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- Abstract

It has been reported that there exist a few numerical examples for the
Braess-like paradox in which adding a certain capacity to the system may
degrade the performance of all users. Unlike the original Braess paradox, this
behavior occurs only in the case of finitely many users and not in the case
of infinite number of users in the models examined. In this study, we exam-
ine a number of numerical examples around the Braess-like paradox such as
above. In the numerical examples, it is observed that the Braess-like paradox
is stronger (i.e., the performance degradation of all users in the Brass-like
paradox is larger) when the system has a higher degree of symmetry, in par-
ticular, in the parameter setting of the model whereby no forwarding of jobs
occurs in the overall optimum.

Keywords: Braess paradox, Nash equilibrium, Wardrop equilibrium, perfor-
mance optimization, numerical examples, distributed computer system, load bal-
ancing.

1 Introduction

We can choose between several distinct objectives for performance optimization in
many systems including communication networks in distributed computer systems,
transportation flow networks, etc. Among them, we have three typical objectives or
optima : :

(1) the overall optimum, system-optimum, cooperative optimum or social optimum,
where a certain overall and single measure, like the total cost or the overall average
response time, is to be optimized. We call it the overall optimum here.
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(2) the individual optimum, Wardrop equilibrium, or user optimum by some people;
where each of infinitely many individuals, users, or jobs cannot receive any benefit
by changing its own decision. Infinitely many users individually seek their own
optimization. It is further assumed that decisions of a single individual have a
negligible impact on the performance of other individuals. We call it the individual
optimum or Wardrop equilibrium here.
(3) the class optimum, Nash non-cooperative equilibrium, or user optimum by some
other people, where each of a finite number of classes, users, or players cannot
receive any benefit by changing its decision. A finite number (N(> 1)) of players
seek their own optimization non-cooperatively. We call it the class optimum or Nash
equilibrium here. ' ' _
Actually, (3) is reduced to (1) when the number of players reduces to 1 (N = 1)
and approaches (2) when the number of players becomes infinitely many (N — oo)

[4]. :

We can think that the total processing capacity of a system will increase when
the capacity of a part of the system increases, and so we expect improvements in
performance objectives accordingly in that case. The famous Braess paradox tells
us that this is not always the case; i.e., increased capacity of a part of the system
may sometimes lead to the degradation in the benefits of all users in a Wardrop
equilibrium [2, 3, 4]. We can expect that, in the Nash equilibrium where players
seek their own optimization non-cooperatively, the similar type of paradox occurs
(with large N), whenever it occurs for the Wardrop equilibrium (N — co). Indeed,
Korilis et al., [11, 12], found examples wherein the Braess-like paradox appears in a
Nash equilibrium where all user classes are identical in the same topology for which
the original Braess paradox (for the Wardrop equilibrium) was in fact obtained.

In [6], we presented the existence of a paradox similar to Braess’s that appears in
the class optimum (Nash equilibrium) but does not occur in the Wardrop equilibri-
um in the same environment. In this paper, we pursue the same line of investigation
and show a number of numerical examples where such a paradoxe appears in class
optimum but not in Wardrop. We present some tendencies or properties that can
be seen from those numerical results. It is surprising that in these numerical re-
sults, for the class optimum, the Braess-like paradox appears more strongly in more
symmetrical cases where no forwarding of jobs occurs in the overall and individual
(Wardrop) optimum. '

2 The Model and Assumptions

We consider a model consisting of two nodes (hosts) and a communication means
that connects both nodes. Nodes are numbered 1 and 2. Each node consists of a
single exponential server with service rate y; (¢ = 1,2). We classify jobs arriving at
node ¢ into class 7, 7 = 1,2. Node 7 has the external Poisson arrival with rate ¢;, out
of which the rate z;; of jobs are processed at node i. The rate z;; (z # j) of jobs are
forwarded through the communication means to the other node j to be processed
there, and the results of those jobs are returned back through the communication
means to node 1. Then we have z;; + z;; = ¢; (1 # 7), z;; > 0, 4,5 =1,2. We




denote the vector (z11, 12, T21, T22) by 2. We denote the set of 's that satisfy the
constraints by C and let ® = ¢; + ¢;. Within these constraints, a set of values of
z;; (1,7 = 1,2) are chosen to achieve optimization. The load on node i is z;; + z;;
(¢ # j) and is denoted by 3;, and the expected processing (including queueing) time
of a job that is processed at node 7, is 1/(y; — B;) for B; < p;, and is otherwise is

infinite.
As to the communication means, we consider the following two cases (A) and

(B).

(A) It consists of two two-way communication lines 1 and 2. The two-way line 7 is
used for forwarding of jobs that arrive at node ¢ (and for sending back the processed
results of these jobs).

We assume that the expected time length of forwarding and sending back a job

is to b
is to be .

1 - :L'ijt

Gi(zi;) =

Y

if z;;t < 1, and is otherwise infinite.

‘That is, we assume each communication channel is modeled by a processor shar-
ing server Wlth service rate 1/t; i.e., the mean communication (without queueing)
time is £, and thus, the capacity of each communication line is 1/¢.
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Figure 1: The system model (case (A)).

(B) It consists of a single-channel communication line that is used commonly in
forwarding and sending back of jobs that arrive at both nodes.

The assumption on the line is the same as (A) except that there is only one line
which is used for jobs arriving at both nodes. Thus the expected communication
(with queueing) time of a job arriving at node : and being processed at node j ( # ¢

) is expressed as
1

G(A) =
, *) 1 — (212 + z21)t
if (z12 + z21)t < 1, and is otherwise infinite, where A = z15 + x5 is the network
traffic.
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Figure 2: The system model (case (B)).

We refer to the length of time between the instant when a job arrives at a node
and the instant when it leaves the node, where it has arrived, after all processing
and communication (if any) are over, as the response time for the job arriving at the
node.

Thus the expected response time of a job that arrives at node 7 is

1 ' .
Ti(z) = — ) zuTin(z),
¢i k
where 1
Tii T = y
) pi — B;
if B; < p; (and it is otherwise infinite), and for j # 1,
Ty@) = —5+ 1 for case (4)
yE) = , r case (A),
’ pi— B 1=yt
1 t

+ ,for case (B).
pi— B 11— (i +zji)t ()

The above expressions hold, again, only for positive values of denominators, and are
otherwise infinite.
Then, the overall expected response time of a job that arrives at the system is

T(z) = ‘—;;Z &1

We have three optima, the overall, the individual, and the node.
(1) The overall optimum is given by such Z as satisfies the following,

T(Z) = minT(z) with respect to z € C. (1)

4 .




(2) The individual optimum is given by such #as satisfies the following for all 7,
T;(#) = min{Ti(£), Ti;(®)} (¢ # j) such that z € C. (2)

(3) The class optimum is given by such # as satisfies the following for all i,

Ty = Tu(®) = min Ti(Fiiij); Tis, Tij )

Tid Bij

~such that (Z_gij); zii, i) € C. ' (3)

where (Z_;ij); Tii, ¢i;) denotes the 2n vector in which the elements corresponding
to &;; and Z;; has been replaced, respectively, by z;; and z;.

In [9, 1] it is shown that the three problems (1), (2) and (3) are equivalent to
some variational inequalities.

We are sure of the existence and the uniqueness of the overall, individual, and
class optima for the model given here. For the existence and uniqueness of those
optima see [5, 6].

Remark 2.1 Note that, there should be no mutual forwarding in overall and in-
dividual optima. That is, in overall and individual optima, either one of ;; (i # 7)
must be zero in case (A) due to [16] or to Section 2.2.2 of [8] and in case (B) due to
[13]. And thus, when one of z;; (¢ # j) say z;; is non zero, T;(z) decreases and Tj(z)
increases with the change of ¢ as shown in Theorems 2.5 and 2.7 of [8]. Consequently
no paradox occurs for individual and overall optima. '

Let us define three symmetries with respect to the system parameter setting.
[Individual symmetry] If the following condition holds

11
pr—¢1 pa— o’

(4)

it can be proved from the definition (2) that at the individual optimum there will
be no forwarding between the two servers for any value of the communication line
capacity 1/t, for both cases (A) and (B). We say that we have an individual symmetry
property between the two servers in this case.

[Overall symmetry] If we have

i Ha |
(1 —#1)%  (ug— )2 (5)

then there is no forwarding when we are at the overall optimum, for both cases (A)
and (B). This can be easily seen from the Kuhn-Tucker condition for the overall op-
timization problem (1). We say that we have an overall symmetry property between
the two servers in this case.

[Complete symmetry] If both conditions (4) and (5) hold or equivalently if
p1 = pp and ¢; = ¢,, then we say that we have a complete symmetry between the
two servers. In the complete symmetry, no forwarding of jobs occurs both in the
overall and individual optima, for both cases (A) and (B).




3 The numerical experiments

In the following numerical results, firstly we show some cases where complete sym-
metry holds. In these experiments we change the service rates of the servers while
keeping the equalities between the two service rates and between the two arrival
rates.

Secondly, we introduce some asymmetry. We start from a set of data such that
the complete symmetry property holds.

- First we change both y; and ¢; in such a way that the property of individual
symmetry, i.e., condition (4) is preserved.

- Starting again from the complete symmetric case, we fix u; and ¢, change u,
and ¢; in such a way that the overall property is preserved.

- Starting from the complete symmetric case, we fix p,, ¢; and ¢, and let p,
changes. In this case none of the property of symmetry holds anymore.

For each set of data, i.e., for each vector (u1, 2, ¢1,#2) we can find some value
t° (depending upon the set of data) of the mean communication time such that the
communication line is not used anymore at equilibrium if the mean communication

time is larger than ¢*°. For each set of data (u1, 2, @1, #2), we increase the mean
~ communication time from 0 to ¢*. For each ¢ we compute the class optimum (Nash
equilibrium). In Fig. 3, we show the case where (p1, u2,¢1,¢2) = (25,25,20,20). In
this case, > = 0.8 as is seen in the figure 3.
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Figure 3: Mean response times at class optimum, for (py, 12, ¢1, o) = (25,25, 20, 20)
(Complete symmetry) : Ty = T, = T.

We use the following best reply algorithm to compute these Nash equilibria.
For some fixed parameters ¢y, @y, 1, g, ¢,

~ Initialize 2° = (29, 29, 29,, 23,) € C.
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— Define " as

n ny\ _ . n—1 n—1
(9311"”12) = arg (xfllemI}z)Tl(xlhxlz>$21 Ty ),
¥

(€31, 03,) = arg min  To(a3), 21y, 2a1, T22).
214722
It can be shown that this algorithm converges for our model[8].
We focus our attention on the degradation that may occur when adding the
communication line. To this aim we say that a Braess-like paradox occurs if the
" following holds:

Dy(t1,82) >0 and Dy(t1,t5) >0 (6)
for some #;,¢; such that 0 <t; <y,

Ti(t) — Ti(t)
Ti(t2)
jobs, computed at the (unique) Nash equilibrium, when the mean communication

time is 2.

For simplicity, we only consider the case where ¢, = ¢, i.e., the system has no
communication means, and we denote D;(t,t*) by A,(¢).

Thus, we define the worst ratio of performance degradation in the paradox
P(p1, pa, ¢1,92) as follows:

L1, pz, b1, 42) = maxmm{Al(t) Aq(t)}. (7)

Denote #, the mean communication time, such that the previous maximum is at-
tained. ' :

Notice that we can define a weaker paradox. For example we can think of some
kind of local paradoz, such that we can observe for some interval of ¢, T (t), for some
i, increases, but nevertheless the overall mean response time 7'(t) = (1 [®) (A Ti(t)+
¢2(t)T2) decreases This weaker paradox may occur even if (6) does not hold, and
has been already discussed in [7].

where D;(t1,1t2) = , and Tj(t) denotes the mean response for class i

4 Results and Discussion

We show typical numerical examples, in the case (A) of the communication means,
with changing parameter values from p; = uy = 25 and ¢; = ¢, = 20 for each
of four directions: complete, overall, individual, and no symmetry maintained. For
case (B), we had similar observations, a part of which is also shown below.

4.1 Complete symmetry maintained

In the following table, we show the effect of changing p; = ps from 25 (keeping
¢1 = ¢, = 20 fixed) with complete symmetry maintained. “No P.” means the
situation where no paradox is seen for any interval of .

L 20.1 (22 ] 25]45] 65| 100 | 200
Ailto) (%) || 35 |30 (259 | 5| 3 | NoP.
T'(%) 35 (3025 9| 5| 3 |NoP.




As an example, we show the figure for the case where (p1, p2, ¢1, d2) = (45,45, 20, 20).
Compare this figure 4 with Fig. 3.
The results are almost the same for both cases (A) and (B).

4.2 Overall symmetry maintained

In the following table, we show for case (A) the effect of changing p; and ¢, from

25 and 20, respectively (keeping po = 25 and ¢, = 20 fixed) with overall symmetry
' H2
=1. -

H1 _
(H1— 1) (p2 — ¢2)?

maintained, i.e., such that

[ 4] 9 [25]64] 121 | 400 | 40000
1 2 | 6 | 2056|110 | 380 | 39800
Ar(to) (%) | 3 |14 |25 |24 | 19 | 10 | 0.1
Ag(to) (%) 10 |19 |25 | 21| 19 | 15 | 10
T (%) 3 |14 ]25]21] 19 | 10 | 0.1

As an example, we show the figure for the case where (p1, ua, ¢1, $2) = (64, 25,56, 20).
Compare this figure 5 with Fig. 3.
The results for case (B) are quite similar to those for case (A) as shown above.

4.3 Individual symmetry maintained

In the following table, we show the effect of changing p; and ¢; from 25 and 20,
respectively (keeping py = 25 and ¢, = 20 fixed) with individual symmetry main-

1 1
tained, i.e., such that = =_.
pi—é1  p—¢1 5
01 6 | 152565105125 | 505
P1 1 1102560100 120 | 500

Ar(to)(%) |[41[32]25| 9 | 2 | 1 |NoP
As(to)(%) || -8 | 12|25 | 50 | 62 | 66 :
(%) 812259 | 2 | 1 |NoP.

As an example, we show the figure for the case where (111, 2, ¢1, ¢2) = (65,25, 60, 20).
Compare this figure 6 with Fig. 3.
The results for case (B) are quite similar to those for case (A) as shown above.

4.4 No symmetry maintained

In the following tables, we show, for both cases (A) and (B), the effect of changing
py from 25 (keeping ps = 25 and ¢ = ¢ = 20 fixed), i.e., with no symmetry
maintained. '

Case (A)
1 205 [23]25 )27 31 33
1 20 20 ]120) 20| 20 20
A; (t0)(%) | NoP. | 2 [ 2536 | 32 | No P.
Az (to) (%) 4225 8 |-14
r %) - NoP.| 2 {25 8 |-14 | No P.




Case (B)

141 20.5 | 232527 31 33
D1 20 2012020 20 20
A1 (t0)(%) | NoP. | 2 | 25|39 | 45 | No P.
As (to) (%) 42 |25/ 6 |-18

I' (%) NoP.| 2 |25]| 6 |-18 | No P.

As an example, we show the figure for the case (A) where (uy,us,¢1,¢;) =
(33,25, 20, 20) Compare this figure 7 with Fig. 3.

Overall tendency

In these examples, we see that the worst ratio of performance degradation in the
paradox is the largest in the complete symmetry case with the arrival rate being
closest to the service rate, i.e., the case where (uy, 2, ¢1, ¢2) = (25,25, 20,20). The
degradation decreases most rapidly as the parameter setting departs the above-
mentioned symmetric case without keeping any kind of symmetries. It decreases
much slower with complete symmetry maintained and also with individual symme-
try maintained. It decreases most slowly with overall symmetry maintained where -
no forwarding of jobs occurs in the overall optimum. It looks quite strange that
in these symmetrical cases, in particular, in the overall symmetry, the chances of
Braess-like paradox are greater than non-symmetrical situations.

5 Concluding remarks

We have presented a number of numerical examples for the Braess-like paradox
wherein adding a resource to a system leads to the performance degradation for
all users in the class optimum for load balancing. We have shown the examples
in the model of load balancing between two distinct servers. it is surprising that
the paradox appears the most strongly in the model of identical servers with each
identical servicerate in the class optimum (Nash equilibrium) while we cannot expect
that such a paradox occurs neither in the overall optimum nor in the individual
optimum (Wardrop equilibrium) in such situations. It is also amazing that, in the
model of asymmetric servers, the paradox in the class optimum keeps to appear in
the case of overall symmetry wherein no forwarding of loads occurs in the overall
optimum. We think that more exhaustive research into these problems is worth
pursuing in order to gain insight into the optimal design and QoS (quality of service)
management of distributed computer systems, communication networks, etc.
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Figure 4: Mean response times at class optimum, for (puy,pq,¢1,¢2) =
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