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A Characterization of Paradoxes in Distributed Optimization
of Performance for Multiplicated Systems

Hisao Kameda* and QOdile Pourtalliert

Abstract

We show the existence and the characterization of paradoxical cases, in load bal-
ancing among multiplicated nodes (hosts) of a system, where adding a communication
capacity to the system can lead to large degradation of system performance, in an in-
termediately distributed performance optimization. In these cases such paradoxical
degradation of performance occurs neither in the completely centralized optimization
nor in the completely distributed optimization. The degradation reduces and finally
disappears as the optimization decision becomes more and more distributed. We s-
tudy the model of a system which consists of parallel identical nodes with identical
arrivals of jobs of different classes while the values of the service time, arrival rate, and
communication time parameters for jobs of each class are distinct within each node.
Preliminary numerical studies suggest that such paradoxes appear most strongly in
symmetrical models. We characterize conditions under which such paradoxical behav-
iors appear. It is notable that we can find paradoxes that may brlng unlimitedly large
degradation of performance in such a common system.

keywords Distributed decision, Braess paradox‘, Nash equilibrium, Wardrop equilibrium,
performance optimization, parallel queues, load balancing.

1 Introduction

We can consider systems that consist of a finite number of facilities and arriving threads or
flows of infinitely many customers to be served by the facilities. For example, distributed
computer systems have continuing arrivals of infinitely many jobs to be processed by
computers, communication networks have flows of infinitely many packets or calls to pass
through communication links, and transportation flow networks have incoming threads
of infinitely many vehicles to drive through roads, etc. We may have various optimum
issues, depending on the degree of the distribution of decisions. Among them, we have
three typical optima corresponding to three typical decision schemes:

(A) [Completely centralized decision]: The system is run by a single decision maker that
optimizes the total cost over all users or the mean response time of the entire system over
all jobs, packets, or vehicles, as a single performance measure. This optimized situation
is called the system optimum, overall optimum, cooperative optimum or social optimum.
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All users, jobs, packets, or vehicles are unified into one group which has only one decision
maker that seeks a single performance objective. We call it the overall optimum here.

(B) [Completely distributed decision]: Each of infinitely many individuals, users, jobs,
etc., optimizes its own cost or the expected response time for itself independently of others.
In this optimized situation each of infinitely many individuals cannot receive any further
benefit by changing its own decision. It is further assumed that the decision of a single
individual has a negligible impact on the performance of other individuals. This optimized
situation is called the individual optimum, Wardrop equilibrium, or user optimum (by
some people). We call it the individual optimum or Wardrop equilibrium here.

(C) [Intermediately distributed decision]: Infinitely many users, jobs, packets, or ve-
hicles are classified into a finite number (N(> 1)) of groups, each of which has its own
decision maker and is regarded as one player, user, or class. Each decision maker opti-
mizes non-cooperatively its own cost or the expected response time over only the jobs of
the class. The decision of a single decision maker of a class has a nonnegligible impact on
the performance of other classes. In this optimized situation each of a finite number of
users, classes, or players cannot receive any further benefit by changing its decision. This
optimized situation is called the class optimum, Nash non-cooperative equilibrium, or user
optimum (by some other people). We call it the class optimum or Nash equilibrium here.
We may have different levels in the intermediately distributed optimization.

Note that (C) is reduced to (A) when the number of players reduces to 1 (N = 1) and
approaches (B) when the number of players becomes infinitely. many (N — oo) [6].

Intuitively, we can think that the total processing capacity of a system will increase
when the capacity of a part of the system increases, and so we expect improvements in
performance objectives accordingly in that case. The famous Braess paradox tells us that
this is not always the case; i.e., increased capacity of a part of the system may sometimes
lead to the degradation in the benefits of all users in an individual optimization or Wardrop
equilibrium [2, 3, 4, 6]. We can expect that, in the class optimum (i.e., Nash equilibrium)
a similar type of paradox occurs (with large N), whenever it occurs for the Wardrop
equilibrium (N — oo0). Indeed, Korilis et al. found examples wherein the Braess-like
paradox appears in a Nash equilibrium where all user classes are identical in the same
topology for which the original Braess paradox (for the Wardrop equilibrium) was in fact-
obtained [14, 15].

As it is known that the Nash equilibrium converges to the Wardrop equilibrium as
the number of users becomes large [6], it is natural to expect the same type of paradox
in the Nash equilibrium context (for a large number of players), whenever it occurs for
the Wardrop equilibrium, although it never occurs in the overall optimum where the total
cost is minimized.

Kameda et al. [9] have obtained, however, numerical examples where a paradox similar
to Braess’s appears in the Nash equilibrium but does not occur in the Wardrop equilibrium
in the same environment. These cases look quite strange if we note that such a paradox
should never occur in the overall optimum and if we regard the Nash equilibrium as an
intermediate between the overall optimum and the Wardrop equilibrium. In particular, the
numerical examples show that the increased capacity of a part of a system would degrade
the benefits of all classes up to a few 10 percent, in a class optimum (Nash equilibrium)
whereas it should not degrade the benefits of all classes at the same time in a Wardrop
equilibrium in the same environment. In the background of this work, it has been observed
that increased capacity of a part of a system may lead to somewhat awkward behavior in
terms of a system-wide measure, in a model of distributed computer system [9, 10, 21].
The methods and algorithms for obtaining the optima and the equilibria are described in



[10, 12, 13, 16, 20].

In this paper, we present an analytic stud y of a mmodel of static load balancing among
identical nodes each of which has an id tval. The resulis look quite counter-
intuitive and show that the ratio of the p rfﬂf gradation in the paradoxical cases
can be unlimitedly large. We particniariy el of symmetrical nodes
here since in our preliminary numerical . symmetrical node models such
counter-intuitive phenomena appeared wiost sirongly in: symmeirical models [T}, which itself
looks quite counter-intuitive to us.

In the model studied in this paper, sach node {or processor) may have a communication
means for forwarding jobs to be processed by other nodes. It is intuitively clear that in
the overall optimum, no forwarding of jobs should occur. in the individual optimum, no
forwarding of jobs occurs also. In the class optimum, no forwarding of jobs occurs only
for some parameter setting.

, For some other parameter setting, however, mutual forwarding does occur in the class

optimum, and the mean response time for each class can be unlimitedly many times larger
than in the case of no mutual forwarding. The ratio of performance degradation decreases
and finally disappears as the number of classes increases unlimitedly. These situations look
quite paradoxical and surprising to us, although we know the existence of the prisoners’
dilemma and although it has been already shown that Nash equilibria of games even with
smooth payoff functions are generally Pareto-inefficient [5)].

.l

2 The Model and Assumptions

We consider a system with m nodes (host computers or processors) connected with a
communication means. The jobs that arrive at each node 7, ¢ = 1,2,--.,m, are classified
into n types k, k= 1,2,---,n. Consequently, we have mn dlﬂelent job classes R;;,. Each
of class Ry is dlstmgulshed by the node 7 at which its jobs arrive and by the type k of
the jobs. We call such a class local class, or simply class.

We assume that each node has identical arrivals and identical processing capacity.
That is, the system has multiplicated nodes that are identical with one another. Jobs of
type k arrive at each node with node-independent rate ¢,. We dencte the total arrival rate
to the node by ¢ (= 31 ¢x), and we have the time scale whereby ¢ =1 and )}, ¢ = 1.

We also consider what we call global class Jj that consists in the collection of local
class Rk, i.e., Jy = |J; Rik. Ji thus consists of all jobs of type k. Whereas, for local class
R;j, all the jobs arrive at the same node i, the arrivals of the jobs of class J; are equally
distributed over all nodes i.

The average processing (service) time (without queueing delays) of a type k job at
any node is 1/py and is, in particular, node-independent. We denote ¢/ by pi and
P= 2k Pk-

Out of type k jobs arriving at node ¢, the ratio z;;; of jobs is forwarded upon arrival
through the communication means to another node 7 (# ¢) to be processed there. The
remaining ratio z;;, = 1 — Zj(#) Tijk is processed at node i. Thus 37,z = 1. That is,
the rate ¢rz;;; of type & jobs that arrive at node 7 is forwarded through the communication
means to node j, while the rate ¢z, of ciass R;j jobs is processed at the arrival node
t. We have 0 < z;;; < 1, for all 4, 5, k. Within these constraints, a set of values of z;
(t=1,2,---,m,k=1,2,---,n) are chosen to achieve optimization.

We thus define a class R;; strategy as the m vector

Zip = (Tirk, ) Timk)-



We define a. global-class Jj strategy as the mm vector
Ty = (zlkaxﬂca e ,zmk)‘

We will also denote z the vector of strategies concerning all job classes, called strategy
profile, i.e., the vector of length mmn,

z= (111,-"-’12,'“,31n,1'21a"';22m"',$m1,"',zmn), or ¥ = ($1,$2,"',3n)-

For a strategy profile , the load 3; on node 7 is
Bi = Bi®) = prajix- (1)
gk :

The contribution ﬂl(k) on the load of node 7 by the global class & jobs is

AP = M@ =Y prejie, 2)
J

and clearly f3; = ﬁi(l) + ,31.(2) 4ot ﬂ}"). |
We denote the set of 2’s that satisfy the constraints (i.e., >y zix = 1,245, > 0, for all 4, 7, k)
by C. Note that C is a compact set.

We have the following assumptions: :
Assumption A1 We assume that the expected processing (including queueing) time of a
type k job that is processed at node i (or the cost function al node i), is a strictly increas-
ing, strictly convex and continuously differentiable function of B;, denoted by p,;'lD(ﬂ,-) for
all 7:, k. ' <

Assumption A2 We assume that the mean communication delay (including queueing
delay) or the cost for forwarding type k jobs arriving at node i to node j (i # j), denoted
by Gijk(x), is a positive, nondecreasing, convex and continuously differentiable function of
x. We assume that Gy (z) = 0. '

Example 1 We may consider the following simple functions for mean node and commu-
nication delays. For the mean node delay: '

1/pD(B;) = —1}/?/%- for 8; < 1, otherwise it is infinite. (3)

For the mean communication delay:

G,’jk(z) =1t. (4)

3

Equation (3) means that we have a simple assumption of the external time-invariant
Poisson arrival for each class, and the mean service time (without queueing delays) for
each type k£ jobs is ,u;l at each node i. The service discipline is processor-sharing or
preemptive-resume last-come first-served. When pj = p for all ¥ and when no forwarding
of jobs occurs, the mean communication delay is, simply, 1/(u — 1).

By Equation (4) we assume that one communication line is provided separately for
sending jobs from one node to another. The line (ij) is used for forwarding a job that
arrives at node 4 to node j (# 7). The expected communication time of a job arriving at

_node i and being processed at node j (# i) is expressed simply as t, i.e., independent of
the traffic and of the job class, with no queueing delay.

4




We refer to the length of time between the instant when a job arrives at a node and
the instant when it leaves one of the nodes after all processing and communication, if any,
are over as the response time for the job. The expected response time of a class Ri; job
that arrives at node 4, Tjx(2), is expressed as,

where

Tix(2) = injkﬂ'jk(ﬂf), | (5)
Tar(®) = p D(Bi(z)), and | (6)
Tijk(@) = pi D(B;()) + Giji(®), for j #i. (7)

The expected response time of a global—claiss Jk jobs is

Ty (z) = Z Ti(z (8)

The overall expected response time of a job that arrives at the system is

T = Zéka () = %Z¢kTik(’7)a

= -—-—{Zﬂ,(x D(ﬁz + Z ¢k$zjszJk(3)} (9)
g (#4)k

Remark 2.1 Note that as a consequence of Assumption (A1) and Assumption (A2),
the functions T(.), Tix(.) and T) are strictly convez and differentiable with respect to the
strategy profile x.

We analyze several decision schemes.

(A)

(B)

(G-)

In the completely centralized decision scheme, the forwarding decision over all jobs
is taken by a single decision maker. His strategy is therefore the choice of the
optimal mmn vector Z, with components Z;;x. This optimized situation is the overall
optimum. '

At the opposite, i.e., in the completely distributed decision scheme, we consider that
each single job chooses the node to be processed. Thus the system has infinitely
many decision makers. The resulting optimal ratio of jobs of class R;; that choose
the node j to be processed will be &;;5. This optimized situation is the individual
optimum. We denote the individually optimal strategy profile by 2.

In one intermediately distributed decision scheme between (A) and (B), each class
R;;, has its own decision maker (¢k). The amount of forwarding for class R;x jobs is
chosen by the corresponding decision maker (ik). The optimal strategy for decision
maker (ik), or equivalently class job R, is denoted by the m vector

T = (Birks Tizk -+ Timk),

and an optimal strategy profile, that we will denot»ev Z, is the collection of strategies
Z;;. We call this scheme the intermediately distributed decision I, and this optimized
situation the class optimum.




(C-1I) In another possible intermediately distributed decision scheme between (A) and (B),
jobs of classes R;j for all  are united into one global class Jj, that has a single decision
maker (k). Each decision maker (k) of class Jx chooses the amount of job forwarding

for the m classes, Rig, Rok, ..., Rmg. The optimal strategy for decision maker k is

consequently an mm vector :
Zi = (E1k,F2ky "y Emk)-

An optimal strategy profile is an mmn vector £ = (&1,%2,...,%,). We call this

scheme the intermediately distributed decision II, and this optimized situation the
global-class optimum.

3 The Results

(A) [Completely centralized decision: Overall optimization] The overall opti-
mum is given by such Z as satisfies the following,
T(z) = minT'(z) with respect to z € C. (10)

We define z_;;z) to be an m(m — 1)n vector such that all elements 2, for all 4, k, are
excluded from the mmn vector £ whereas all its elements are the same as the remaining
m({m — 1)n elememts of z.

Solution: The solution % is unique and given as follows:

i—(iik) =0, i.e., Tijk = 0, and Tk = 1, fO‘I' all l,j(;é Z),k ’
The mean response time is .

Tk(i) = Tik(i) = ,u’;lD(p)v fOT‘ all iak\7 T(‘i) = pD(p)

Proof: This solution and its uniqueness are clear from the strict convexity assumption
on D and the fact that Gijj is positive and nondecreasing. O

(B) [Completely distributed decision: Individual optimization] The individual
optimum (i.e., Wardrop equilibrium) is given by such # as satisfies the following for all 7,
© Tix(@) = min{Tijx (&)} and 2€C. (11)
Solution: The solution % is unique and given as follows:

E_ip) =0, te, %k =0, and z; = 1, fbr all 4,5 (# 1), k.
The mean response time is

Ty (&) = Tix (&) = pz ' D(p), for alli,k, T(®) = pD(p).

Proof: This can be easily seen in the following way. The solution Z for (11) is characterized
as follows: For all ¢,k we have
Tijk(&) = éuk, Eije >0, (12)
Tiik(®) > by, 56 =0, ' (13)

D &k =1,
J



where éy, = min; {u;'D(B;@))}. We can easily see that these relations are satisfied if -
and only if Z;;5 = 0 for all ¢,j (# ), k, by noting that the uniqueness of the solution is
given in [1] and by the method presented in [11]. O '

We suppose in the following (C-I) scheme and in the subsequent (C-II) scheme that
the following assumption holds true:

[Assumption A3] We assume that G;;(x) is one of the following functions:

Type G-1
Gijcl®) = wi'Gloxzijr)
(one dedicated line for each combination of a pair of origin
and destination nodes, and a class: i.e., m(m — 1)n lines in total),
Type G-1I{a)
Gijp@® = wi'G() Oxpek)

PAFEP
(one bus line for each global class: i.e., n bus lines in total),

Type G-II(b) :
Gip@® = wi'G( Y. OkTpok)
pa(#p).k
(one common bus line for the entire system: i.e., 1 bus line),

where o = dr/wk and G (z) is a nondecreasing, convez, and differentiable function of z.

Remark 3.1 wk“l can be regarded as the mean communication time (without queueing
delays) for forwarding a type k job from the arrival node to another processing node if
G(0) = 1. oxzijk(j # 9) is the traffic intensity of the communication line for the class R;y,
jobs being forwardeded to node j.

Exémple 2 We use the same definition (3) for the mean node delay as in Example 1.
We define Gjjx(z) for the mean communication delay as follows. We assume w; = 6 for
all k£ and thus o = ¢ /6, and set

1/6 for Z OxTper < 1, and otherwise infinite.  (14)

Giinl@) =
Y 1- Zp,q(#z))?k Tk pgk pa(#p)k

This is identical to:

Gijk(=) = 7 ! for z BrTpgk < 0, and otherwise infinite.  (15)

= Lpa(#r)k PhOpak p.a(#p)k '
By this, we assume that one bus-type communication line is provided commonly for all
the nodes to be used for forwarding of jobs to other nodes in the same way as in Example
1, whereas the transmission time without queueing delay is exponentially distributed with
mean 6~! and the scheduling discipline is First-Come-First-Served. Thus, the expected
communication time of a job arriving at node ¢ and being processed at node j (# 1) is
expressed as 1/(0 — 3", o(£p) & GrTpqk), i-€., independent of the job class and the origin and
destination nodes.




(C-I)[Intermediately distributed decision I: Class optimization] The class op-
timum (or a Nash equilibrium) is given by such Z as satisfies the following for all 2, k,
Tk (%) = min fl}k(i:_(ik);z,-k) with respect to Z;, such that (Z_x);zix) € C.

where (Z_(ix); Zik) denotes the mmn vector in which the elements corresponding to #; has
been replaced by z;j.
Let us define g;;x(.) as

0

{5 Y zipkGipk(2)}- ' (16)

Gijr(x) =
’ Ieige " o
By Assumption A3, we have ,
Gijk(®) = Uk[Q_(de"«'ijk)‘"l‘ oxzijkG (okzijr)], for type G-I,

Gijk@) = ox[G(z) +or(l - ¢ik)G' (2)], for type G-I,

where z = Z OkTpqk for type G-1I(a), and
 paa(#)
z = Y Okl for type G-1I(b).
P.a(#p):k

We see that under the assumption A3 the class of functions Gijx(z) satisfy for all
Z,](# 7/)7.7,(# i)ykv )
Gijk(®) > Gijk(®) if zije > @ijee- (1)
If Assumption (A3) holds, for z such that z;;; = z, for all 7, j(# i),k we denote
Gi(z) = Gijr(®) and Gx(z) = Gijk(T).
In particular, for z such that z;;; = z, for all 4, j(# 1),k we denote

G(z) = Gi(x) = Gijp(z) and §(z) = G(z) = Gijx(®)-

Solution: We denote I'y = pio}c‘l. The solution  is unique and is given as follows:
For Types G-I and G-II{a)

(a) For class R, such that p2D'(p) < §x(0) = 0xG(0), i.e., [xD'(p) < G(0),
zijk =0, and z;, =1, for all i, J(F# 7).
The mean response time is
Ti(®) = T @) = p ' D(p), for allik, T@&) = pD(p).

(b) For class Ry such that pD’'(p) > gx(0) = 0xG(0), i.e., TxD'(p) > G(0), the solution
is given as follows:

Tijk = Zk, for all i, j(# 1), (18)

where Ty, is the unique solution of

pi(1 — m&p)D'(p) = Gi(Zx)
= crk[Q(m(m — 1)0'k~'ik) + ak(m - 1)a~ka’(m(m — 1)0]9:5]3)]. (19)

The mean response time s

Ti(@) = Tix &) = pg ' D(p) + (m — 1)#xGr (@), for all i. (20)



For Type G-11(b)

The solution is given as in the following. We first change the numbering of k such that
>0 >--->Tg > --->Ty. The following three situations can occur:

We can find K such that T D'(p) > G(0) and T'g41D'(p) < G(0), (21)
or T',D'(p) > G(0) (ie., K=n), (22)
or I'D'(p) < G(0). (23)

When (28) holds, we have a unique solution of & = 0 for all k. When (21) or (22) holds,
we can find a unique solution as follows. Let us define the function F(X) as

a1 FzD'( ) — G(X)] X

Fk(X {Z kaDI ( _ ].)O'ZG_,(X)} - m(m _ 1) . (24)

We obtain the largest k = k<K and X = X;(> 0) that satisfies Fy(X;) = 0 and
oi [Ty D' (p) — G(X3)] > 0. Then by using '

dk[Plev(P) — Q_(X,;)] = katk[kaD'(p) + (m - 1)0‘];_@_’()279)], (25)
fork =1,2,---,k, we can obtain the unique set of values such that &, > &3 > -+ > z; >0

and that &3, = &, , = -+ = &n = 0 that satisfies the above relation, whick is a unique
solution. The mean response time is

To®) = T® = 17 D(p) + (m — )&4Gu(@), for all i. (26)

In particular, for a special case where‘qﬁk = 1/n, gy = p, wp = w, and therefore p;, = p
and o = o for all k, we have the following simpler form:

(@) If u=2D'(p) < n2§(0) = n?cG(0), the solution & is unique and is given as follows:
E_(ik) =0, de, =0, and 25 =1, for all 1, §(# 9), k.
The mean response time is
T@) = 1. = Ta@ = p~"D(p), for all i, k.
(®) If p™2D'(p) > n*§(0) = n?0G(0), the solution % is given as follows:

E_ix) = (2,8,--,%),
z

i.e., Eijp = and Zur=1— (m = 1)&, for all i, j(# 1) k, (27)

where & is the unigue solution of

1

W?(l*mw) D'(p) = 3. A (28)

The mean response time is

TE =Ti(& =Tw@& = p'D(p)+ (m—1)3G(&), forall i,k. (29)




Hroess-like paradocical per-
he values of Ty (= plfoy =

Remark 3.2 From the above we see that ihe i
formance degradation vary from class fo class ¢
drwi/pz). That is, the performance for the
the larger processing time requireimenti {;

s thal have the lavger arrival rule (Y ).
[ the smaiicr communiculion fime re-
L€ rmance for ail the classes has
more chances to be degraded with a larger value of p (= 3, pr).

Proof: We define

) o ,
bigilor) = b Tanle). (30)
HLigk

Because T;; are convex functions and € is a convex set, the solution & of the problem
exists (see, [18]), and from the Kuhn-Tucker condition it is characterized by the relations

(seg, e.g., [19]):

S*

.

o
W
o’
i

Giky Zijk > 0,

v

Gk, Tk == 0, (31)
> &ijx = 1, forall ik, ‘
j .

where @&;; are the Lagrange multipliers. From Definitions (1), (5) to (7), (16), and (30),
we have

0T
Oziik
oT;
0zijk

i

(®) Pe[D(B;(=) + prziin D' (85 ()], (32)

@ = pulD(Bj(@)) + proije D’ (B;(@))] + Gije(2) for j#1i. (33)

tiik(2) = o

tijk () = o
Let £ be any class optimum strategy profile, and define B; = Bi(Z).

(1) First, we show by contradiction that §; = ﬁj/ for every pair of (4, '), and consequently,
ﬁi = p for all 4. ' ‘
~ We define

Eijksirite (@) = tiji(®) — tyjn (). (34)

Assume that Bj > Bj: for some 7 and j'.

(1-1) Assume &;;5 > &;;1 for some i(#£ 7, 7'}, k. Then, we have §;;5x (&) > Gijn(&) by (17).
From Equation (33) and Definition (34) we have

Eikiir(®) = plD(B;(=)) — D(B; ()]
+ pplmip D (Bi(®)) - @i D (B (®))] + Gij (&) — Gijr (). (35)

Together with the fact that D(.) and D'{.) are increasing (Al), it comes that Z;;5.5 () >
0. However, from (31) we must have

Eijkigx = 0Oand 55 > Z; >0, or
< Oand Z55 > &5 = 0, (36)

which contradicts the above. Thus, we must kave &1 < &, for all i(# j,j'), k.

10




(1-2) Then, from the assumption ﬁj > ,53-(, we have at least for some £,
ik + Tjijk > Tjjie+ Ejojik
(1-2-1) ¥ Zj15% = 0, we have
:Z'jjg > Zjrjp and Fj50 > 55 (Condition T).

(1-2-2) If a?j/jk > 0, similarly asin (1~1), we seé that if .’Ej'jk > fi’jljlk, we have Ej’jk;j'j'k(i) >
0, which contradicts (36). Thus we have &;;; < &;r;55. Then &;;;, > T and Zj;0 > 0.
Thus from (31), (32), and (33),

tije(®) = pr[D(B;) + pr&nD’ ()] = @i,
ik (@) = pr[D(B;) + pi ik D' (B;)] + ik @) = ok
Then we have, by adding the last two equations,
PE2D(B;) + pi (&35 + &j158) D' (B)] + Grjk @) = jx + Geyrg- (37)
Note that we have from (31), (32), and (33),
ik (@) + jojoe (@) = pel2D(Byr) + pr(E sk + Ej1joe) D' (Bjr)] + G350 @) > Gk + ek (38)
Since D and D’ are increasing, ,3j > le and Z;;, + &5 > 50 + 4151 by assumption,
the only possibility for (37) and (38) not to contradict each other is
9k (&) > Gijn(®). (39)
Therefore, in the special case where ;1,5 (&) = §;;7%(%), these two relations contradict each

other. For the other cases, we investigate in the following (1-2-2-1) and (1-2-2-2).

- (1-2-2-1) Consider the Type G-I case. From the above (39), the relation (17) on §, and
ijjlc -}t '%j’jk > T+ itj/jlk., we have flfjjlk > ij‘jky from which Cz'jjk > fijrj:k follows. We
‘thus have

ijj’k > :Ej’jk and fjjk > :Ej'j'k (Condition I),

which is the same as (1-2-1).
(1-2-2-2) Consider the Type G-II case. From the above (39), and the relation (17) on §
and Z;; + 58 > &0 + &1k, we have Z;i5n > &k, from which T > &5 follows.

We thus have
Zjjig > Tk and &, > &5 (Condition II).

(1-3) Now we examine each of Conditions I and II, respectively, in the following (1-3-1)
and (1-3-2), and will show that both lead to contradictions.

(1-3-1) Consider the case where Condition 1 holds. Since
tiik (&) = pk[D(Bs) + prjjeD' ()] = Gk,

Ejrjik (&) = pr[D(Bj) + pri e D' (Bjr)] > @jon,

we have &, > @1, because D and D’ are increasing and ﬁj > Bj/ by assumption.
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We next show that Z;;, > Z,; by contradiction. Assume Zjp < Zjuk. Then Zp > 0,
and we have from (31) and (33),

tink(@) = pr[D(B1) + pr& e D' (B)] + Gjouse (&) = G,
| tie (@) = pr[D(B1) + pr& D' (B)] + G &) > x> bk,
which contradicts the assumption, as we see by noting that here for both G-I and G-II

Gt (&) < Gjnn(®)-
Therefore we must have
Ttk > Ty
From this and Condition I, it comes

(i]]k > ijljlk,

Tijk > Tjljky
.’f)jlk ) Z ijllk for all l(# ],j')
This implies

=Y Ee > Y Ei =1,
z ,

1
which is impossible. That is, the assumption leads to a contradiction.

(1-8-2) Consider the case where Condition II holds. This impiies Zi5, > 0 and wé have
£j0in(E) = pr[D(B;) + i o D' (B)] + Gyix @) = yni,
£k @) = pr[D(By) + p e D' (Bjr)] + jjok (&) > duji.
Since D and D’ are increasing, §; > 8; and &1 > &1k, We have
itk = ik (&) > &5k = Gjjx (Z)-

By noting that for type G-II, we have §;ix(Z) = §;;/x(&) and §;x(&) = §;/;x(&) for any
I(# 4,7"), and from the Kuhn-Tucker condition, we have

pr[D(B) + pr&jur D' (B)] = &k — Gk (&) = &0 — G150 (&), Tk > 0,
pelD(By) + pi D' (Br))] Z Qg — ik (&) = @i — G50k (%), Zjup =0,
pr[D(Br) + px 6 D' (B)] = Gk — Gk (&) = Gk — Gijn @), Fjix > 0,

pr[D(B)) + prz D' (B)] > i — Gjn(E) = Gk — Gijn (&), Fjik =0,

which can hold only when Z;;x < &, for all I(# 7, 7).
From this and Condition II,

Tje < Zjijik,
Tjne < Zjrjk, ,
Eiw < Ejw for all I(# j,5').

This implies

= Zfz'jlk < Zi'j'lk =1,
]

l
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which is impossible. That is, the assumption leads to a contradiction.
Thus we see that the assumption §; > B,/ leads to either Condition I [(1-2-1) and
(1-3-1)] or Condition II [(1-3-2)], both of which lead to contradictions.
Therefore, we must have 8; = 3/, and consequently 3; = p for all ¢.
(2) Hence for all ¢, j(# %), 7' (# 9), k,
Eijksiik(E) = PE(Eijk — Fije) D' (p) + Gijre (&) — Gijre (@) (40) -

Thus, if Z;;5 > Z;jx for some ¢, (5 1), j'(# ©), k, we have Ejjk;ii > 0 since D'(p) > 0,
which contradicts (36). Therefore, we must have

Ei5k = & for all 4,7(#9),k. (41)

(3) We note that since >_j Tije = 1, from the assumption on the arrival ratio of each class
job, & has to belong to the interval [0, 1/(m — 1)]. We discuss the case for Types G-I and
G-I1(a) and that for Type G-II(b), separately.

The case for Types G-I and G-II(a)

We have :
Bijkiiik (&) = —pp(1 — m&e) D' (p) + Gi(Fx)-
where

Gi(Bx) = oxlGoxy) + 0x8,G (0k2x)] (Type G-1) or
k(8x) = or[G(m(m — V)orir) + (m — 1)orZ:G (m(m = 1)or&x)] (Type G-11(a)).

Let us define the function F}, as
Fy(z) = ~p}(1 — mz) D' (p) + gx (2). (42)
Clearly, F}, is continuous and monotonically increasing.

(a) For class Ryt such that pfD'(p) < §x(0) = 0xG(0), we have Fi(z) > F;,(0) > 0 for
any = > 0, which proves that £ = Z; = 0 is the unique optimal solution.

Therefore, for class Ry, such that p2D’'(p) < §x(0) = 01G(0),
zi;5 = 0, and z;, = 1, for all 4, j(# ).
The mean response time is

T4(&) = Tir(&) = p; " D(p), for all i,k, T(Z) = pD(p).

(b) For class Ry such that p2D’'(p) > §x(0) = 0£G(0), the optimal solution is uniquely
given as follows:

Eijk = By, forall 4, j(# 1), (43)
where Zj is the unique solution of

pi(1 = mk)D' (p) = gi(&s).
Therefore, the mean response time is

Tiu(®) = u;'D(p) + (m — 1)3,Gy (&), for all i.
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Therefore, we have a unique Nash equilibrium or class optimum.

The case for Type G-1I(b)
We have
Eijhiiin(&) = —pi(1 — m&r) D' (p) + G ().
We can find the set of &, k = 1,2, -, n, as the unique solution of the following system
of relations:

pi(1 ~mar)D'(p) = gr(@ and & >0, ,
PiD'(p) < Gi(&) and # =0, (44)
0< & <1/(m-1),

where (&) = ox[G(m(m — 1) Ty 0xx) + ox(m — DEG! (m(m — 1) Ty 038)]

The relations (44) are equivalent to the following:

ox[TxD'(p) — G(X)] = opdp[mIyD’ (p) + (m — 1)opG' (X)] and F; > 0,
Uk[FkD'(p) (X)] < 0 and #; =0, (45)
0< & <1/(m-1),

where we recall 'y = pfo; ! and we denote X = m(m — 1) ¥, oxéy.

We easily see that we can change the numbering of ksuch that Ty > Ty > .- > T >
-+ > I'y. The following three situations can occur:

We can find K such that Tk D'(p) > G(0) and Tk41D'(p) < G(0), (rel. (21))
or I',D'(p) > G(0) (i.e., K=m), (rel. (22))
or I''D'(p) < G(0) (rel. (23)).
When (23) holds, we can find a unique solution of Zr = 0 for all k. When (21) or (22)

holds, we can find a unique solution as follows.
Recall the definition (24) of the function Fj(X) as

o[l D'(p) — G(X)] X
Fy(X) = {Zmr Dl'(pl F(m- DG X)) mmo1)’

Clearly, Fj;(X) is continuous and monotonically decreasing with the increase in X (> 0).
Thus for each k = &' (< K) there exists X = Xy/(> 0) that satisfies F(X) = 0. Then
given Xy, from (45) we can obtain a unique set of values for #;,1 < k < k'. Since (21)
or (22) holds, we can find the largest k' = k such that ; > 0 (i.e, [;D'(p) — G(X;) > 0,
that is the unique solution.

We can see it as follows: From (24) we have

O'k[r D'(p) - G(X k)} R
mID'(p) + (m — 1)o3. G (X)

Fr(Xp) = Py (Xp) +

Thus we have F;_, (X,-C) < 0. .
Assume that we have another feasible solution for &’ = k — 1. Then we have X i1 >0
such that Fj_,(Xj;_,) = 0 and &; = 0. Therefore we have

FI;—.I(XIE) < FIE-1(XIE—1)~
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Thus, since Fi(.) is monotonically decreasing, we must have X;> X i, and G(Xp) >
G(Xj_,). Consequently, since I';D'(p) — G(X3) > 0, we have I'yD'(p) — G(X;_,) > 0.
Therefore, from (25), i.e., (45), we must have Z; > 0, which is a contradiction.

In a similar way, for k£ and k' such that T’y = 'y, we can show that either Z = Z» =0
or T = & > 0. ,

Therefore, we see that we have the unique solution. That is, we can obtain the unique
set of values such that &; > %3 > --- > %; > 0and 27, = Ep o =" =T, =0, which
satisfies the above relation.

The mean response time (26) is obtained by noting the definitions (1), (5), (6), (7),
and (9).

In particular, for a special case where ¢ = 1/n for all £, we can obtain the solution
similarly as the cases for Types G-I and G-lI(a). O

(C-II)[Intermediately distributed decision: Global-class optimization] The
global-class optimum (Nash equilibrium for another set of decision makers) is given by
such # as satisfies the following for all i, k,

Tr (%) = min T (£_(x); Z&), with respect to z; such that (Z_);z) € C. (46)

where (£_(x);#x) denotes the mmn vector in which the elements corresponding to the
coordinates of Z; has been replaced by the vector z;. We note that

temTi() = 3617 @ D(Gi(#) + 3 rrigeGiin(a). (47)
g LiFEL
Note that we have the assumption A3 on the function Gji(z).
We define g;;x(z) as
0

Owijk

{ Z Pk pakGpak(®) }- (48)

P.aEP

Gijk(®) =

By Assumption A3, we have

Gije(®) = ok[G(zijk) + oxzijnG (zijx)] for type G-I,
Gije(®) = ok[G(z) + ok Z(l ~ Zppk)G (z)] for type G-11
P
(z= Z orzijx for type G-1I(a),
1,3 £ ’

Z orzijx for type G-II(b)).
4,5 (1) k

Therefore we have the property
Gijk(®) > Gije(®) I 2ok > ik ' (49)

Solution:
i_(ﬁk) =0, i.e., xijk = 0, and Tk = 1, fOT‘ all Z,](-‘,é z),k

The mean response time is

T (&) = Tir (&) = pi ' D(p), for alli,k, T(®) = pD(p).
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Proof: We define
Ty (z). (50)

tije(®) = my Foin

Again, because T} is a convex function and C is compact, the solution # of the problem
exists (see [18]) and from the Kuhn-Tucker condition it is characterized by the relations

(see, e.g., [19]):
f.;jk(:i) = &y for ;5 such that £, > 0, v
> Gy for &5 such that &, = 0. (51)

Zi‘ﬁk = l, for all i,k
]

where &y, are the Lagrange multipliers. From the definitions (1) to (8), (48), and (50), we
have

; Ty ( '
(@) =méuz—t = plD(B) +8,7D' (8], (52)
- oT o .
fije(@) = mépg = = pilD(B;) + BV B+ Gige, forj#i (53)
tj
We define ] ) k
Eijki 'k = tije{®) — tirjin(®). (54)

From (53) we have
Siikiyk = pxlD(8;) — D(B;y)) + o8 D'(8;) — B D' (B;)] + Gisn — Gijr- (55)
Let & be any global-class optimum. Denote f3; = 3; ().

(1) We first show by contradiction that Bi = ﬁjz for every pair of (7, /), which implies that
B; = p for all 7.

(1-1) Suppose that ,5‘3' > Bjr for some j and j. Then there must exist k such that
B}k) > ,Bj(fc) From (51), (52), and (53)

£ (®) = pr[D(B;7) + By)D'(iéj')] = Gk, Ejrge >0,
Ejrine(®) = pe[D(By) + BY D' (B;1)]

Erin(@) = pelD(By) + B D' (B))] + 301 @)

Erin(®) = peD(B) + B D (B)] + gy @) > Gy, Epi = 0.

2 G, &y =0,

= djg, ik >0,

Therefore, from the fact that D and D’ are increasing functions (Assumption Al) and
from Property (49), we have &;:;; = 0 and consequently &/ < &;jik.

(1-2) Suppose we have Z;;;, > & for some i(# j,j'), then'nvecessa.rily Gijk > Gijri by
Property (49). Since, by (A1), D(.) and D'(.) are increasing, Z;jr.;:x(&) > 0. However,
from (51), since # is a global-class optimum we have

éijk;ij’k = 0and Z;;% > &1 >0, or
< 0 and &5 > 25 = 0, ’ (56)
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~ which contradicts the above. Thus, we must have
;i:ijk S j;ij’k for all 4.
56) o (k)

Therefore, from 5, > 3,7, we must have

Tjjk + ik > Tjtj + gk
Thus we have from (1-1)
' Ej5k > Tk and T8 > Ej0jg.
(1-3) Since

pr[D(B;) + 5}“”(@)1 = &,
pelD(Byr) + B D' ()] > éju,

we have &;i > ;.
We next show that ;x > &/ by contradiction. Assume Z;i; < &;uk. Then &y > 0,
and we have from (51), (52), and (53),

px[D(B1) + Bz(k) D'(B)] + Gk (&) = djn,

pr[D(B) + BE D' (B)] + G @) > b5 > g,

which contradicts the assumption, as we see by noting that gz (&) < §ux(€) for both of
G-I and G-I1I. Therefore we must have

Zjik 2 &g
From this and (1-2),

I)V'.‘Nk > jj’j’k?
Tijk > Ejtjks
2

ii'j“c i‘jllk for all l(# ],],)

This implies

1= &>y &k =1,
l

!

which is impossible. That is, the assumption leads to a contradiction. Thus we see that
the assumption 8; > f; leads to a contradiction. Therefore necessarily §; = 3}, and

consequently f3; = p for all i.

(2) We next show by contradiction Bj(k) = ,é](fg) for every pair of (j, j'), which implies that

ﬁvi(k) = py, for all 7, k.
From (55) we have for all 7, j(# 7), 7/ (# 1), &,

Siikijk @) = pr (ﬂj(k) - ﬂ§f“’)D’(ﬁ1) + Gij (&) — Giji (E)- (57)

Assume ,Bj(k) > B(fc) for some j and j'. We can follow the same line of logic as (1-1),
" (1-2), and (1-3) above, even though B; = p for all 4, and we see that the above assumption
leads to a contradiction. Therefore necessarily B}k) = Bﬁfv), and consequently ﬁ}k) = py for
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all 7, k.
(3) Now from (55) we have for all 7, j(# ©), j'(# 1), k,
Eiikiik@ = Gik(®) — Gije (@) (58)

Thus, if Z;;5 > & for some 1, j(# i), j'(# 1), k, we have éijk;ij’k > 0, which contradicts
relation (56). Therefore, we must have

iijk = &y, for all ?,,](;é i), k,
and from (53) and (55) we have for all 7, j(# %), &,
Eijkiik (@) = §(&) > 0,

and consequently from (51) we have & = 0 for all k. O

4 Examples

We consider here Examples 1 and 2 introduced in Sections 2 and 3, respectively. We
restrict ourselves to the class optimization (C-I) where pr = p ¢ = 1/n for all k. We
have p = 1/p. '

Example 1 In this case we have
g(z) =t/n.

We note that : ,
pT2D'(p) — n2§(0) = 1/(pn — 1) — nt.

(a) If t > 1/{n(p — 1)?}, then the solution # is unique and given by
Z_(i5ik) =0, de, Tijp =0, Tiyp=1, forall 1,7 (# 1), k. |

The mean response time is

- - - 1 .
T(z)zﬂk(:l:):/l/le(p)=;—_‘1‘, i=42,---,m, k=12,--+,n.

In particular it is the same for the overall, individual, and global-class optima.

(b) If t < 1/{n(p — 1)?}, the solution Z is given by

Bik = {1~ ntlp = 17}, B = {1+ (m~Dnt(e~ 17}, forall i, j(#),k.

(59)
"The mean response time is '
T = Ti(®) |
_ 1 m—1 2 .
= 2T + t{l —nt(p —1)*}, forall ¢,k. | (60)
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For some parameters (u, m, n),j“ = T(i)Aatta,ins its maximum in ¢ (i.e., the worst
performance), that we denote Tyax (1, m, n) for

1

tmax = m (61)

We have

m—1
dmn(p — 1)

Trnax (i, myn) = p i 1{1‘+ 1. (62)

Thus if we add the communication lines with delay tmax = 1/{2n(—1)?} to the sys-

tem that has had no communication means, the mean response time T;; (%) for each
m-—1

class increases in the amount of (i.e., the performance degrades). This

dmn(p —1)2
is a Braess-like paradox. We define the worst ratio of the performance degradation
A(p, m,n) in the paradox for given u,n to be

Timax(p, m, ) — To(u)
To(p) '

‘where To(u) = 1/(i— 1) denotes the mean response time of each class jobs for given
4 when the system has no communication means. We have

A(p,m,n) = (63)

m-—1

dmn(p — 1) (64)

Alp, m,n) =

- Example 2 We have ‘ (
oo v _O-—m(m-1)(n—-1)z
§(=) = (0 — m(m — V)nz)? ’

and '
p72D'(p) = n?§(0) = 1/(n — 1)* ~ n/6.

This is the same as in the above example if we take ¢ = §~1. Therefore, we have the
following:

(@) If 01 > 1/{n(u — 1)?}, we obtain the same solution and mean response time as in
Example 1, i.e., Z_(;) = 0 and T (%) = 1/(p — 1). :

(b) If 0~ < 1/{n(u — 1)?}, the solution % is given by
Eijp =&, Tip=1—(m - 1)&, for all i, j(#£ 9),k, (65)

where Z satisfies

1 0-m(m-1)(n—-1)&
p—1" (8—m(m—1nz)?

%(1 — m&) (66)

Remark 4.1 From the above we see that, no forwarding of jobs occurs in the overall,
individual, and global-class optima and in case (a) of the class optimum. That is, in those
optima, jobs arriving at each node are processed only by the node, and thereby the system

has no performance improvement or degradation due to adding the communication means
(which is not used).
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On the other hand, in case (b) of the class optimum, each class forwards a part of its
jobs through the communication means to other nodes for remote processing, and thereby
has degradation in its mean response time. The ratio of such degradation can become
unlimitedly large as the total arrival rate approaches the processing capacity of each node,
i.e., as p ~ 1. In Ezample 1 of the model, we see that, as n and thus the number of
classes (m X n) increase up to infinity with the number of nodes, m, fived, the ratio of
degradation, A(pu, m,n), and the chances of the paradoz decrease and finally disappear.

The effect of m is not so large in the example, wherein, if we increase m from 2
unlimitedly, the worst ratio of performance degradation increases only up to twice.

5 Numerical Examples

We examine Example 1 with m = 5, i.e., the system with five nodes, and consider the
case: 4 = 1.01. The mean response time is To() = 1/(1t—1) = 100 in the overall optimum,
in the individual optimum (Wardrop equilibrium), and in the case of no communication
line and no forwarding of jobs.

Firstly, we consider the case where n = 1, ¢.e., the total number of classes R;; is 5.
T = T takes its maximum value

T(1.01,5,1) = 2100 (see (62)),
and the worst ratio of the performénce degradation A(p,m, n) in the paradox is
A(1.01,5,1) = 20 (i.e., 2000% degradation) (see (63)),
when t = 1/{2(p — 1)} = 5000 (see (61)). Then
Zije = (1/5){1— tu— 1)?} = 1/10 (k= 1) (see (59))-

In this case, &% (= &) decrease from 1/5 down to 0 as ¢ increases from 0 to 10000
(= 1/(p — 1)?), and for ¢ > 10000, no forwarding of jobs occurs. ‘

It is amazing that each class keeps to forward a part of its jobs equally to the other
nodes even though the communication delay for forwarding is much greater than the pro-
cessing delay at the node at which its jobs arrive.

Then we consider the case where n = 100, i.e., the total number of classes is 500.
T = T}, takes its maximum value

T(1.01,5,100) = 120 (see (62)),
and the worst ratio of the performance degradation A(u, m,n) in the paradox is
A(1.01,5,100) = 0.2 (i.e., 20% degradation) (see (63)),
when .= 1/{2n(u — 1)} = 50 (see (61)). Then
Zie = (1/5){1/n — t(p — 1)*} = 1/1000,  for all k (see (59)).

In this case, #;; decrease from 1/500 down to 0 as ¢ increases from 0 to 100 (=
1/(u ~ 1)?), and for ¢t > 100, no forwarding of jobs occurs.
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Thus we see that the chances of paradoxes and the magnitude in the degradation of
the performance in the paradox are greatly reduced from the case n = 1.

Furthermore we consider other values of y with n = 1.
For p = 1.001, A(1.001,5,1) = 200 (i.e., 20000% degradation), and
for p = 1.00001, A(1.00001,2,1) = 20000 (7.e., 2000000% degradation), etc. In this way,
we see that the worst ratio of the performance degradation A(g, m,n) in the paradox
becomes unlimitedly large as u approaches 1 with n = 1.

6 Concluding Remarks -

In this paper, we have examined the model consisting of symmetrical nodes with identical
arrivals to all nodes where forwarding of jobs to the other nodes through communica-
tion means with nonzero delays may clearly lead to performance degradation. We have
confirmed that in the overall optimization and in the individual optimization (Wardrop
equilibrium) such forwarding never occurs. We have shown that, in some parameter set-
ting of the class optimization (Nash equilibrium for one set of decision makers), mutual
forwarding of jobs for remote processing through communication means definitely occurs
and the ratio of the performance degradation may become unlimitedly large. We have also
shown that in the global-class optimization (Nash equilibrium for another set of decision
makers) such forwarding never occurs.

That is, such a paradoxical behavior may occur only in the class optimum and does
never occur for the overall, Wardrop, and global-class optima, in the same setting of this
symmetrical node model. ' :

We have obtained the uniqueness of class and global-class optima on the basis of only
the special assumptions on the communication means (i.e., dedicated lines and bus-type
connections). It has been quite hard to extend the proofs to more general assumptions. It
is not certain whether in some cases of the communication means the optima may still be
unique. It has been also difficult for us to analyze asymmetrical models. These are open
future problems.
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