Drag and Drop: Amalgamation of Authoring,
Querying, and Restructuring
for Multimedia View Construction

Atsuyuki Morishimaf, Seiichi Koizumitt, and Hiroyuki Kitagawat

tInstitute of Information Sciences and Electronics, University of Tsukuba
t1Doctoral Program in Engineering, University of Tsukuba

February 2000

ISE-TR-00-165

Abstract

Recently, it has been a matter of great importance to publish the multime-
dia data objects stored in various information sources. The World Wide Web
is often used as publication media. In such context, a crucial point is how to
present the results of the set-at-a-time operation (querying and restructuring
of data in underlying information sources). Frameworks to specify how to
query and restructure data are usually different from those to specify the pre-
sentation of the results in existing systems. This paper proposes a visual user
interface which amalgamates authoring, querying, and restructuring functions
for multimedia Web view construction. The user is only required to drag and
drop data objects, just like in typical authoring tools for HTML and SMIL
pages. A feature of our user interface is that the user can designate an existing
data object as an example, which will serve as the representative of a set of
data objects. Manipulation of an example is interpreted as manipulation of
the set of data objects. Therefore, the object-at-a-time authoring framework
and the set-at-a-time data manipulation (querying and restructuring) frame-
work are integrated in a seamless way. Another feature is that the interface
can cope with semistructured data, which often appear in the context of mul-
timedia view construction. This paper also provides the formal semantics of
data operations through the visual user interface.

1. INTRODUCTION

Recently, it has been a matter of great importance to publish the data ob-
jects stored in various information sources. The World Wide Web is often used
as publication media. The data objects often include not only numerical and
text objects, but also multimedia objects such as image, audio, and video ob-
jects. Many systems have been proposed in the literature, and a large number
of systems are currently used in practice. For example, Web-site management
systems such as Strudel (Ferndndez et al., 1998) can create different Web views
on top of heterogeneous information sources. The information sources can be
traditional databases and existing Web pages containing multimedia objects.
Practical examples are many tools for Web application development. One of
their main functions is to show the query result of back-end databases in the
form of Web pages.

In such systems, a crucial point is the presentation of the results of the
set-at-a-time operation (querying and restructuring of data in underlying in-
formation sources). The user is usually required to adopt different schemes to
‘query and restructure data and to present the result. For example, Strudel
requires the user to use StruQL for querying and restructuring data, while
the HTML template language is used for specifying how to present the result.
Also, typical Web application development environments require the user to
use SQL for querying and offer visual tools for designing the layout of the
result.

This paper proposes a visual user interface which amalgamates authoring,
querying, and restructuring functions for multimedia presentation. In our
context, construction of multimedia presentation means creation of Web views,
involving HTML and SMIL(W3C, 1998)-based multimedia Web documents,
on top of heterogeneous information sources. The interface looks like just a
common authoring tool for HTML and SMIL documents: The user is only
required to drag and drop data objects presented in windows into a blank
window named the canvas. He can put data objects anywhere he likes, and
specify their sizes with mouse operations. As a feature, our interface allows
the user to designate an existing data object as an ezample. Then, the data
object (the example) serves as the representative of a set of data objects. A
drag-and-drop operation of the example is interpreted as manipulation of the
set of data objects. Therefore, the object-at-a-time authoring framework and
the set-at-a-time data manipulation (querying and restructuring) framework
are integrated in a seamless way.

Another important feature of our user interface is that it can cope with
semistructured data (Abiteboul, 1997)(Buneman, 1997). This feature is im-
portant in multimedia integration and presentation. Multimedia objects are
often stored and managed in the World Wide Web, which is a well-known
example of semistructured data. Because the data structure is often irregular
and implicit in semistructured data, the domain of the objects an example
represents cannot be fixed in advance. In contrast to this, the domains are
fixed in advance in QBE (Zloof, 1977) and other QBE-like query languages

2

for relational databases. In our framework, the domain is defined dynamically
according to the user’s interaction with the user interface. By specifying ’an-
other’ examples, the user allows the interface to infer the intended domain.
This feature is essential for operation of semistructured data.

The visual user interface is originally designed for an information integra-
tion system InfoWeaver, which we have been developing for heterogeneous
information integration (Kitagawa et al., 2000)(Morishima et al., 1999(b))
(Morishima et al., 2000(a)). Although the fundamental design of the interface
is independent of InfoWeaver, InfoWeaver provides one of typical contexts
where our user interfaces is useful. Figure 1 shows the architecture of In-
foWeaver. The mediator (Wiederhold, 1992) and wrappers (Roth et al, 1997)
are used for integration. The wrappers provide the mediator with views on
top of information sources (based on WebNR/SD, the common data model in
our environment). The user manipulates data through the mediator.

(1) WebNR/SD
Representation:
of Metadata

Figure 1 Integration environment InfoWeaver.

The main contributions of this paper are as follows.

1 We propose a visual user interface for constructing multimedia presenta-
tion on top of information sources. It amalgamates the object-at-a-time
authoring operation and the set-at-a-time querying and restructuring
operations.

2 The information sources can be heterogeneous information sources in-
volving semistructured data. Through the interaction with the user, the
system infers the target data objects.

3 We present the formal semantics of the data operations through the
visual user interface.

The rest of this paper is organized as follows. Section 2 shows an application
“scenario. Section 3 explains the basic concepts for the visual user interface
design. Section 4 shows how to construct the multimedia Web view through
the visual user interface. Section 5 explains the formal semantics. Section 6
briefly surveys related work. Section 7 is the conclusion.

2. " APPLICATION EXAMPLE

This section shows an example of multimedia Web view construction. The
information sources include RDBs and XML-based Web pages. The output
is a collection of HTML and SMIL Web pages. First, we show the example
scenario. Then, we explain how to use SMIL for multimedia presentation.

3

2.1. EXAMPLE SCENARIO

We consider two relational databases and the Web as information sources.
(1) A baseball game video database: This is a relational database which con-
tains video (RealMedia (RealNetworks, Inc.)) objects and their metadata.
The video objects and their metadata are stored in the relation VIDEO(VID,
GID, Begin, End, Batter, Pitcher, Contents). VID is a Video ID. The domain
of the attribute Contents is an ADT for RealMedia, named VIDEO type. The
other attributes GID, Begin, End, Batter, and Pitcher represent metadata on
the Contents. The meaning of the relation VIDEO is that each VIDEO value
in Contents records a scene starting from the Begin time to the End time of a
game (represented by GID), where Batter and Pitcher are facing each other.
(2) A baseball statistics database: This is a relational database which main-
tains the latest statistics about baseball players. This database contains the
relation BATTING-STATS(P-Name, Hit, RBI, AVG) (3) A baseball players’
profile Web site: This site contains the profile information of baseball players.
The Web-site structure is shown in Figure 2(a). The index page contains links
to baseball team pages. Each team page contains the team logo (as a reference
to a GIF format file) and links to player pages. Each player page contains the
profile data. We also assume that the pages on the site are written in XML
and that there are two variations in the structure of the team pages. Figure 3
shows the two variations in page structure. One has flat structure, while the
other groups players into categories.

The requirement here is to create a multimedia Web view on top of the above
information sources. A SMIL Web page is constructed for each player whose
batting average is more than 0.3 for the current season. It is a multimedia
page (Figure 2(b)), which consists of three different kinds of components: (1)
A sequential rendering of scenes (video objects) in which he is at bat. (2) The
logo of the team he belongs to. (3) Text description of his profile.

An index HTML page is also created (Figure 2(c)). It contains an image
object (’GoodBatters’), the selected players’ names, batting averages, and
links to the players’ multimedia pages.

(©ndexPage ¢y
- iGoodBatiers:
«Johnson 0.304 Info.
--|L-homas 0.320 m\\
-Larry . He graduated
~ q'mmxumv.

PlayerPag

(_EamPage XM
XML an

(@ o gradua

b @?ms
Giant: M

(b} Multimedia Pages&wiy

B

Figure 2 Multimedia Web view on top of heterogeneous information sources.
4

<team> <team>

<tname>Tigers</tname> <tname>Giants</tname>
<logo></logo> <logo></logo>
<players> <players>
<player ppage="http://..">Johnson</player> <fielders>
<player ppage="http://..">Thomas</player> <player ppage="http://..">Larry</player>
</players> </fielders>
<team> <pitchers>

<player ppage="http://..">Brian</player>

</pitchers>
</players>
</team>
(a) Team page of Tigers (b)Team page of Giants

Figure 3 Team page variations.

2.2. SMIL

SMIL (Synchronized Multimedia Integration Language) can represent inte-
grated multimedia contents as XML-based tagged text. Figure 4 is an example
of a SMIL page, that represents a multimedia page explained in Subsection
2.1. A SMIL page must start with the tag <smil> and end with </smil>.
In general, we refer to a substring which is surrounded by <¢g> and </g> tags
as an element. The <g> tag of an element often contains attributes of the
element.

<smil>
<head>
<layout>
<root-layout height="373" width="506"/>
<region id="R1" left="0" top="0"
height="215" width="346"/>
<region id="R2" left="0" top="216"
height="157" width="167"/>
<region id="R3" left="168" top="216"
height="155" width="338"/>
</layout>
</head>
<body>
<par>
<seq>
<video src="Scene_Ji.rm" region="R1"/>
<video src="Scene_J2.rm" region="R1"/>
</seq>

<textstream src="ProfilelJ.rt" region="R3"/>
</par>
</body>
</smil>

Figure 4 Example of a SMIL page.

The page has two main parts. First, the head part specifies the layout of
the multimedia page. In this example, the layout part says the page contains
three rectangular regions. The attributes used in the head part are as follows.
The id attribute is the identifier of the region. The left and top specify the
top-most and left-most positions, respectively. The height and width specify
the size.

Then, the body part specifies how to present multimedia objects in the
layout. This example contains two videos, one image, and one textstream.
The <video/>, , and <textstream/> tags' represent references to the
video, image, and textstream objects, respectively. These tags have the follow-
ing attributes. The src attribute represents the URL of the referenced data
object. The region attribute represents the region where the data object is
rendered.

Tags <seq> and <par> give synchronization information. The multimedia
objects directly surrounded by the <seq> tag are presented in a sequential
way. On the other hand, the <par> tag specifies that objects are presented
in parallel. Therefore, the example SMIL page specifies that the multimedia
presentation shows in parallel a sequence of two scenes (video objects), an
image object, and a textstream object.

3. BASIC CONCEPTS

This section explains the basic concepts involved in the visual user interface
design. Formal definitions are given in Section 5.

3.1. WINDOWS

The interface consists of three types of windows.
DataBox: A DataBoz is used to display a set of data items stored in an
information source. Figure 5 shows example DataBoxes. The DataBoxes (a)
and (b) are used to display relations in relational databases. In this case,
each DataBox is connected to a relation, and the display unit is a tuple. The
user can click the Next and Previous buttons to browse other tuples in the
relation. The relation to be displayed is designated by using the Open menu
of the DataBox. The DataBoxes (c) and (d) are used to display Web pages. In
this case, each DataBox is associated with one or more Web pages. The display
unit is a Web page. The Web page(s) to be displayed is designated either by
specifying a URL or by using a mechanism to gather Web pages. This paper
assumes that we can gather Web pages using some mechanism. We reported
a page gathering mechanism via browsing and querying in (Morishima et al.,
1999(a)). Also, Web query languages such as WebSQL (Mendelzon et al.,
1996) can be used for this purpose. But we omit the details because it is
beyond the scope of this paper. A DataBox displays a unit of data items (a
tuple or a Web page) at a time. In the remaining part of this paper, we call
a display unit in a DataBox just a page.
Palette: A Palette is a window which provides various component data ob-
jects to be included in the data manipulation result. Figure 6 is an example
of a Palette. The palette contains an image object, a hypertext link object, a
dot object to represent a list item, a horizontal rule object, and so on.
Canvas: The Canvas is a blank window into which the user can drag-and-
drop data objects from DataBoxes and Palettes. The user can put data objects
anywhere he likes, and specify their sizes with mouse operations.

(2)DalaBoGIBS(BATTING STATS) ibf DataBox4:VO(VIDEQ) ﬂDataBothPfTeamPaff (d)_DataBox2:PP(PlayerPage)
Name{ RDB:BATTING-ST | | Name] VideoDB:VIDEO jf | Name: Name:
Next XPreviou: Next _XPreviou: Next XPreviou: Next XPreviou;
VID: 1 Ti
igers Johnson
P-Name: [__Johnson || JaiD: 1 9 SO Image Link Listitem HorizontalAule
i Begin: 0:00:0: profile— [o i
e i |l © s M U L -
End: 0:40:0s e
RBI: Batter: Johnson * Johnson .
AVG: Pitcher: Mike * Thomas F gure 6 Palette.
content XZ%
O e

Figure 5 DataBoxes.

3.2. OBJECTS

In our context, an object is the unit of drag-and-drop operation. For ex-
ample, an element (a substring which is surrounded by <g> and </g> tags)
contained in a Web page and an attribute value in a relation are objects.

3.3. DRAG-AND-DROP

Drag-and-drop is the basic operation of this interface. By dragging-and-
dropping objects from DataBoxes and Palettes into the Canvas, the user can
construct various multimedia Web views on top of heterogeneous information
sources. (See Figure 7.) In Figures 7~12, multiple pages are shown simul-
taneously in a DataBox for explanatory purposes. Actually, the user has to
press Next and Previous buttons to see them.

(D‘\QB-QX — Canvas Result
5 = A G I

- Ui
Joﬁn "A

John 0304

John | 0.304
! f
A

< Drag and Drop

Figure 7 Drag-and-Drop operation and the result.

3.4. EXAMPLES

Introduction of the concept of examples into a drag-and-drop-based page
authoring framework is the distinguishing feature of our user interface design.
The user can designate an object as an example by clicking a mouse button
on the object. (We explain this in Section 4.) We call the object specified
as an example an ezample object, or shortly, an ezample. A drag-and-drop
operation of an example is interpreted as manipulation of a set of objects the
example represents. Therefore, the object-at-a-time authoring framework and
the set-at-a-time data manipulation (querying and restructuring) framework
are integrated in a seamless way.

3.5. TARGET SETS

A set of objects an example represents is called the target set of the example.
As a default, the target set is defined as the set of objects each of which
appears at the same position on a page as the example object. Manipulation
of an example means manipulation of objects in its target set (Figure 8).

————— Canvas Result

John 0.304 Thomas 0.304

E;ample ”I‘arget Set of the Example
Figure 8 Manipulation of an example and the result.
7

3.6. ASSOCIATIONS

When the user specifies multiple examples (and their target sets), it is often
the case that associations occur among the target sets. Two types of associ-
ations are considered in this interface design. The first one is the structural
association (S-Association). This occurs according to a structural relationship
(relative position) between two examples. For example, if two examples are
on the same page, it implies an S-Association so that objects taken from their
target sets must reside on the same page. (Actually, S-Association can have
more general meaning. We explain this in Section 5.) The second one is the
value association (V-Association). This occurs if values of example objects are
the same. If any association occurs among the target sets, only some combi-
nations of objects are qualified to be manipulated. Note that an association
serves as a kind of join condition.

For example, suppose that the user wants to change the page layout in the
DataBox in Figure 8 so that the name and the batting average appear side by
side. If the user takes example objects as in Figure 9, the system considers
that there is no S-Association between the two target sets. Therefore, all
combinations of the objects appear in the result. In contrast, if he takes
examples as in Figure 10, S-Association occurs and he gets the intended result.

Then, suppose that we have two DataBoxes as shown in Figure 11, and
that the user wants the pages each of which contains a player’s name, his
team name, and his batting average. If he takes example objects as in Figure
11, there is no V-Association. However, if he takes examples as in Figure 12,
V-Association occurs and he gets the intended result.

We explain the formal semantics in Section 5.

DataBox Result

John 0.304 | [Thomas 0.304

John 0.254 Thomas 0.254

Figure 9 No S-Association between target sets A and B.

Result

John 0.304 Thomas 0.254

Figure 10 S-Association between two target sets A and B.

(Only the pair of the objects on the same page are considered.)

8

Canvas Result

John Larry
Tigers Giants
0.315 0.315
John Larry
Tigers Giants

0.304 0.304

Figure 11 No V-Association.

DataBox 1 Canvas Result

John Larry

Tigers Giants

0.304 0315

Figure 12 V-Association between target sets A and C.
(Only objects with the same value match each other.)

4. OPERATION

This section explains how to manipulate data through this user interface,
and gives specifications for the example scenario shown in Section 2.

4.1. EXAMPLES AND TARGET SETS

Basically, what the user has to do is just to drag-and-drop objects from
DataBoxes and Palettes into the Canvas, and arrange the objects as he likes.
However, as mentioned before, the user can specify that an object is an ezample
before dragging-and-dropping the object. If the user clicks the right mouse
button on an object in a DataBox, a menu appears (Figure 13). Selecting
the “Example” menu item specifies that the object is an example. At first,
the system assigns a default target set to the example object. It is the set of
objects each of which resides at the same position on a page as the example.
For example, in Figure 13, the target set would be the set of the P-Name
values in Relation BATTING-STATS. The “Another” and “Clue” menu items
are used to modify the target set.

Example objects are always highlighted in DataBoxes. If the user clicks
the left mouse button on an example object, objects in its target set are also
highlighted. Therefore, the user can identify non-example objects, example
objects, and their target sets anytime.

The following regular expression shows the operation procedure through our
user interface.

(’Example’ ("Another’ | 'Clue’)* | 'D&D’)*
9

Here, ’Example,” "Another,” and ’Clue’ mean selections of respective menu
items on an object. The 'D&D’ means Drag-and-Drop operation. We call them
'Example,” ’Another,’ "Clue,” and 'D&D’ operations, respectively. Intuitively,
the user interface allows any combinations of the following operation patterns.

» To specify that an object is an example, and accept the target set.

m To specify that an object is an example, and change the default target
set by successive ’Another’ and ’Clue’ operations.

= To drag and drop an non-example object (an object which the user has
not specified as an example or one in a Palette), and arrange it on the
Canvas.

m To drag and drop an example object, and arrange it on the Canvas.

i Open l
Name] RDB:BATTING-ST. | open |
Next XEreviou Name:RDB:BATTING-ST,
P-Name: oT\ Example Next XPreviou
Hit: 180 é:’remer P-Name:
- —~ Hit:
Figure 13 Menu to specify Figure 14 ClueBox.

examples and target sets.

If ’Another’ operation is performed after 'Example’ operation, the target
set of the example is extended to include the ’Another’ object. Intuitively,
the system tries to generalize the relationship between the position of the
example and that of the ’Another’ object, and includes objects which have the
generalized relationship with the example into the target set. (We show the
rules in Subsection 5.2.)

If "Clue’ operation is performed after 'Example’ operation, the system nar-
rows the target set. First, the ClueBoz appears on the display (Figure 14).
The user can change the shown condition into another one. For example, he
can change the condition “= 0.304” into “> 0.3.” In general, ’Clue’ operation
makes the target set contain only the objects o; each of which satisfies all the
following conditions.

a o; is included in the original target set.

m o; has a corresponding object ¢; such that they have the same relative
position as the example object and the ’Clue’ object have. (In the above
example, ¢; is the batting average of each player.)

m ¢; satisfies the condition specified in the ClueBox. (In the example, the
batting average value has to be more than 0.3)

Therefore, in the example, the target set is narrowed to contain only the
players whose batting averages are more than 0.3.
10

4.2. ASSOCIATIONS

As mentioned in Subsection 3.6, S-Association occurs according to the
structural relationship (relative position) between two example objects. V-
Association occurs if two example objects have the same value.

4.3. GROUPING

By default, one result page is generated for each (qualified) combination of
objects (See Figures 9~12). This rule can be changed by putting the repetition
mark (*) at the appropriate position on the Canvas. Essentially, it works as
Nest operator of the nested relational algebra (Fischer, 1983). The following
subsection includes examples of grouping.

4.4. OPERATIONS FOR THE EXAMPLE
SCENARIO

Figure 15 illustrates specification to obtain the required result of the exam-
ple scenario given in Section 2. We assume here that DataBoxes TP, PP, BS,
and VD contain all the team pages, all the player pages, Relation BATTING-
STATS, and Relation VIDEO, respectively. We show the operation sequence.

(1) Open the Canvas and declare the construction of an HTML page. (Then,
the system opens a space for the HTML page on the Canvas.)

(2) D&D the image *Good Batters’ from the Palette into the Canvas.
(3) D&D the 'ListItem’ object from the Palette into the Canvas.

(4) Specify that 'Johnson’ in TP is an example. The default target set
includes those players who appear first in the player list of each team
page having the structure shown in Figure 3(a). Next, specify that
"Thomas’ in TP is an ’Another’ object. Then, press the Next button of
the DataBox TP to find the team page of Giants, and specify that 'Larry’
on the Giants’ page is an ’Another’ object. (Alternatively, you can use
another page which has the structure shown Figure 3(b).) The system
uses rules to generalize the relationship between positions of ’Johnson,’
"Thomas,” and "Larry,’ so that the target set of this example is extended
to include all players of all teams.

(5) D&D the “Johnson” from TP into the Canvas.

(6) Put a repetition mark (*) on the list item object. As a result, all the
players are listed in this page. Otherwise, a new page is produced for
each player.

(7) Specify that 'Johnson’ objects in PP and VD are examples. Note that
the three target sets of Johnson’ objects in TP, PP, and VD have V-
Association. Therefore, this specifies equality joins between their target

sets.
11

(8) Specify that 'Johnson’ in BS is an example. (Its target set also has V-
Association with the above three target sets.) Then, specify that *0.304’
in BS is a clue of the example. Rewrite the condition in the ClueBox
and make it "> 0.3’ so that the target set of the example 'Johnson’ in
BS includes only players with their batting averages over 0.3.

(9) Specify that '0.304’ in BS is an example. D&D it from BS into the
Canvas.

(10) Declare the construction of a SMIL page. The system opens a space for
the SMIL page on the Canvas.

(11) D&D the HypertextLink object from the Palette into the Canvas. Con-
nect it to the SMIL page.

(12) Specify that [in VD is an example. D&D it into the Canvas.

(13) Put the repetition mark (*) on the dropped {ESTIL object. As a result,
the scenes (video objects) of a player are rendered sequentially as one
video. Otherwise, a SMIL page is produced for each scene.

(14) Specify that '@’ in TP is an example. D&D it into the Canvas.
(15) Specify that the profile in PP is an example. D&D it into the Canvas.

(16) Press the ’Create’ button on the Canvas.

a)DataBox1:TP(TeamPage) b) DataBox2:PP(PlayerPage) (c)DataBox3:BS(BATTING-STATS) (d) DataBox4:VD(VIDEQ
Open Open Open Open

Name: Name: Name] ros:satTinG-sT]} | Name{ videoDB:vIDEO
Next)Breviou Next XPreviou (ext DBreviou (Next DBrevioud
ViD: 1
P-Name: GID: 1

. | Hit: Begin: 0:00:08

End: 0:40:08

Batter: Johnsoni7.

Pitcher: Mike

f .. . :' .170.3048.9.
! N o { :
] I — \. _(, 1 Contentstt
— I e,

i :
i [Link™ Digtitem, HolizohiaiRule]
! ~ !
! S K, — (e) Palette |
e ’ _\f(’ N N |
i _(f) Canvas - ,./\ \.\ \A i
r16.(Create) A” " R]
\ L J N 7
\C 7 S sMIl 7)
"/ i Vs *13,
N/ ; “12.
\./ i
V- i 7

)
3Fjohnson 6.304 H
| 15.

" He graduated from X_Univ_
.ee

Figure 15 Speciﬁcation for the example scenario.

Figure 16 is a screen shot of the prototype system under development where
the user is doing the example scenario operations.
12

Figure 16 A screen shot from the prototype.

5. SEMANTICS

This section gives the formal semantics for the user interface in terms of the
predicate logic and the nested relational algebra (Fischer, 1983). The formal
semantics defines the behavior of the user interface more precisely. Therefore,
it is not only of use for theoretical analyses, but it also makes the proposed
scheme to be more easily applicable to various contexts, such as semistructured
databases and CGI-based Web page generators.

We define the formal semantics in the following three steps.

1 We express the source data as an object tree.

2 We derive the target relation according to the user’s interaction. The
target relation represents target sets and the associations among objects
in the target sets.

3 We restructure the relation into a nested relation which reflects the
grouping structure specified by repetition marks on the Canvas. This
nested relation specifies the final result.

5.1. DATA MODELING

We represent the source data as an object tree. The tree in Figure 17
represents a part of the source data in the example scenario shown in Section
2.

Every node is annotated with a label, which consists of a label name and
a label number. (We omit the root label for simplicity.) The followings are
some remarks. (1) Subtrees whose roots are second level nodes (children of
the root) correspond to DataBoxes. They have labels in the form of *DB.1,’
where DB is the name of the corresponding DataBox. Subtrees whose roots
are third level nodes correspond to pages. They are labeled with 'PAGE.i.’
(2) A subtree whose root is a fourth level node represents an XML page or a
tuple of a relation. (3) The label number of a node is 1 if none of its sibling
nodes has the same label name. Otherwise, label numbers are sequentially
assigned to sibling nodes with the same label name. (4) We refer to the nodes
of the tree as objects and tag them with OIDs. In Figure 17, some OIDs are

13

explicitly presented in the form of &n for the convenience of the following
explanation. (5) Note that this is semistructured data. There are two kinds of
team pages whose structure is different. A PLAYER may be a direct child of
a PLAYERS element or be placed under other elements such as FIELDERS
and PITCHERS.

In the following discussion, path(o) and value(o) denote the path from the
root to the object o and the value of o, respectively. For example, path(&12) =
TP.1-PAGE.1-TEAM.1 —PLAYERS.1—-PLAYER.1, and value(&12) =
“Johnson.” We often reference an object by its value if there is no ambiguity.

TNAMEt
“Tigers'O i TNAME.1
L0601 piatens. GBS’ LOGD.IPLAYERS. NAMEIPROFILET PNAME.1 HIT.1 B)
*Johnson' *Ho graduated & .8 X
from X univ .. “Johnson®

iMG.1 IMG.1 FIELDERS.1PI 5
(o PUERPLAYER2 " Ef3S-1 PITCHERS 1
@ Censlopogt
TigersLogo.git
“Johnson" *Thomas"
PLAYER,

Y. PLAYERY Y,
&
"Lat

Larry*
Figure 17 Tree representation of the source data.

gt g Beemmmusmcommn
.9 &1 BEQ1ENGy BaTIGR.1 PITCER 10N

" "1 "0:00:05" "0:40:05" “Johnson' ‘Mike® VIDEO
Pretioy (Scene_J1)

5.2. TARGET SETS

Each example object has a corresponding target set. Given an example e,
its target set (denoted by T'S.) is defined as follows.

Case 1: If no 'Clue’ operation has been invoked for e,
TS. = {olo € O A Candidate-Pred,(0)},

where O is the set of all the objects in the object tree, and Candidate- Pred, (o)
is a candidate predicate incorporating a path expression. A path expression
is similar to a path but may contain wildcards. Candidate-Pred, (o) holds if
and only if path(o) conforms to the path expression. The candidate predicate
is determined by the ’Example’ and ’Another’ operations as shown below.

Exaniple The following T'Sg, 12 gives the target set specified by Operation
(4) in Subsection 4.4.

TSg1 = {0lo € ONTP.1—-PAGE.?—TEAM.1—-PLAYERS.1—?*PLAYER.?[0]}

Wildcards considered in the paper are listed in Figure 18. Given the source
data shown in Figure 17, T'Sg19 = {“Johnson”, “Thomas”, ..., “Larry”, ...,
“Brian”, ...} (all players of all teams). Note that the wildcard '?’ matches
with any label number, and that ’?* with any sequence of any nodes (*7*’
also matches with the sequence whose length is 0). Therefore, all players in
the two different kinds of team pages are included.

| Wildcard | What to match with]
Name.? A node with label name Name
? A node with any label
7* Any sequence of any nodes (the length can be 0)

Figure 18 Wildcards.
14

Derivation of Candidate Predicates Candidate-Pred,(o) is determined
by ’Example’ and ’Another’ operations. In the derivation process, paths and
values of objects play important roles. For this purpose, we add annotations to
predicates. Annotations for Candidate-Pred. (o) give information on path(e)

2. Annotations are surrounded by “(“3. We represent

and value(e)*. ”

and
the null sequence as .
For example, specification of T'Sg, 19 with annotations is as follows.

T'Sg1s = {olo € ONTP.1>PAGE.?(PAGE.1) —~TEAM.1—PLAYERS.1
—7*(e) »PLAYER.?(PLAYER.1)[0o(Johnson)]}

Note that the annotations give information on path(&12) and value(&12).
In general, Candidate-Pred.(o) is derived as follows.

(1) First, when the user specify that the object e is an example, the default
candidate predicate plo(v)] is derived. Here, p is same as path(e) except that
its PAGE.i is replaced by PAGE.?(PAGE.), and v is value(e).

For example, consider Operation (4) in Subsection 4.4. When the user
specifies the object &12 (with its value “Johnson”) as an example, the de-
fault candidate predicate derived is TP.1->PAGE.?(PAGE.1) — TEAM.1 —
PLAYERS.1— PLAYER.1[o(Johnson)]. The predicate defines the default
target set explained in Subsection 4.1. That is, the set of objects which ap-
pear at the same position on different pages.

(2) ’Another’ operations modify the candidate predicate to accept the 'An-
other’ objects. As mentioned in Section 4, the system tries to infer the target
set the user intends according to the example and ’Another’ objects. For this
purpose, we use modification rules as shown in Figure 19. Each rule prescribes
how to modify the original predicate according to path(e) and path(a), where
e and a are the example and an ’Another’ object, respectively. Note that we
can get path(e) from the original predicate because it has annotations. In Fig-
ure 19, B and C denote label names, ¢; denotes a partial path, and p; denotes
the partial path expression of the original predicate which g; conforms to. ¢}
is a partial path that p; can accept. The basic idea behind the rules is to place
a wildcard at the position where path(e) and path(a) conflict with each other.
For example, in Operation (4), the user specifies the object &24 (with its
value “Thomas”) as the first ’Another’ object. Then, path(a) = TP.1-PAGE.1
—TEAM.1 —PLAYERS.1-PLAYER.2. We can obtain path(e) = TP.1—
PAGE.1-TEAM.1— PLAYERS.1—-PLAYER.1 from the annotated default
candidate predicate. The system finds that the default candidate predicate
cannot accept path(a) because PLAYER.1 in the path expression conflicts
with PLAYER.2. In this case, they conflict at their label numbers. There-
fore, we can apply Rule 1. Here, p; = TP.1->PAGE.?(PAGE.1)— TEAM.1
—PLAYERS.1, ¢ = ¢} = TP.1-PAGE.1-TEAM.1 —PLAYERS.1, and
P2 = g2 = ¢y = €. The modified predicate becomes TP.1—-PAGE.?(PAGE.1)—
TEAM.1— PLAYERS.1—=PLAYER.?(PLAYER.1)[o(Johnson)]. Next, the user
specifies the object &33 (with its value “Larry”) as the second ’Another’ ob-
15

ject. In the similar way, we can apply Rule 3 to the modified predicate. This
results in the above T'Sg,15.

| | Original Pred. [Path(e) [Path(a) [[Modified Pred.]
Rule 1 | p1 Bip2[o()] | g1 Bige | ¢f BEk(#4) g} [p1 B.7{B.i) pa[o{v)]
Rule 2 | p1 B.i pao{v) q1 Bigqa | q) C(# B).k ¢, || p1 7(B.i) p2[o{v)]
Rule 3 | p1gspalo(v)] | q1q3ge | g} 9a(#4q3) g5 || P17 * {(g3) p2[o(v)]

Figure 19 Rules for modification of candidate predicates. (p;, ¢; and ¢} can
be €.)

Case 2: If a ’Clue’ object cl is specified for e with ’Clue’ operation,
TS, = {olo € ONCandidate-Pred.(0)AJc € O(Clue-Pred.(c)\SA-Pred, q(o,c))},

where O is the set of all the objects in the object tree, Candidate-Pred. (o)
is the candidate predicate which is derived according to the "Example’ and
"Another’ operations as explained above. The clue predicate Clue-Predg(c)
and S-Association Predicate SA-Pred, (o, c) are derived from the *Clue’ op-
eration. Clue-Pred.(c) is also a predicate incorporating a path expression
with wildcards. The difference is that it prescribes a condition on value(c).
The predicate SA-Pred, .;(0, c) constrains the relative position of o and c. In-
tuitively, an object o in the target set has to satisfy the candidate predicate,
and be accompanied by an object ¢ which satisfies the following conditions as
well.

® 0 and c have the same structural association (relative position) as the
example object e and the clue object cl.

-m ¢ satisfies the condition specified in the ClueBox.

Example Operation (8) for the example scenario derives the following target
set. (It contains annotations, too).

T'Sg79 = {0|lo € O A p—P-NAME.1[o(Johnson)] A 3c € O(p—AVG.1[c > 0.3] A Sharey(o,¢c))}

where p = BS.1-PAGE.?(PAGE.1)>TUPLE.1.

In the above example, “BS.1-PAGE.?(PAGE.1)->TUPLE.1—-AVG.1[c >
0.3]” is the clue predicate. The predicate holds if and only if path(c) conforms
to the path expression and wvalue(c) is more than 0.3. SA-Prede (o,c) has
the form Sharey(o,c), where p is a path expression. SA-Pred, (0, c) in the
above example is Sharepsi_,

PAGEr—TUPLE.1(0,¢). It holds if and only if path(o) and path(c) share the
same partial path which starts from the root and conforms to the path ex-
pression “BS.1— PAGE.?—TUPLE.1” 4. (See Figure 20.) Therefore, T'Sg g
contains only the players whose batting average is more than 0.3. Like can-
didate predicates, clue predicates can be tagged with annotations to record
path(cl). Thus, we can obtain path(e) and path(cl) from annotated candidate
and clue predicates. In the above example, path(e) = path(&79 (with the
value ’Johnson’))=BS.1-PAGE.1— TUPLE.1—-P-NAME.1, and path(cl) =
path(&91 (with the value ’0.304’))= BS.1— PAGE.1— TUPLE.1—AVG.1.

16

Detailed description of the predicate derivation in the case 2 is given in the
appendix.

Figure 20 An object set X such that
(Vo;Vo; € X)Sharepsi—pace.r—ruprLE1(0i, 05).

5.3. TARGET RELATION

A target relation represents the target sets and the associations among
them.

Definition Assume that there are n target sets without clues (specified by

examples e1, . .. e,), m target sets with clues (specified by examples e, 11, - . . , €ntm
and clues ¢y, ..., cm), and [associations among them. Then, the target rela-
tion is defined as follows.
TR = { (value(o1), ..., value(ont+m)) |
o1 € O A Candidate-Prede, (01)
A

Aon € O A Candidate-Prede,, (0n)
Aont1 € O A Candidate-Prede,, , , (0n+1) Adc1 € O(Clue-Predgy, (c1)
/\SA‘PTede.,L+1 el (on+17 Cl))
FAN
Nontm € O A Candidate-Prede,, ,, (0n+m) A em € O(Clue-Pred,, (cm)
/\SA—PTede_n+m el (0n+m7 Cm))
AAssociation-Pred1(0ay,06,) A ... A Association-Predy(0q,,05,))},

where Association-Pred; is an S-Association predicate or V-Association pred-
icate. As explained before, S-Association predicate has the form Share,(o,0’).
V-Association predicate has the form o = ¢/, and holds if and only if value(o) =
value(o'). S-Association predicates are determined by paths of example ob-
jects and candidate predicates. V-Association predicates are derived from the
values of example objects.

Example The target relation for the example scenario is shown in Expres-
sion A. (It shows annotations, too.) The superscript number indicates the
operation number in Subsection 4.4 to which the predicate corresponds.

{(value(o1),
.., value(og))| 01 € O A p —PLAYERS. 1—»’?*(5)—>PLAYER ‘7(PLAYER 1)[o1{Johnson)]®

Aoz € O A p; — LOGO.1 — IMG. 1[02 @)]
Aoz € O A pa—NAME. 1[03(Johnson)](7)
Nog € O A pp—PROFILE.1[o4(ProfileJ)]*®
Aos € O A p3—P-NAME.1[os{Johnson)]®
Ader € O(ps—AVG.1[c; > 0.3]®) A Sharep, (05, ¢1)®)
Aog € O A p3—AVQG.1[06(0.304)])

Aoz € O A pg—BATTER.1[o7(Johnson)]("
(i2)

Nos € O A p4—>CONTENT41[os(->]
ASharep, (01, 02) 1 A Sharep2 (o3, 04)(5 A Share,,3 (05, 06)(?
/\Sharep4(07,os)(12) Noy = o(Y Aoy = 0(7) Aoy = oés)}

where
TP.1-PAGE.?(PAGE.1) »TEAM.1,

PP.1-PAGE.7(PAGE.1)>PLAYERINFO.1,
BS.1-PAGE.?(PAGE.1)—»TUPLE.1, and
VD.1—-PAGE.?(PAGE.1)>TUPLE.1.

17

P1
P2
D3
P4

i

[l

Expression A. Specification of the target relation with annotations.

Figure 21 shows all the target sets and associations involved in the example
scenario. Figure 22 shows the target relation based on the target sets and
associations.

—_— B
- - :l Example
~—— (O Target Set

---- S-Association
— V-Association

Figure 21 Target sets and associations.

Derivation of Association Predicates Association predicates among tar-
get sets are derived when candidate predicates are created or modified. We
explain the derivation rules below.

(1) S-Association Predicate: Let e; and e; be example objects. The sys-
tem searches for the longest path expression p which satisfy the following
conditions.

= p is a common prefix path expression of Candidate-Pred,,(0;) and
Candidate-Pred,,(0;)

= path(e;) and path(e;) share the same prefix partial path in the range of
.

If it can find p, it derives Sharey(0s,0;) as an S-Association Predicate.
The principle behind this rule is that if two example objects e; and e; share
the same prefix path, and the corresponding path expressions (including wild
cards) are the same (this is p), then the system infers that the user wants to
associate an object o; in one target set with oy in the other target set when
they share the partial path in the same way as e; and e;.

For example, look at Expression A and consider two examples e; ("Johnson’
in TP, &12) and ey (’ @ in TP, &7). In this case, path(e;) =TP.1-PAGE.1
—TEAM.1— PLAYERS.1 —PLAYER.1, and path(e;) =TP.1—-PAGE.1—
TEAM.1-LOGO.1— IMG.1. Therefore, the system finds that the 'John-
son’ and @ appear on the same page. (More precisely, the example ob-
jects share the prefix partial path TP.1-PAGE.1 —TEAM.1.) Also, the
candidate predicates for e; and ey have the common prefix path expression
(TP.1-PAGE.?7—TEAM.1) corresponding to the path. Therefore, in order
to associate a player with the team logo which appears on the same page,
Sharerp1.pacEr1—TEAM.1(01,02) is derived.

(2) V-Association Predicate: The system searches for combinations of can-
didate predicates which have annotations including the same example object
value. If it finds such a combination and the object variables of the predicates
are o and o, the system derives o = o'.

18

For example, look at annotations of candidate predicates on o7 and o3 in
Expression A. Because the example objects have the same value, the system
derives 01 = o03.

Ex. .
?:};nson @ JE;(};nson Efc.)ﬁle.] .];:‘,;(l;nson z’;_()_él_ in ?:Hnson
in TP W TP in PP in PP in BS BS in VD VD
Johnson @ Johnson ProfileJ Johnson 0.304 Johnson
Johnson @ Johnson Profile] " | Johnson 0.304 Johnson
Thomas @ Thomas ProfileT Thomas 0.320 Thomas
vLarry @ Larry ProfileL Larry 0.315 Larry
Larry @ Larry ProfileL Larry 0.315 Larry m

Figure 22 Target relation.

5.4. CREATION OF THE NESTED STRUCTURE

Creation of the nested relation reflecting the specified grouping structure is
straightforward. It depends on the position of examples and repetition marks
(*) on the Canvas. Figure 23 shows the grouping specified on the Canvas shown
in Figure 15. The nested relation satisfying the requirement is constructed by
applying Projection and Nest operators (Fischer, 1983)%. In this example, the
following expression creates the nested relation shown in Figure 24.

N esty,_ @) (WJohnson,o.3o4,,®,Pro fileJ(TR))

Figure 25 shows the result of mapping the nested relation into the Web
structure consisting of the index HTML page and SMIL pages. Figure 4
corresponds to the result SMIL page for Johnson.

* Ex. Ex. Ex. Ex. Ex.
Johnson | 0.304 = @ ProfileJ
in TP in BS in VD in TP in PP

* @ rofile]

Johnson 0.304 Johnson 0.304 @ ProfileJ

ProfileT

@ ProfileL

bt

Thomas 0.320

. . A Larry 0.315
Figure 23 Grouping specifica-
tion.

HIEENSE
©

Figure 2/ Result nested relation.

.
(@ [Profied

™ | ProfileT|
®{arry 0.315 —
I) [ProfiteL

= =~ Sequential Rendering of

- = = Sequential Rendering of

RET

® Johnson 0.3047

® Thomas 0.320—1

Figure 25 The result of data operation.

6. RELATED WORK

To the best of our knowledge, the visual user interface proposed in this
paper is the first one that attains seamless integration of authoring, querying,
and restructuring of data for multimedia view construction. However, there
are several systems which support users in specifying presentation of the set-
at-a-time data manipulation result. Delaunay™™(Cruz et al., 1998) provides

19

a visual user interface where the user can drag and drop graphical icons. The
icons are used to represent the multimedia data objects that are the result
of queries from different information sources. However, the user has to enter
SQL-like queries in a visual format. In particular, it uses WebSQL (Mendel-
zon et al., 1996) as the target language for Web queries. RBE (Kishnamurthy
et al., 1995) also allows users to drag and drop various GUI widgets for the
purpose of rendering data stored in a database. In RBE, explicit utilization of
domain variables is required to specify how to connect data in the database to
the widgets. Moreover, the source data of rendering in RBE is assumed to be
well-structured data. (In fact, the source data in (Kishnamurthy et al., 1995) is
a single relation.) Tiramisu (Anderson et al., 1999) is a web-site management
system where presentation of the synthesized Web pages can be specified with
authoring tools such as FrontPage. (They refer to this specification process as
implementation.) In Tiramisu, querying and restructuring of the underlying
data have to be done with the site schema, quite a different operational flame-
work from that for implementation tools. The basic idea underlying Tiramisu
is that logical design of a web-site should be independent of its presentation.
But we believe that the idea does not necessarily imply that the operational
flameworks for logical design and presentation design have to be different. Su-
perSQL (Toyama, 1998) and SQL+D (Baral, 1998) are query languages which
integrate display specification into SQL queries. They provide no means to
represent queries visually.

There are a number of authoring tools for HTML and SMIL pages. Ba-
sic design of our visual user interface has been influenced by DreamWeaver
(Macromedia, Inc), where various data objects can be arranged by drag-and-
drop operations. FrontPage (Microsoft Corp.) allows users to incorporate
SQL queries into special documents named ASP. But it has no concept of
“Example” for the set-at-a-time manipulation. Also, there are some SMIL au-
thoring tools such as RealProducer G2 Authoring Tool (RealNetworks, Inc.).
As far as we know, there is no SMIL authoring tool which provides querying
facilities.

The concept of “Example” was first introduced in QBE (Zloof, 1977). QBE
was designed for relational databases where data has flat structure. Construc-
tion of nesting structures is supported by languages such as STBE (Ozsoyoglu,
1989) and RBE (Kishnamurthy et al., 1995). They all assume that data
has explicit and regular structure, which is not guaranteed in the context of
semistructured data. Recently, several visual query languages for semistruc-
tured data have been proposed. DataGuide (Goldman et al., 1997) gives an
abstract specification of semistructured data. It can be used as a query lan-
guage with examples. XML-GL (Ceri et al., 1999) is a graph-based query
language for XML documents. HQBE (Kitagawa et al., 2000)(Morishima, et
al., 1999(a)) can construct various views over the Web, RDBs, and structured
documents. Also, there are a number of graphical query languages for vari-
ous information systems (Chavda et al., 1997) (Kuntz et al., 1989), some of
which support query formulation with drag-and-drop. All these languages re-
quest the user to specify queries according to some metadata such as database

20

schema. In contrast to this, our framework infers queries from instance-based
example operations. In this sense, our approach is similar to the query by
example approach in the information retrieval context (Flickner et al., 1995)
(Ishikawa et al., 1998). The difference is that our flamework has to infer the
intended data operation rather than distance-based (similarity-based) queries.

Another important issue in the multimedia presentation context is that the
presentation often needs to satisfy some constraints (Jourdan et al., 1998)
(0zsoyoglu et al., 1996). For example, a data object may request a spe-
cific accompanying data object when it is involved in the presentation. Also,
presentation of particular combinations of objects may be required to be syn-
chronized. Such constraints may be given by users or may be obtained from
the underlying data semantics. Although the development of our interface has
not been focused on this aspect, insights on such issues could be incorporated
into our framework.

7. CONCLUSION

In this paper, we have proposed a visual user interface which amalgamates
authoring, querying, and restructuring functions in construction of multimedia
Web views. By introducing the concept of designating existing data objects as
examples into the drag-and-drop-based operational framework, the interface
allows the user to seamlessly integrate object-at-a-time and set-at-a-time op-
erations. The proposed scheme can also cope with semistructured data which
often appears in the context of multimedia Web view construction. The in-
terface allows the binding of examples to be decided dynamically according
to the user’s interaction. We have provided the formal semantics of the data
operation through the interface.

A prototype system to implement the proposed scheme is under construc-
tion. Experimental evaluation of the interface is an important future research
issue. We believe that in the context of InfoWeaver the interface is far more
user friendly than the existing interface, but we have to verify this by quan-
titative analyses. Also, it is important to clarify rules which meet the user’s
intention in practical situations. Another important research issue is analy-
sis of the expressive power of the framework based on the formal semantics.
These issues will be discussed in forthcoming papers.

Acknowledgments

The authors are grateful to members of KDE group, Database Laboratory, University of
Tsukuba for the inspiring discussion. This work was supported in part by the Ministry of
Education, Science, Sports and Culture, Japan, and Information Broadcasting Laboratories,
Inc. Thanks are also due to Nippon Television Network Corporation for providing sample

video data.

21

Appendix: Derivation of Predicates for Target Sets (Case
2)

Derivation of Clue Predicates Clue-Pred,(c) is derived when the user
invokes ’Clue’ operation for an example object. (We call it the target exam-
ple here.) The system determines Clue-Pred(c) using Candidate-Pred,(o),
path(e), path(cl), and the condition on ¢ (cond(c)) specified in the ClueBox.

1 Let P be the predicate ’p[cond(c)]” where p is path{cl). For example,
consider Operation (8) in Subsection 4.4. Then, P =BS.1-PAGE.1—
TUPLE.1- AVG.1[c > 0.3]. Note that P holds if and only if (1) c is
the clue object ¢l itself, which the user specified in the 'Clue’ operation,
and (2) value(c) is greater than 0.3.

Also, let P, be the candidate predicate for the target example e. (That is,
Candidate-Predc(0).) In Operation (8), P, = BS.1—-PAGE.?—TUPLE.1
—P-NAME.1[o(Johnson)].

2 Find the longest prefix partial path expression p, of P, such that path(e)
and path(cl) share the same partial path in the range of p.. In Operation
(8), pe = BS.1-PAGE.?—TUPLE.1. Then, the clue predicate is derived
from P by replacing the corresponding prefix part of P with p,. There-
fore, Clue-Predg(c) becomes BS.1—-PAGE.? —TUPLE.1—AVG.1[c >
0.3]. The result predicate holds if and only if (1) path(c) conforms to
the path expression, and (2) c satisfies the condition (¢ > 0.3). In the
above example, the predicate holds if and only if ¢ is a hitting average
over 0.3.

3 If the system cannot find p., the user interface informs the user that it
is the wrong operation because the system cannot infer the relationship
between the example e and the clue cl.

Derivation of S-Association Predicates SA-Pred, (0, c) is used to con-
nect an object o that satisfies Candidate-Pred, (o) with another object ¢ that
satisfies Clue-Predg(c). It holds if and only if 0 and ¢ have the same relative
position as e and cl. As a result, the target set is constrained to contain only
those objects that satisfy Candidate- Prede(0) and have corresponding objects
that satisfy Clue-Pred.;(c). The S-Association Predicate is derived as follows.

1 Find the longest prefix partial path expression p, of Candidate-Pred, (o)
such that path(e) and path(cl) share the same partial path in the range
of pe. In Operation (8), p. = BS.1-=PAGE.?—-TUPLE.1. Note that
Pe is a partial path expresssion of Clue-Pred (c) as well because of its
derivation procedure.

2 Then, SA-Pred, (o, c) becomes Sharey, (0, c). That is, if 0 and ¢ share
the prefix path in the same way as e and cl, the system infers that c serves
as a clue for 0. In Operation (8), SA-Prede ¢;(0,c) = Shareps1—.pacE.71—
TuPLE.1(0;C).

22

Notes

1. The <g/> is called an empty-element tag. It is semantically equivalent to <g></g>.

2. wvalue(e) is used to derive V-Association. We explain details in Subsection 5.3.

3. The annotations are used only in the derivation process. They are removed after the derivation
process is completed.

4. In query languages for semistructured data such as Lorel (Abiteboul et al., 1997), path vari-
ables are used to represent this association. For example, A.1—B.?—Cloi1]A A.1—B.? —Dloa >
3]AShare .1 p.7(01,02) would be translated into A.1—-B.?{R;} —Clo1]A A.1—B.? {Ra} —Dloz >
3]AR; = Ry where R; and R are path variables. However, in this paper, we adopt the former style
in order to clearly separate the predicates.

5. If multiple repetition marks appear at the same hierarchy level, the order of applying Nest
operators must be specified by the user, since Nest operators are not commutative.

References

Abiteboul, S. (1997) Querying Semi-Structured Data. Proc. 6th International Conference on
Data Theory (ICDT’97), pp. 1-18.

Anderson, C. R., Levy, A. Y., and Weld, D. S. (1999) Declarative Web-Site Management
with Tiramisu. Proc. ACM SIGMOD Workshop on the Web and Databases (WebDB’99)

Abiteboul, S. et al. (1997) The Lorel Query Language for Semistructured Data. International
Journal on Digital Libraries, Vol. 1, No. 1, pp. 68-88.

Baral, C., Gonzalez, G., and Son, T. C. (1998) Design and Implementation of Display Spec-
ifications for Multimedia Answers. Proc. ICDE’98, pp. 558-565.

Buneman, P. (1997) Semistructured Data. Proc. 16th ACM Symposium on Principles of
Database Systems (PODS’97), pp. 117-121.

Ceri, S., Comai, S., Damiani, E., Fraternali, P., Paraboschi, S., and Tanca, L. (1999) XML-
GL: A Graphical Language for Querying and Restructuring XML Documents. WWW8 /
Computer Networks, Vol. 31, No. 11-16, pp. 1171-1187.

Cruz, I. F. and Lucas, W. T. (1998) Automatic Generation of User-Defined Virtual Docu-
ments Using Query and Layout Templates. Theory and Practice of Object Systems, Vol.
4, No. 4, pp. 245-260.

Chavda, M. and Wood, P. T. (1997) An ODMG-compliant Visual Object Query Language.
Proc. VLDB’97, pp. 456-465.

Ferndndez, M., Florescu, D., Kang, J., Levy, A., and Suciu, D. (1998) Catching the Boat
with Strudel: Experiences with a Web-Site Management System. Proc. SIGMOD’98, pp.
414-425.

Flickner, M. et al. (1995) Query by Image and Video Content: The QBIC System. IEEE
Computer, Vol. 28, No. 9, pp. 23-32.

Fischer, P. C. and Thomas, S. J. (1983) Operators for Non-first-normal-form Relations. Proc.
IEEE COMPSACS3, pp. 464-475.

Goldman, R. and Widom, J. (1997) DataGuides: Enabling Query Formulation and Opti-
mization in Semistructured Databases. Proc. VLDB ’97, pp. 436-445.

Ishikawa, Y., Subramanya, R. and Faloutsos, C. (1998) MindReader: Querying Databases
Through Multiple Examples. Proc. VLDB 98, pp. 218-227.

Jourdan, M., Layaida, N., Roisin, C., Sabry-Ismail, L., and Tardif, L. (1998) Medeus, and
authoring environment for interactive multimedia documents. Proc. ACM Multimedia’98,
pp. 267-272.

Kuntz, M. and Melchert, R. (1989) Pasta-3’s Graphical Query Language: Direct Manipula-
tion, Cooperative Queries, Full Expressive Power. Proc. VLDB’89, pp. 97-105.

Kishnamurthy, R. and Zloof, M. (1995) RBE: Rendering By Example. Proc. ICDE’95, pp.
288-297.

Kitagawa, H., Morishima, A., and Mizuguchi, H. (2000) Integration of Heterogeneous In-
formation Sources in InfoWeaver. Advances in Databases and Multimedia for the New
Century - A Swiss/Japanese Perspective -, World Scientific Publishing (to apper).

Macromedia, Inc. Macromedia Homepage. http://www.macromedia.com/.

Microsoft Corporation. Microsoft Homepage. http://www.microsoft.com/.

Morishima, A. and Kitagawa, H. (1999(a)) A Visual User Interface for Integration of Het-
erogeneous Information Sources. IEICE Transactions on Information and Systems, Vol.
J82-D-I, No. 1, pp. 315-326. (in Japanese)

23

Morishima, A. and Kitagawa, H. (1999(b)) InfoWeaver: Dynamic and Tailor-Made Integra-
tion of Structured Documents, Web, and Databases. Proc. ACM Digital Libraries '99, pp.
235-236.

Morishima, A., Kitagawa, H., Mizuguchi, H., and Koizumi, S. (2000(a)) Dynamic Creation
of Multimedia Web Views on Heterogeneous Information Sources. Proc. Thirty-Third
Hawaii International Conference on System Sciences (HICSS-83).

Mendelzon, A. O., Mihaila, G. A., and Milo, T. (1996) Querying the World Wide Web. Proc.
PDIS’96, pp. 80-91.

Ozsoyoglu, G., Hakkoymaz, V., and Kraft, J. D. (1996) Automating the Assembly of Pre-
sentations from Multimedia Databases. Proc. ICDE’96, pp. 593-601.

C)zsoyoglu, G., Matos, V., and Ozsoyoglu, Z. M. (1989) Query Processing Techniques in the
Summary-Table-by-Example Database Query Language. ACM TODS, Vol. 14, No. 4, pp.
526-573.

RealNetworks, Inc. RealNetworks Home Page. http://www.real.com/.

Roth, M. T. and Shwarz, P. M. (1997) Don’t Scrap It, Wrap It! A Wrapper Architecture for
Legacy Data Sources. Proc. VLDB’97, pp. 266-275.

Toyama, M. (1998) SuperSQL: An Extended SQL for Database Publishing and Presentation.
Proc. SIGMOD 98, pp. 584-586.

Wiederhold, G. (1992) Mediators in the Architecture of Future Information Systems. IEEE
Computer, pp. 38-49.

W3C (1998) Synchronized Multimedia Integration Language (SMIL) 1.0 Specification. W3C
Recommendation, http://www.w3.org/TR/REC-smil.

Zloof, M. M. (1997) Query-by-Example: A Data Base Language. IBM Systems Journal, Vol.
16, No. 4, pp. 324-343.

24

