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Abstract

We report the existence of paradoxical cases, in load balancing, where adding the
communication capacity to the system leads to unlimitedly large performance degra-
dation in an intermediately distributed performance optimization. In these cases such
paradoxical performance degradation occurs neither in the completely centralized op-
timization nor in the completely distributed optimization. The degradation reduces
and finally disappears as the optimization decision becomes more and finally com-
pletely distributed. We study a simple model of two parallel identical servers each
of which has its own queue and the identical arrival. It is notable that we can find
paradoxes that may bring unlimitedly large performance degradation in such a simple
and common model.

keywords Distributed decision, Braess paradox, Nash equilibrium, Wardrop equilibrium,
performance optimization, parallel queues, load balancing.

1 Introduction

We may have various objectives for performance optimization in many systems including
communication networks, distributed computer systems, transportation flow networks,
etc. Among them, we have three typical objectives or optima depending on the degree of
the distribution of decision in performance optimization:

(1) [Completely centralized decision] The system optimizes the total cost or the mean
response time of the entire system as a single performance measure. This optimized
situation is called the system optimum, overall optimum, or social optimum. We call it
the overall optimum here.

(2) [Completely distributed decision] Each of infinitely many individuals, users, or jobs
optimizes its own cost or the expected response time for itself independently of others.
In this optimized situation each of infinitely many individuals cannot receive any further
benefit by changing its own decision. It is further assumed that the decision of a single
individual has a negligible impact on the performance of other individuals. This optimized
situation is called the individual optimum, Wardrop equilibrium, or user optimum (by
some people). We call it the individual optimum or Wardrop equilibrium here.

(3) [Intermediately distributed decision] Each of a finite number (N(> 1)) of users,
classes, or players optimizes its own cost or the expected response time only for jobs
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of the class non-cooperatively. In this optimized situation each of a finite number of
users, classes, or players cannot receive any further benefit by changing its decision. This
optimized situation is called the class optimum, Nash non-cooperative equilibrium, or user
optimum (by some other people). We call it the class optimum or Nash equilibrium here.

Note that (2) is reduced to (1) when the number of players reduces to 1 (N = 1) and
approaches (3) when the number of players becomes infinitely many (N — oo) [6].

Intuitively, we can think that the total processing capacity of a system will increase
when the capacity of a part of the system increases, and so we expect improvements in
performance objectives accordingly in that case. The famous Braess paradox tells us that
this is not always the case; i.e., increased capacity of a part of the system may sometimes
lead to the degradation in the benefits of all users in an individual optimization or Wardrop
equilibrium [3, 4, 5, 6]. We can expect that, in the class optimum or the Nash equilibrium
a similar type of paradox occurs (with large V), whenever it occurs for the Wardrop
equilibrium (N — oo). Indeed, Korilis et al. found examples wherein the Braess-like
paradox appears in a Nash equilibrium where all user classes are identical in the same
topology for which the original Braess paradox (for the Wardrop equilibrium) was in fact
obtained [13, 14].

As it is known that the Nash equilibrium converges to the Wardrop equilibrium as
the number of users becomes large [6], it is natural to expect the same type of paradox
in the Nash equilibrium context (for a large number of players), whenever it occurs for
the Wardrop equilibrium, although it never occurs in the overall optimum where the total
cost is minimized.

Kameda et al. [8] have obtained, however, numerical examples where a paradox similar
to Braess’s appear in the Nash equilibrium but does not occur in the Wardrop equilibrium
in the same environment. These cases look quite strange if we note that such a paradox
should never occur in the overall optimum and if we regard the Nash equilibrium as an
intermediate between the overall optimum and the Wardrop equilibrium. In particular,
the numerical examples show that the increased capacity of a part of a system would
degrade the benefits of all classes up to a few 10 percent, in a class optimum (Nash
equilibrium) whereas it should not degrade the benefits of all classes at the same time
in a Wardrop equilibrium in the same environment. (In the background of this work, it
has been observed that increased capacity of a part of a system may lead to somewhat
awkward behavior in terms of a system-wide measure, in a model of distributed computer
system [8, 9, 20]. The methods and algorithms for obtaining the optima and the equilibria
are described in [9, 11, 12, 15, 19].)

In this paper, we present an analytic study of a simple model of static load balancing
between two identical servers each of which has an identical arrival and its own queue.
Although the model and its analysis look simple, we would like to present the results
since they look quite counter-intuitive to us and show that the ratio of the performance
degradation in the paradoxical cases can be unlimitedly large. In the model studied, each
server (or processor) has the identical arrival of jobs or customers and a communication
means for forwarding jobs to be processed by the other server. It is intuitively clear that
in the overall optimum, no forwarding of jobs should occur. In the individual optimum,
no forwarding of jobs occurs also. In the class optimum, no forwarding of jobs occurs for
some parameter setting. For some other parameter setting, however, in the class optimum
(which is unique) mutual forwarding does occur, and the performance (the mean response
time for each class) can be unlimitedly many times of that of no mutual forwarding.
The ratio of performance degradation decreases and finally disappears as the number of
classes increases unlimitedly. These situations look quite paradoxical and surprising to



us, although we know the existence of the prisoners’ dilemma and although it has been
already shown that Nash equilibria of games with smooth payoff functions are generally
Pareto-inefficient [2].

2 The Model and Assumptions

We consider a model consisting of two identical servers (nodes) and a communication
means that connects both servers. Servers are numbered 1 and 2 (Fig. 1). Jobs (or
customers) are classified into 2n classes Riy,7 = 1,2,k = 1,2,---,n. Jobs of class Rj
arrive only at server ¢ with identical rate scaled down to 1/n, Out of each class arrival,
the rate z;; of jobs are forwarded upon arrival through the communication means to the
other server j (i # j) to be processed there. Therefore the remaining rate 1/n — z;;, of
class R;j, jobs are processed at server i. We have 0 < z;; < 1/n, 4 =1,2. We denote the
vector (z11, 132, *** T1ny L21, 22, *** Tan) by 2. We denote the set of z’s that satisfy the
constraints by C. Within these constraints, a set of values of z;; (i =1,2,k=1,2,---,n)
are chosen to achieve optimization. Thus the load f; on server ¢ is given by

Bi=1= zu+ Y (i #j). (1)
; !

Then, the expected processing (including queueing) time D;(f;) of a job that is processed
at server ¢ (or the cost function at server ), is

D;(3) = L 2 for 8; < p (otherwise it is infinite). (2)

7
(We have a simple assumption of the external time-invariant Poisson arrival for each class,
and the exponentially distributed service times for each class jobs with identical service
rate p at both servers.)

As to the communication means, we consider two communication lines 1 and 2 sep-
arately for each server. One line 7 is used for forwarding of a job that arrives at server
1. The expected communication time of a job arriving at server 7 and being processed at-
server j ( # ¢ ) is expressed simply as t, i.e. independent of the traffic and the job class
and with no queueing delay.

We refer to the length of time between the instant when a job arrives at a server and
the instant when a job leaves one of the servers after all processing and communication,
if any, are over as the response time for the job.

Thus the expected response time of a class R;; job that arrives at server 1 is

Ta@) = n{(5 - o) Tin &) + T}, ®)

where
Tir(®) = Di(B;), and (4)
Tijx(®) = D;(B;) +¢, for j #i. (5)

(The above expressions hold, again, only for positive values of denominators, and are
otherwise infinite.) :
Then, the overall expected response time of a job that arrives at the system is

— 57 S Tunle). | ©)
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Figure 1: The system model.

3 The Results

We have three optima, the overall, the individual, and the class, as in the following.

(1) [Completely centralized optimization] The overall optimum is given by such z as sat-
isfies the following,

T(z) = minT'(z) with respect to =z ecC.
The solution Z is unique and simply given as follows:
T=0,1i.e. z, =29, =0 forall &

and )
Tz =Tgx(E) = ——
() () =
This is intuitively clear. Or, this can be easily seen if we note that, since the oveall mean
response time T'(z) is expressed as follows from (1), (2), (3), (4), (5), and (6):

2u(p — 1)
{(n—-1)2 - d?}
where d = Y ";(z1;—29) and s = ) (2 +29), T'(z) is minimum if and only if 215 = @9, = 0
fork=1,2,---,n.

2T (z) = + st — 2,

(2) [Completely distributed optimization] The individual optimum (or Wardrop equilibri-
um) is given by such Z as satisfies the following for all 7, k

Ty(#) = min{Tis (2), Tyjx (&)} (i # j) such that Ze€ C. (7)
The solution Z is unique and given as follows:

£=0,ie &1 =1=T9, =0, forallk,




And, again,
. o1 .
T(z) =Ti(x) = P for all ¢, k,

This can be easily seen in the following way. The solution # for (7) is characterized as
follows:

Di(f) > Da(Bs) + t, Ty = (8)
Di(B) = Dy(f2)+t, 0<d <1 9)
Di(f1) < Dy(Bs)+t, &1, =0 (10)
Dy(B2) > Di(b) +t, Tor =1 (11)
Dy(Be) = Di(Br)+t, 0< iy <1 (12)
Dy(B2) < Di(Br)+t, Ty =0 (13)

for all k. We can easily see that these are satisfied if and only if &1 = 29 = 0 for all &,
by noting that, e.g., (8) and (9) contradict with any of (11), (12), and (13), and thus that
only (10) and (13) can hold together.

(3) [Intermediately distributed optimization] The class optimum (or Nash equilibrium)
is given by such Z as satisfies the following for all i, &,

Tix (%) = min Tik(i_(ik);ﬂfik), such that (57_(ik)§$z'k) eC.
Tin

where (:E_(ik);xik) denotes the 2n vector in which the element corresponding to &;; has

been replaced by ;.
(A) The case where t > 1/{n(u — 1)2}: The solution Z is unique and given as follows:

F=0,ie Zp =% =0, forallk.

And, again,
1
T(#) = T (%) = T i=1,2 k=12, n.
(B) The case where ¢t < 1/{n(u — 1)?}: The solution % is unique and given as follows:
1.1
E1p = Tok = 5{; ~t(u—1)*}, for all k. (14)

And in that case, we have
T@E = Tiu@&) =Tx(®)
1 t

= m + 5{1 —nt(u—1)%}, for all k. (15)

[Proof] From definitions (1), (2), and (3) we have

~-1
M—n + > T — Y @

(l)é?T,-k L n 1%k !
n’ Oz (u—l—l—Zw,‘l—ZiL‘ﬂ)z
] !
p=1=Y za+Y
+ L+t (i#3). (16)

(B=1=> ea+) z)’
l l
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ik
O0z;g
in z;; with feasible £ € C'. Thus if we can find a set of such values of Z that satisfies
0T

81‘%

is monotonically increasing with the increase

By simple inspection of (16), we see that

(&) =0, for all 4, k, (17)

then the set of values is a solution of the class optimum. We have from (16) and defining

d=73(zu— za)
oy 10T

g~ Wa
2np— (2n —1)(1+d) 2np— (2n—1)(1 —d)
i—1- 0 (—17 d

_ 2d 2u(p — 1) .
- ((/L—l)z—dz)((/l—l)g—dz +2 1)7 (18)

If condition (17) holds, then from (18), we have d = 0. Then from (16) we have

1
10T,  2%ik— n . .
it = = for all ¢, k. 1
(n)ﬁwik (p—1)2 Ti=0 (i) foralls, (19)
Therefore 11
Lo I(Z —1)? ; ift < ——M—. 2
Tik 2(n t(p—1)°) forall i,k ift < ni =172 (20)
From the above derivation, it is clear that this is a unique solution (in case (B)).
Ift> ;LT,ul——l)—f (in case (A))), we have from (19) when z; = 0, for all 7, &,
1.0T; 1 . ‘
- =t-— for all 4, k. 21
(n)(?xik n(p —1)? >0 e (21)

. 0Ty, . . . . . s
Considering that ik g monotonically increasing with z;;, we have that Z;; = 0, for
8x3‘k
every 1, k, is a class optimal solution.
We can easily see the uniqueness as in the following. Suppose Z;; > 0 for some k.

From definitions on d and by (16) we have then

n—1

() By G-1+d2 T (u-i-ag T (22)

Then from the above and condition on ¢ we have
1 1

e §

Goirar + Goroape
2d n 1

(b—1)2—-d*  n(p-1+d)?

1 1 2d

np—1+d? nk-1)2 (g-1)2-d>
This implies d < 0 for which there must exist some nonzeo z,i. Then by using the

argument similar to the above on z5; we have d > 0, which is a contradiction. Thus
Z = 0 is the unique class optimal solution.

n

= —t-

(23)




For the proofs of the existence and uniqueness of those optima for more general setting,
see [1,7, 16]. O

Consider the case (B). We can easily see that T;x(Z)(= T'(Z)), for every i, k, has its
maximum 7'(u,n) (i.e. the worst performance) for given u,n.

2 - (24)

. 1 1
TWJU=M_1H+8MM_U

when
1

t= ———.
2n(p — 1)?

Thus if we add the communication lines with delay ¢ (= 1/{2n(x —1)?}) to the system
that has had no communication means, the response time of each class T;;(Z) increases in

(25)

the amount of i.e. the performance degrades). This is a Braess-like paradox.

1
SMu—DZ(
We define the worst ratio of the performance degradation A(yi, n) in the paradox for given
I, to be 3

_ T(/J'an) — TO(#’)
A(p,n) o) . (26)
where To(p) = 1/( — 1) denotes the mean response time of each class jobs for given p
when the system has no communication means. Then we have

1
C 8n(p—1)

INTRD) (27)
Remark 3.1 From the above we see that, there occurs no forwarding of jobs in the
overall and individual optima, and in the class optimum of the case (A). That is, On the
other hand, in the class optimum with the case (B) parameters, each class forwards a part
of its jobs through the communication means to the other server for remote processing,
and thereby has degradation in its mean response time. The ratio of such degradation can
become unlimitedly large as the total arrival rate approaches the processing capacity of each
server. As the number of classes (2n) increases up to infinity, the ratio of degradation and
the chances of the paradox decrease and finally disappear.

4 Numerical Examples

For example, we examine the following case: p = 1.01. Then the mean response time is
To(n) = 1/(p — 1) = 100 in the overall optimum, in the individual optimum (Wardrop
equilibrium), and in the case of no communication line and no forwarding of jobs.

Firstly, we consider the case where n = 1, i.e., the number of classes is 2. The mean
response time of the class optimum (Nash equilibrium) for various values of # is shown in
Fig. 2.

As we can see from the figure, T' = T;; takes its maximum value

T(1,n) = 1350 (see(24))
and the worst ratio of the performance dégradation A(p,n) in the paradox is

A(p,n) =12.50 (i.e. 1250% degradation) (see (26))

7
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Figure 2: The mean response times for each class jobs in the class optima (or Nash
equilibria) with g = 1.01 and n = 1 for the various values of mean communication time
t. We see that, in the worst paradoxical case, adding the communication means with
t = 5000 to the system increases the mean response time up to 1350 from 100, that of no
communication means.

when ¢ = 1/{2(u — 1)*} = 5000 (see (25)). Then

Frp =g = (1/2){1 —t(p— 1)} =1/4 (k=1) (see (14)).

In this case, #31; = &2 decrease from 1/2 down to 0 as t increases from 0 to 10000
(=1/(p — 1)?), and for ¢ > 10000, no fowarding of jobs occurs.

It is amazing that each class keeps to forward a part of its jobs to the other server
even though the communication delay for forwarding is much greater than the processing
delay at the server at which its jobs arrive.

Then we consider the case where n = 100, i.e., the number of classes is 200.

The mean response time of the class optimum (Nash equilibrium) for various values of
t is shown in Fig. 3.

As we can see from the figure, T = T} takes its maximum value

T(u,n) = 112.5 (see(24))
and the worst ratio of the performance degradation A(y, n) in the paradox is
Ap,n) =0.125 (i.e. 12.50% degradation) (see (26))
when t = 1/{2n(p — 1)*} = 50 (see (25)). Then
Fip = o = (1/2){1/n — t(p — 1)*} = 1/400  for all k (see (14)).

In this case, &5 = Z2x decrease from 1/200 down to 0 as t increases from 0 to 100
(=1/(p — 1)?), and for t > 100, no fowarding of jobs occurs.




—_—
(=]
o

o8}
(=]

mean response time
H ]
o o

N
o

0 200 400 600 800 1000 1200 1400
mean communication time

Figure 3: The mean response times for each class jobs in the class optima (or Nash
equilibria) with g = 1.01 and » = 100 for the various values of mean communication
time t. We see that, in the worst paradoxical case, adding the communication means with
t = 50 to the system increases the mean response time up to only 112.5 from 100, that of
no communication means.

Thus we see that the chances of the paradox and the magnitude in the degradation of
the performance in the paradox are greatly reduced from the case of n = 1.

Furthermore we consider other values of p with n = 1.
For p = 1.001, A(u,n) = 125 (i.e. 12500% degradation), and
for p = 1.00001, A(g,n) = 12500 (i.e. 1250000% degradation), etc.
In this way, we see that the worst ratio of the performance degradation A(u,n) in the
paradox becomes unlimitedly large as p approaches 1 with n = 1.

5 Concluding Remarks

In this paper, we examined the model consisting of two symmetrical servers with identical
arrivals to both servers where forwarding of jobs to the other servers through commu-
nication means with nonzero delays may clearly lead to performance degradation. We
confirmed that in the overall optimization and in the individual optimization (Wardrop
equilibrium) such forwarding never occurs. We showed that in some parameter setting of
the class optimization (Nash non-cooperative equilibrium) mutual forwarding of jobs for
remote processing through communication means incurring positive time delays definitely
occurs and the ratio of the performance degradation becomes unlimitedly large.

Such a paradoxical behavior does never occur for the overall and Wardrop optimum
in the same setting of this symmetrical two-server model. That may imply that the Nash
equilibrium may have more complicated characteristics than the overall optimum and even
the Wardrop equilibrium where the Braess paradox may occur.
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