. . TR-70-27
;ﬁ-ﬂ}ikﬁ? _ | EIS-TR-79-2

198, 1.7

BFHRRIZE

AN ALGORITHM FOR SOLVING

BILINEAR KNAPSACK PROBLEMS

BY

Hiroshi Konno

February 16,1979

An Algorithm for Solving Bilinear Knapsack Problems

Hiroshi Konno#*

1. Introduction

This paper proposes a finitely convergent cutting plane algorithm
for solving 0-1 bilinear knapsack problem (BK),which is a specialktype

of 0-1 integer quadratic programming problem to be defined below:

| imi () - Z] Z
¢ Maximize Cb X,y .Z]C.X. + jzjdjy. + . 14]C..X.y.
() j < =] =
BK) < subject to .ZJ X, ao, X.=0 or 1, 1i=1, ,m,
L.b <b =0 or 1 j=1 n
K j_] jy]- 03 yj » b] 9 b M

where ai's and bj's are positive integers and ci's, dj's and,cij's are
integers. This problem has applications in bipartite matching problems,
cutting stock problems, multi-attribute utility analysis to name only a
few. BK is the simplest discrete analogue of the bilinear linear

programming problem (BL):

L. m n m n
c maximize .Z.c.X, + .r.d.y. + .L,.L.C..X.¥
11711 3=l 373 1=13=171i57173
- e m .
(BL) < subject to iéYarfxi <as r=l, .-,k ; xizp, i=1,.--,m,
L jzlbsjyj < 5 s=1, a'e > ijO, i=1, e

which has attracted more attention in recent years. For example, the
present author proposed a cutting plane algorithm [8] and showed that it

pertains to many real world applications [9]. Readers are referred to

* Assoclate Professor, Institute of Information Science,

University of Tsukuba, Ibaraki, Japan

[4, 8, 14, 16] for algorithms and to [3, 9, 10, 13, 15] for applications
of BL.

It is true that BK can be reformulated as a standard 0-1 integer
linear program by introducing mn new 0-1 variables associated with xiyj's.
But this manipulation will tremendously increase the size of the problem
(See Appendix A-2) and it appears that any algorithm which directly
exploits the special structure of BK is potentially more efficient.

The main purpose of this paper is to develop a cutting plane algorithm
for BK, which parallels the one proposed for BL by the author [8] znd more
recently by Shstty and Sherali [14].

This algorithm consists of two big procedures. One is to obtain a

09

local maximum which amounts to solving a seqguence of 0-1 knapsack problems
and 0-1 integer linear programs. The other is to adjoin a cutting plane
which eliminates a local maximum and yet does not eliminate any solution
potentially better than the best feasible solution idehtified to date.

It will be shown in Section 3 that one has to solve parametric knapsack
problems to obtain coefficients of a cut of the above nature. Also,

finite convergence of the algorithm (without introducing expensive cuts
such as disjunctive face cut [14]) is established by virtue of the discrete
nature of the problem. Section 4 will be devoted to a dynamic programming

algorithm for BK in which m = n, Cij =0, 1#7.

2. Algorithm to Obtain a Local Star Maximum

Consider a 0-1 bilinear knapsack problem:

m n m n
maximize ¢(x, y) = sEoyx t jgldjyj + iéljélcijxiyj
(2.1)
subject to X € XO’ y € Yo.
where
X ={xeR" | Tax <a x,=0 or 1, i=1, -.+-, m } (2.2)
0 1217171 — 70 i i - i
Y ={ye¢ R" I 3 b.y. <b y.=0 or 1, j=1, -+, n } (2.3)
0 3%1°375 = Po> Y3 > T

It will be assumed throughout that ai's and bj's are positive integers and
that ci's, dj's and cij's are (not necessarily positive) integers. Also,
we will assume that X0¢¢ R YO#xb and (x*, y*) is the current incumbent,
i.e., the best feasible solution of (2.1) identified to date.

A natural step to obtain a local maximum is to maximize ¢ by alternately
fixing the value of x or y, which amounts to solving a sequence of knapsack

problems. To simplify the notation, let

Ky (y) ¢ maximize { ¢(x, y) | x e X} (2.4)
KYO(X) : maximize { ¢(x, y) | v ¢ 7, } (2.5)
The set X ¢ R" is initially taken to be equal tc XO, in which case KXw(y)
0

as well as KYO is a 0-1 knapsack problem (For algorithms for 0-1 knapsack

problems, see [1, 11, 17]). Note, however, that constraints will be added

be a 0-1 integer program without special structures.

Procedure AMC(X, Yq; yo) (Alternate Mountain Climbing)

Step O. Given yo € YO, let k =1.
. . . k k-1 .
Step 1. Obtain an optimal solution x of KX(y } and an optimal

. k k
solution of K, (x7).
y Yo

Step 2. If ¢(xk, yk) >¢(xk_l, yk‘l), then let k =k+1 and go to Step 1.

TR

Otherwise, let (%, §) = (xk, yk) and go to Step 3.
Step 3. If ¢(%, §) > ¢(x*, y*), then let (x*, y*) = (&, §)
and go to Step 4.

Step 4. Stop.

The pair of points (%, %) defined above will be called a locally

maximal pair.

Theorem 1. Procedure AMC(X, YO) generates a locally maximal pair in

Prooif: Tollows from the finiteness of X and YO and from the monotonically

. , k k
non-decreasing property of the sequence ¢(x , ¥). I

Once a locally maximal pair is reached, one cannot improve the
obijective function by fixing thé value of either x or y at the current
level. In this case, we will switch to a semi-global optimization to be
described below.

Let ix be the i-th complement of x&XO, i.e.,

ix = (Xl’ s Xg g l—xi, Riigs "o xm) (2.86)
and let

I(x) = {i]| ixex} (2.7)
Definition. (%, ¥) is a local star maximum if (%, §) is a locally maximal
pair and

max { 9(3%, y) | y e ¥, } < (%, 9) (2.8)

holds for all ieIl(%). ||

It is easy to see that the procedure defined below generates a local

star maximum in finitely many steps.

rn

S¢

is

gu.

2.8)

.cutting plane which eliminates & and yet does not eliminate any x € X

Procedure SGO(X, Yg) (Semi-Global Optimization)

Step O. Choose yO € Y arbitrarily.

0
Step 1. Execute AMC(X, Yy yo) and let (&, §) be a locally maximal
pair.
Step 2. Ifmax { ¢(i2, y) | y e ¥, } < ¢(%, 9), Vie 1(2),
then stop. Otherwise, go to Step 3.
Step 3. Let yo = ¥ where 7 €Y

o Satisfies o(iz, 3) > ¢(2, 7).

~Go to Step 1.

3. Cutting Planes from a Local Star Maximum

Given a local star maximum (&, §), our next step is to introduce a

0
for which
max { ¢(x, y) | y € Y5 } o> op(x*, y¥) , (3.1)
Such a cutting plane will be called "valid". Note that (3.1) is
tantamount to
max { ¢(x, y) | y € YO F>oolr®, y*) + 1 (3.2)
since c{’s, dj’s, cij's together with x{’s and yj's are all integers.
For simplicity, let
: X., if &, =0
i : i .
z, = {: i=1, «-++, m (3.3)
- I -x,, if &, =1
i i
S0 that z = 0 corresponds to %.
Obviously,
3 (3.4)
ih? 21 '

is a valid cut since the only point of X . which is eliminated by this cut

0

is z = 0, namely &. This cut is simple to generate and is sufficient to

guarantee finite convergence, but it is shallow and not at all efficient

for practical use. One needs to generate a deeper cut which eliminates
more O-1 points to enhance the efficiency of this algorithm.
For this purpose, let ¢(z, y) be the expression of ¢(x, y) relative

to a new set of variables, i.e.,

m n
= . KXo ot oL Y
¢(x,) 1§1C1X1]gld]yj ¥

nws
[{INcle]

181581%15%1Y5

= .1 + .08 +
REECRE SRR A RE T

m
2

nend

15515255 o(%, 9)

v(z, y) ' (3.5)

>
o

\1s

, let gi(x) be the maximum of ¥ when z is allowed to move along the

(M

edge emanating from & in the direction of z, up to z,=A and y to vary in

i i
YO, i.e.,

gi(K) = max { ¢(z, y) | Oizii)\, Zj:O’ Vj;—‘i; erO}

i=1, , m (3.86)

Theoren 2. g5 is convex on [0, =) for all i.
Proof: The maximum of the right hand side of (3.8) is attained either
at zi=() or at zi=A. since ¥ is linear in x. Hence

g, (M) = max [¢(&, 9), B, (1)] (3.7)
where

n
h;(A) = max { jgl(dj + Yijk)yj |37€Yb Pyt (R, 9) (3.8)

It is straightforward to see that hi is convex, whence g; is convex via
(3.7). ||

Given g5 > let

5., = max { A | gi(k) < o(x*, y*) + 1} (3.9)

1

Lemma 3. X. >0 for all i.

Proof: Follows from gi(O) = ¢(&,9) < ¢(x*, y*) and from the continuity

of g;. ||

Theorem 4.

(Ipzi/h > (3.10)

is a valid cut.
Proof: Let
m m 2 . ‘
AR) = { zeR" | ;812;/A, <1, 2z, >0, i=1, -, m} (3.11)
It is sufficient to show
max { ¥(z,y) | y ¢ YO Po<oo(r®, y%) + 1, Vz e a(})
To show this, let us fix z € A(X). Then z can be expressed as
m -
z = .L.6.A, where A,, 1i=0,1, +++, m are vertices of A(A) and
1=0° 11 i

m
506{ =1, ei >0, 1i=0,1, «--, m, so that

m m
Wzoy) = 0(Lg8iAy, v) = 28, 0(A,,)

Therefore,

=]

max { W(z,y) | yev } <,

1

8. mex { w(Ai, y) |y -Y 1}

0 01 0

e 8

< .

6. { olx®, y#*) + 1}
— 1 1

0
= ¢(x*, y*) + 1. ¥
The next theorem shows that the cut (3.10) is deeper than the cut

(3.4) in the derection of z, for 1 € I(R).

Theorem 5. Xi > 1 for all i such that % ¢ XO.
Proof: It is sufficient to show that gi(l) < ¢(x*, y*) + 1 since g; is

(& ,9). If iz ¢ X, then

convex and gi(O)

g;(1) =max { o(iR,y) |y €Y, } <o(&,9) < oCx¥, y¥)

by the definition of local star maximality. Also if 1Ix € XO - X, ‘then

-8 -
g, (1) =max { ¢(ig,y) | y €Y) col, y¥) + 1
since 1% has been cut off by a valid cut adjoined earlier. |

The next theorem gives an easy sufficient condition for global

optimality.

m ~
Theorem 6. If ,L.1/X, <1, then (x%, y*) is optimal to (2.1).

izl i
Proof: Every 0-1 vector z is contained in A (k). l]
If Xi = » (which is typically the case when Gi < 0 and Yij < 0, vj),

one can generate an even deeper cut by using negative edge extensions
. T g

[12, 13]. Let

I={i]i <=} (3.12)
J={1i| X, ==} (3.13)
i
and for 1 e J, let
Gi(u) = min {y(z ,¥y) I —uiziio, zj =O,Vj £i; erO} (3.14)
By mmax {6 () < o(x®, y¥) + 1) (3.15)
Lemma 7. ﬁi_>0 for all i € J.
Proof: Follows from the continuity of Gi and from Gi(O) = ¢(&,9) <
d)(x?':, y?':) + 1. II
Theorem 8.
iglzi/ii - gLgE /ey 21 | (3.16)

is a valid cut.

Proof: Let

m A 1 = ® o @
Z =1{ze€R liélzi/ii—iEJzi/uif_l, z,20, i=1, ,m } (3.17)

One needs to show

max { ¥(z,y) | v € Y0 } o< o(x®, y*) + 1, V2 ¢ 2 (3.18)

|

It is easy to see that the extreme points of Z are given by
zt = X.él, iel

and the extreme directions of Z are given by

(i) e, jed.
(ii) ﬁjej + Xiel, jed, 1ie€l.

where e and e’ are the i-th and j-th unit vector, respectively. Hence

z € Z can be expressed as

- i 3 ~ 3. i
Z iéleiz + jéJaje + iéIjéJaij(uje + A.e™)
where iélei = 1, ei >0, i e I, aj > 0, Vj € J; uij >0, Vi e I, vj €J
so that
Yz ,y) = 8 w(zi v) + .5 a.p(ed ¥) 4 .53 o w(iLelsh el ¥)
: 1E1859(25 sEgoqvie 1814850540 s8R e
Hence
- - —,i - AV 0 | j -
max{y(z ,y)[erO} j_iéleimax{w(a ,y)lye!o} + jéJajmax{w(ej,y)[erO}
+ ,2-.2 a..max{y(} eI 4f e’ y) |yey }
ieT3egt MR IVIN eI S, =0

The first term of the right hand side is less than o¢(x¥*, y*)+1 since

i

max { ¥(z5,y) |y e Y_ } < ¢(x*, y%) + 1, i € I. The second term is less

0

than 0 since max { ¥(e?, y) |y e Y, } <o, Vi e d. (Note R. = =). Also

max { w(X;el + ﬁje

& 1 ~
max { Y(A,e™, y) - p(-u.e
i 3

| A

max { w(Xiel, y) | v ¢ YO } - min-{w(—ﬂje], v) l y € YO }

| A

Uplx®, y%) + 10} - { oz, y%) + 1} =0
This establishes (3.18). I

Now we are ready to present the cutting plane algorithm for solving

0-1 bilinear knapsack problems:

i
i
i

- 10 -

Cutting Plane Algorithm CBK(XO, Y)

0

Step 0. Let X = XO.
Step 1. Execute SGO(X, YO).
Step 2. Compute Xi's and ﬁj's for i€1 and j €J.
. = - 0 . >
X: XxNA{z l iélzi/xi jZelJzi/ul > 1 }
Step 3. If X # ¢ <then go to Step 1. Otherwise stop ((x*, y*)

is an optimal solution of (2.1))

Theorem 9. CBK(XO, Y) generates an optimal solution of 0-1 bilinear

¥
i
O
]
s}
g
ct
'_J
()]
1]
0
rt
0]
s}
(]
J
o]
'.Jc
]
r.’.
(]
4y
>
|—-Jl
n
0]
|_.J
[N
=]
'J .
[
[81)
-+
®
[aN)
(]
<
[0}
L8}
Y
ot
'. A
5
[§)]
[}
=)
o
=
(¢}
[
ct
’.J
w0

adjoined. Therefore, the set X will become empty after finitely man
s Y

cuts are added to XO.]]

Several comments are iﬁ order. Tirst, we would get a deeper cut
(i.e., Xi's and ﬁj's are larger) if we have a better incumbent (x*, y¥#).
Hence it would be advisable to execute procedure AMC(XO, YO; yo) by
taking several randomly chosen starting points yo, prior to start
CBK(XO, Yo). Many efficient algorithms have been proposed for 0-1
knapsack problems and this pre-computation would certainly be paid off.
Second, we need to solve parametric knapsack problems (3.8) to obtain
an exact value of Xi’ which is not at all an easy task. However, several
efficient approximation procedures can be constructed, which will be
discussed in the appendix. Third, the algorithm developed in this paper
can in principle be adapted to general bilinear programming problems with
0-1 variables. It is, however, desirable that the constraints on y have
a special structure so that one can generate a valid cut without too

much computation. The most important problems in this category would be

bilinear assignment problems, which will be discussed in a subsequent paper.

- 11 -

4. Dynamic Programming Algorithms for a Special Class of 0-1 Bilinear

Knapsack Problems

Let us consider here a 0-1 bilinear knapsack problem in which m = n

and cij =0 for all 1 # j,

n
maximize o(x,y) = .. (c.x. +d.y. + e.x.v.)
Y 3717373 373 %373
n
subject to .L.a.X. < a_, X. =0or 1, (4.1)
] 321%5%5 = %o 3
% b <b 0 1
. .V . = 0or 1.
3217373 = o Y3

where, as before, aj's and bj‘s are positive integers and cj, dj’ ej's

are all integers.

For s =0, 1, -+, 3, and t =0, 1, +--, bo, let

£ (s,t) = max { % (d.y. te) | % < 0 1
S = a . C.X. +d4d.v. X.V. . a.X. S, X.= or
kS0 J210 5975 T AT T E3R5Y 57 1 5E135%5 280 Xy ’

=1 oS by <t Oor 1, j=1 k}
=1, «e- 3 .1 LY. s .=0 or ’ =1, eeey,
] ; 5210575 v]
k=1, -+, n. (4.2)

Obviously fn(ao, bo) gives the maximum of ¢(x ,y) in (&.1).

Theorem 10 fk(s , T) satisfies the following recursion

fk(s ,t) = max { fk-l(s_ak’ t—bk)f+ck +dk-+ek, fk_l(s—ak, t)-fck,
fk—l(s’ t—bk) +dk, fk-l(s’ t) } (&.3)

with boundary conditions

for s <0 or t < 0, Vk,

1
(@]

£ (s, t)
k 2

(u.u4)
fo(s, t) =0 for all s, t.

"Proof: Straightforward and will be omitted. ||

If, in addition, cj = dj = 0 for all j in (4.1), a more efficient recursion

can be constructed. Let us consider now

- 12 -

n
maximize (%, y) = .L.e.X.y.
* MR 1 bt o
n
subject to jglajxj < 2y szo or 1, J=1, -++, D, (4.5)

n
jglbjyj i_bo, yj=0 or 1, j=1, -++, n.

Associated with this problem is a standard 2-dimensional 0-1 knapsack

problem:
. n
maximize 8(u) = .I.e.u.
351773
ubi 3 < (4.5)
subject to jglajuj __ao, .0
£ 0 or 1 1
< = r 5=
J=lDjuj by> uj or 1, 3=1, , n
Theorem 11 If u® is optimal to (4.8), then (x, y) = (u*, u*) is
optimal to (4.5).
Proof: Obviously, both problems (4.5) and (4.6) have optimal solutions.

Let (x*, y*) be optimal to (4.5) and assume without loss of generality

that x,%y.®* =1 for j =1 to k and xj*yj* = 0, otherwise, so that

™
»
L<"
L

XLByLR T.e.. 06(u®*) > p* since u., =1 o= 1, e, k,
17373 73 J=173 Zv 3 > ’

n
u. =0, j = k+l, *++, n is feasible to (4.6). Also, y* i_.glejuj*uj*

6(u*) since (x, y) = (u%*, u*) is feasible to (4.5). This

..e.u.®
3517373
establishes 6(u%) = y*. Hence y(u®, u*) = 6(u*) = y*, namely,

(u*, u%) is optimal to (4.5). ||

By virtue of this theorem, the recursion in (4.3) simplifies as follows:

gk(s, t) =maX‘(gk_l(s, t), gk_l(s—ak, t—bk)-fek } (4.3%")

with boundary conditions:

it

gk(s, t) = 0, s <0, t<0, V.

(B.y') -

go(s, t) =0 for all s and t.

As before, gn(ao, bo) gives the optimal value y* of the objective function

%

et £

¢ in (4.5).

fk—l(s-a:k’

when ck =

- 13 -~

(4.3') can also be derived from (4.3) by considering that

t) + S and fk_l(s, t—bk) + dk are no better than fk—l(s’ t)

- 14 -
Appendix

A-1. Approximate Procedures to Obtain Coefficients of a Valid Cut.

One has to compute hi(l) to obtain an exact value of cut coefficients

Xi in (3.9), which amounts to solving a parametric knapsack problem:

. . n n 3
maximize {jgl(gj +k¥ij)yj ljglbjyj-ibo’ yj:O or 1, j=1, +--, m} (A.1l)

Unfortunately, however, there exists no efficient procedure to solve a

i3]

parametric integer program, sSo that one needs procedures to obtain an
£ & b r

approximation Ai of Ai. Note that Ai should be no greater than Ki in

order that the resulting cut is a valid omne.

Procedure 1 (LP Relaxsation)
Let

hp=max {4 [R (0 <o(x®, y*) +1} (A.2)
wheré

R.(0) {3 (6 +27..) |I§b b, 0]

. =max { . L AYLL)YL L .y.<b_, <y.<1,

i 521005 TAY 350V 1 s21P9Y 2P0 P 2Y5 D

j:la "'9n}+Yi>\+¢(§<, 57') (A.3)

Ai is expected to give a good approximation of Xi' Moreover, Ai :-Xi
since h,(3) > h;(}) for all A > 0.

What has to be solved here is a parametric linear programming problem
instead of a parametric knapsack problem.

The second one is a simple search procedure which uses the convexity

of h..
i

Procedure 2. (Discrete Search)
Step O. Let ¢« >0, B>1, A =1+a

Step 1. Compute gi(k).

1) -

2)

3)

et e B s R S

5y s s

st bt S NS RS 50 s e s

-~ 15 -

Step 2. If gi(A) > ¢(x%, y*) + 1, then let a = /2, A =1 +a

1}

and go to Step 1. Otherwise let A BA and go to Step 3.

Step 3. Compute gi(A).

Step 4., If gi(k) < ¢(x*, y*) + 1, then A = BA and go to Step 3.

Otherwise let Xi = A/B and stop.

Ai computed by this procedure gives an underestimate of Xi for
i € I(®). Similar procedure can be constructed for i ¢ I(%) as well,

but will be omitted here.

A-2. Alternative Formulation of Bilinear Knapsack Problems as Standard

0-1 Integer Programming Problems

The purpose of this appendix is to show that it is possible to

formulate BK as an integer linear program by introducing new 0-1 variables:

L. m n m n
maximize L.c.x. + ,X.d.y. + ,I..I.c..u ~
i=17i71 J=1 373 1=13=171i571ij
subject to ® € X, y €Yy,
1
; I
u; < < Fxr yj) 1 > (A.w)
1 1=l, -+, m,
Us s z_g{xl~ v.- 1)
- : J=1, > I
“u,. = 0or 1, »
13
Note that uij =1 if and only if X, = yj = 1 by virtue of the

constraints on u..'s. This problem has mn + m + n variables and
2mn + m + n constraints, which are much bigger than those of BK.

If, however, cij > 0 for all i and j, one can eliminate almost one
half of the constraints in (A.4) as follows:

.Z] . . t .Z d.y. .Z .Z C,.u..

subject to x € X

0’ y €Y, (A.5)

- 16 -

1 .
U 5 -<—§(Xi+ yj) i=1, , T, (A.5)
uij=00rl j=1, <+, n.
It is easy to see that uij can be equal to 1 in (A.5) only if xi=yj =1.

Also, if X =yj =1 at the optimum, then uij should be equal to 1 since

cij > 0. This establishes the equivalence of (A.5) and (A.4) when cij >0

for all i1 and j.

[——

- 17 -
References

1. Balas, E. and E. Zemel, "Solving Large Zero-One Knapsack Problems',
MSRR 408, GSIA, Carnegie-Mellon University, (1977).

2. Balas, E., "Disjunctive Programming', MSRR 415, GSIA, Carnegie-Mellon
University, (1977).

3. Frieze, A. M., "A Bilinear Programming Formulation of the 3-dimensional
Assignment Problem'", Mathematical Programming 7 (1974),
pp. 376-379.

4. Falk, J. E., "A Linear Max-Min Problem'", Mathematical Programming 5
(1973), pp. 169-188.

5. Gallo, G. and A. Ulkiicii, "Bilinear Programming: An Exact Algorithm'",
Mathematical Programming 12 (1977), pp. 173-194.

6. Geoffrion, A. M., "An Improved Implicit Enumeration Approach for
Integer Programming', Operations Research 17 (1969), pp. 437-
ush,

7. Gilmore, P. C. and R. E. Gomory, "Multistage Cutting Stock Problems
of Two and More Dimensions', Operations Research 13 (1965),
PP. 94-120.

8. Konno, H., "A Cutting Plane Algorithm for Solving Bilinear Programs',
Mathematical Programming 11 (1976), pp. 14-27.

9. Konno, H., "Bilinear Programming PART II: Applications of Bilinear
Programming", Technical Report 71-10, Dept. of OR, Stanford
University, (1971).

10. Konno, H., "On the Applications of Bilinear Programming", EIS-TR-78-1,
Institute of Information Science, University of Tsukuba,
Japan 1979 (Submitted to the J. of Optimization Theory and
Applications).

11. Nauss, R. M., "An Efficient Algorithm for the 0-1 Knapsack Problem",
Management Science 23 (1976), pp. 27-31. '

12. Owen, G., "Cutting Planes for Programs with Disjunctive Constraints",
J. of Optimization Theory and Applications 11 (1973), pp. 48-55.

13. Shetty, C. M. and H. D. Sherali, "Rectilinear Distance Location-
Allocation Problem: A Simplex Based Algorithm'", Proceedings
of the International Symposium on Extreme Methods and Systems
Analysis, Springer, 1978.

1%. Shetty, C. M., and H. D. Sherali, "A Finitely Convergent Algorithm for
Bilinear Programming Problems Using Polar Cuts and Disjunctive-
Face Cuts", to appear in Mathematical Programming.

15. Vaish, H. and C. M. Shetty, "The Bilinear Programming Problem'", Naval
Research Logistics Quarterly 23 (1976), pp. 303-309.

16. Vaish, H. and C. M. Shetty, "A Cutting Plane Algorithm for the Bilinear
Programming Problems'", Naval Research Logistics Quarterly 24
(1977), pp. 83-94.

17. Zoltners, A. A., "A Direct Descent Binary Knapsack Algorithm", J. ACM
25 (1978), pp. 304-311.

TR R L

SEESSRC i

i BT

Eap

INSTITUTE OF ELECTRONICS AND INFORMATION SCIENCE
UNIVERSITY OF TSUKUBA
SAKURA-MURA, NIITHARI-GUN, IBARAKI JAPAN

REPORT NUMBER

REPORT DOCUMENTATION PAGE

TITLE

An Algorithm for Solving Bilinear Knapsack Problems

AUTHOR(s)

Hiroshi Konno

REPORT DATE NUMBER OF PAGES
February 16, 1979 17

MAIN CATEGORY CR CATEGORIES
Mathematical Programming 5. 4

KEY WORDS

bilinear programming, knapsack problem, 0-1 integer program,

cutting plane method, dynamic programming

ABSTRACT

This paper introduces 0-1 bilinear knapsack problems (BK) and proposes
a finitely convergent cutting plane algorithm which parallels the one
proposed for bilinear linear programming problem by the present author.

This algorithm consists of two big procedures. One 1s to obtain a
local maximum, which amounts to solving a sequence of 0-1 knapsack problems
and 0-1 integer linear programs. The other is to adjoin a cutting plane
which eliminates a local maximum and yet does not eliminate any solution
potentially better than the current incumbent. It will be shown that one has
to solve parametric knapsack problems to obtain coefficients of a cut. Also,
finite convergence of the algorithm is established by virtue of the discrete
nature of the problem. It will be shown, in addition, that a dynamic program-

ming algorithm can be constructed for a BK with a special structure.

SUPPLEMENTARY NOTES

