbreviate 4>, to {}; when no confusion can arise.

Observe that s {py t if and only if s {p, ¢ for some level £ > 0. It is
also easy to verify that —g, C HéRk - —>’7*3k for all levels k£ > 0.

Definition 30 (properties of an ARS with indexes)
Let A = (A, U;c; —) be an ARS whose rewrite relations are indexed. We
use the following abbreviations:

definition | abbreviation
iR S | 04

* * _ J
e —oE C o e CR;(—)

Lemma 31 (confluence by simultaneous reduction)
Let (A, U;er —4) and (A, U;e; =) be ARSs such that —; = —7 for all

i € I. We have 0 (<) == j¢>- =3 C =%+ = CRL(=).
Proof. Straightforward.

Definition 32 (parallel moves property for CTRSs)
We say a CTRS satisfies the parallel moves property with respect to levels

J and k, and write PM%(—)), if the inclusion ;4 - Sk C by - ;4 holds.

11

Lemma 33 (parallel moves for CTRSs)

The following two statements are equivalent, for all m > 0.
(1) PMI(—) for all j,k with j + k < m.

(2) OL(4) for all §,k with j + & < m.

Proof. The implication (2) = (1) is obvious because —3; C b, by definition.
For the proof of the implication (1) = (2), suppose statement (1) holds. We
show that if ¢4t s 4}, w and j + k < m then there exists a term v such
that ¢ 4}, v 4} u, for all terms s, ¢, u and levels j, k. The proof is by
induction on the structure of s. We distinguish three cases according to the
parallel reduction s -H->j t. If s =t then t P, v = u by taking v = u. If
s <3j t or s <, u then we can use the assumption (1) in both cases because
J +k < m. Otherwise, we have s = (s9s1---5p), t = (tot1---t,), and
u = (ugui--.up) for some n > 1 with ¢; ; < si 4y, us (6§ =0,... ,n). Since
Ji + ki < j+ k < m, the induction hypothesis yields the existence of terms
v; such that t; ‘H')ki Uij,-"H‘ u;, for i = 0,... ,n. Let v = (vpv1...v,). Then
we have ¢ 4%, v ;4f u by definition.

The following lemma gives a sufficient condition for the confluence of
CTRSs.

Lemma 34 (confluence by parallel moves) .
If a CTRS satisfies PMj (—) for all levels j and k then CRJ(—) holds for
all 7, k, hence it is confluent.

Proof. By Lemmata 33 and 31 with 4] = —7 for all levels 7, see Fig.2.

Vikj+k<m Vikj+k<m Vikj+k<m Vik j+k<m

. _6__;) ; ; _H_k> .' . _]_} : . __.._;.} :
MRS & ol = = = | CRi()!
J 3 J 3J J w o A w*od

Figure 2: confluence of CTRSs by parallel moves

Imposing restrictions on reducibility of the right-hand sides of the con-
ditions is important for ensuring the confluence of CTRSs.

12

Definition 35 (normal CTRS)

Let R be a CTRS. A term t is called normal if it contains no variables and
is a normal form with respect to the unconditional version of R. Here the
unconditional version is obtained from a CTRS by dropping all conditions.
A CTRS is called normal if every right-hand side of an equation in the
conditional part of a rewrite rule is normal.

We extend the indexed version of a parallel reduction >, to the relation
+|—>k[X} on substitutions as in the unconditional case (Definition 21). It is
easy to verify that the level version of Lemma 22 also holds. Now we are
ready for proving the Parallel Moves Lemma for CTRSs. In the conditional
case, we must confirm that the conditions are satisfied after the change of
the substitution.

Lemma 36 (Parallel Moves Lemma for CTRSs)
Every orthogonal normal CTRS R = (R, V, C) satisfies PMj (=), i.e., S4E Sy C
1 - ;4 for all levels j and k.

Proof. We show that if ¢ j<—H— s <31, u then there exists a term v such that
t 4 vj<—|+ u. The proof is by induction on j + k. The case j +k = 0 is

trivial because 3y = @. Suppose j + k > 0. We distinguish two cases.
If s i>j t then we have s = u because R is non-overlapping and has no
extra variable in the right hand sides of R. Hence we can take v = s = u
Consider the case that s —e—>j t does not hold. From s <3 u we know that
there exists a conditional rewrite rule Il — r <= ¢ € R and a substitution ¢
such that s = lo, u = ro, and co C—7_;. Since R is non-overlapping, there
is no term s’ with [|,0 <3; s' for all non-variable positions p in {. Define
the substitution 7 by 7(z) = |, if [|, = z and 7(z) = o(z) otherwise. This
substitution is well-defined by the left-linearity of R. We have o -|-|—>j Var(l,e)] T
and t = 7 by the definition of 7. From Var(r) C Var(l) and the level version
of Lemma 22 we obtain ro -|-|->j r7. It remains to show that ¢t = I7 4}, r7.
So, we will prove cr C —5_;. Let I’ = 7’ be an arbitrary condition in c. We
have to prove that {'r —%_; r'7. Since co C—}_,, we have l'c —;_, r'o.
Moreover, o -|-|->j[Va,(l, g T Var(c) C Var(l, ¢), and the level version of Lemma
22 yields that l'o {p; I'r. Hence l'7 ;4ff l'c —;_, r'o. From the induction
hypothesis and Lemmata 36 and 31, we know the existence of a term v such
that I'r —%_; v ;4 r'o. Because R is normal, r'c = r' = r'r = v. Hence
Ut —_, r'7. Therefore T 4, 7.

Theorem 37 (confluence by orthogonality)
Every orthogonal normal CTRS is confluent.

13

Proof. By Lemma 34 and the Parallel Moves Lemma for CTRSs (Lemma
36).

6 Concluding Remarks

We have proposed higher-order rewrite systems without bound variables,
which is close to the format of functional programming languages with pat-
tern matching. For proving the confluence of orthogonal rewrite systems,
we introduced the parallel moves property, which is a useful sufficient con-
dition obtained by localizing the test for the diamond property of a parallel
reduction. We proved the confluence of orthogonal higher-order TRSs and
orthogonal normal higher-order CTRSs.

Since the class of higher-order (C)TRSs without bound variables is a
proper extension of the first-order case, all known results for the first-order
TRSs can be applied to the subclass of our (C)TRSs. We can also ex-
pect that many known results for the first-order TRSs can be lifted to the
higher-order case without difficulty, because the behaviour of our higher-
order extension is very close to that of the first-order (C)TRSs.

Suzuki et al. gave a sufficient condition for the confluence of orthogonal
first-order CTRSs possibly with extra variables in the right-hand sides of
the rewrite rules [SMI95]. The author conjectures that their result can be
extended to the higher-order case.

Acknowledgments

The author is grateful to Aart Middeldorp, Femke van Raamsdonk, and Fer-
Jan de Vries for their comments to the preliminary version of this paper.

References

[BK86] J.A.Bergstra and J.W. Klop. Conditional rewrite rules: Confluence
and termination. Journal of Computer and System Science, 32:323-
362, 1986.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cam-
bridge University Press, 1998.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, vol-
ume B, chapter 6, pages 243-320. The MIT Press, 1990.

14

[Gra96]

[K1o80]

[K1092]

[MNYS]

[NP9S]

[SMT95]

[vO97]

[VR99]

B. Gramlich. Confluence without termination via parallel critical
pairs. In Proceedings of the 21st International Colloguium on Trees
in Algebra and Programming (CAAP’96), 1996. Lecture Notes in
Computer Science 1059, pp. 211-225.

J.W. Klop. Combinatory Reduction Systems. PhD thesis, Rijks-
universiteit, Utrecht, 1980.

J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay,
and T. Maibaum, editors, Handbook of Logic in Computer Science,
volume 2, chapter 1, pages 1-116. Oxford University Press, 1992.

R. Mayr and T. Nipkow. Higher-order rewrite systems and their
confluence. Theoretical Computer Science, 192:3-29, 1998.

T. Nipkow and C. Prehofer. Higher-Order Rewriting and Equa-
tional Reasoning, volume I, pages 399-430. Kluwer, 1998.

T. Suzuki, A. Middeldorp, and T. Ida. Level-confluence of condi-
tional rewrite systems with extra variables in right-hand sides. In
Proceedings of the 6th International Conference on Rewriting Tech-
niques and Applications, 1995. Lecture Notes in Computer Science
914, pp. 179-193.

V. van Oostrom. Developing developments. Theoretical Computer
Science, 175:159-181, 1997.

Femke van Raamsdonk. Higher-order rewriting. In Proceedings
of the 10th International Conference on Rewriting Techniques and
Applications (RTA ’99), 1999. Lecture Notes in Computer Science
1631, pp. 220-239.

15

