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On the Applications of Bilinear Programming

Hiroshi Konno*

Introduction

The purpose of this paper is to discuss some of the more
important applications of bilinear programming and to focus our
attention on its practical value. Bilinear programming is a
technique for solving a special class of nonconvex quadratic

programming problem:

t t t M
minimize clxl + czx2 + lex2
subject to  A;x; = by, x; 20 > (1.1)
A2x2 = b2’ X, >0 J

where c,eR'L, b eR"L, A-eRmixni, x.eR™, i=1,2 and QeRnlxnz.
i i i T

We refer to (l1.l1l) as a bilinear programming problem (BLP) in a
standard form. Needless to say that a general bilinear programming

problem with mixed equality and inequality constraints can be
reduced to the standard form as in the case of linear programming.
The author proposed a cutting plane algorithm for solving BLP

and obtained some encouraging results through numerical experiments
[8]. Also Gallo and Ulkucu [6] and Falk [4] proposed algorithms

of enumerative nature. More recently, Vaish and Shetty [18],

Shetty and Sherali [16] extended the results of [8] and established

finite convergence of the algorithm. It is hoped that these

*Associate Professor, Institute of Information Sciences,
University of Tsukuba, Ibaraki, Japan.



efforts in algorithmic development will, in the near future,
enable us to solve this class of problems efficiently.

Before goingbinto typical applications of BLP, we will briefly
summarize its relationship to other classes of mathematical
programming problems.

First of all, we will obtain a BLP if we allow cost coefficients
¢ in a standard linear program:

minimize ctx
(1.2)
subject to Ax =Db, x >0
to vary in a polyhedral convex set. We will call such a problem:
minimize ctx

subject to Ax = b, X (1.3)

|v
o

Ac = b, ¢ >0
an extended linear program (ELP).
Secondly, it is not difficult to show that a linear max-min
problem (LMMP) :

minimize max {pix + pgy | B.x + B,y > b } (1.4)
xeX yeY

where X and Y are polyhedral convex sets, can be converted to a
BLP, under some regularity condition, by taking the partial dual
with respect to Y. This problem has been discussed by Falk [4]
as well as by Dantzig [2] and Konno [10].

Thirdly, BLP has a close relationship with a generalized linear
program to be fully discussed ih section 4.

Finally, it has been proved in [9] that the minimization of a

concave quadratic function subject to linear constraints (CQP):



minimize 2ctx + XtQ}{ _L
(1.5)
subject to Ax = b , x20
where Q is symmetric and negative semi-definite, is equivalent
to a BLP:
minimize ctu + ctv + th\r
subject to Au =Db , u20 (1L.6)
| Av = b , wv20
The relationship between (1.5) and (1.6) is fully discussed in
[9]. It is well known [13] that CQP is closely related to integer
programming problems, so that BLP is indirectly related to integer

programs. Figure 1.1 summarizes the relationships among the

problems discussed above.

variable
ﬁP colums
integer GLP
constyraint
variable cost
1LP coefficient free [variables
qwmﬁz;ic
ijectj_ve ELP GLP!
cQp -

. T s
spécial zﬁtiucture
structure

QP : BLP LMMP
special structure duali-
zation

Figure 1.1

In the sections to follow, we will pick up new examples of BLP
which are of practical and theoretical interests. For other

examples readers are referred to [2,3,5,11].



2. Location-allocation problems

There is a large amount of literature under the title of
location-allocation theory (See [15]). Suppose we are given‘

a) a set of m points distributed in the plane

b) a vector value to be attached to each point

c) a set of indivisible centroids without predetermined

locations

then the location-allocation problem in its most general form is
to find locations for m centroids and an allocation of vector
value associated with n points to some centroid so as to minimize
the total»cost. Here, we will show that one version of this
class of problems can be put into the framework of BLP in a very

natural way.

(a) single factory case

Let there be m cities Pi’ i=l,---,m on a plane. Pi is located
at (pi,qi) relative to some coordinate system. We are required
to construct a factory F somewhere on this plane. This factory
needs bj units of n different materials Mj’ j=1l,--+*,n. Let us
assume that Pi can supply at most aij units of Mj for the unit
price cij and the unit transportation cost fj (per unit amount
per unit distance). Our concern is to minimize the total expense
which is represented by the sum of total purchasing cost and the

total transportation cost. Let (x ) be the location of the

0'¥o
factory to be constructed and let'uij be the amount of Mj to be

purchased at Pi' Then uij has to satisfy:



(2.1)

0 <u,. < a.., i
- 1] - 1]

It
2ol
-
3

j = l,"',n.

Total purchasing cost Cp and total transportation cost CT are

given by
m n
Cp T iiljil Ci4%45 (2.2)
m n '

where d(Pi,F) is the distance between Pi and F. If we assume,

- in addition, that the distance d(Pi,F) is given by 1 norm i.e.,
d(p,,F) = d,(P,,F) = lpi—xol + [qi—yof (2.4)

then the total cost C is given by

m n

Cc = izljil [cijuij+-fjuij(|pi-xol+]qi—y0|)] (2.5)

By introfucing auxiliary variables, X5 and Yis satisfying
>0, x.,>0, X

X, =0I i=1l"'lmr

¥i17%i2 T Pi7¥o  ¥i1Z i2 i1%i2
(2.6)
yil—in = qi—yo’ yilzoi Yizzol yilyi2=0, l=l,"',m,
the absolute value terms can be represented as:
pi%o| = xj1%%5
(2.7)

la;-vol = v571%755

So our problem is to



m n -
minimize C = .E 'E ui.[ cij+-fj(xil+-xizi-yil+-yiz)]
i=lj=1
m
subject to 'E uij > bj’ j=1,-++,n,
i=1
0 < Y3 5 < aij’ i=1,-+,m J=1,--+,n,
> (2.8)
¥i1 T ¥i2 ¥ %o T Py,
i = 1’-.o’m,
Yi1 T Y2 Y Yo T 9.
XlZ >0, ylZ 2 0, i=1,..-, m, .Z=l,2,
¥i1%42 = 0r ¥4y¥55, =0, i =1,-c--ym. )

It is straightforward to show that the optimal solution of the
associated bilinear program in which the orthogonality condition
in (2.8) is relaxed automatically satisfy the orthognality proper-
ty if szo, j=1,--+,n and hence the problem can be solved by

applying the algorithm developed in [8].

(b) Multi-factory case
Let us consider next the multi-factory version of the problem
discussed above. The basic setting of the problem is the same as
before except that
(i) K (21) factories Fk’ k=1l.---,K have to be constructed
(ii) each factory produces L different types of commodities
CZ’ l=1,-+-,L
(iii) each product has to be shipped to m cities Pi’ i¥l,--°,m.
Let
u : the amount of Mj to be purchased at Pi and shipped

xS

to Fk



k .
Xy ¢ amount of CZ to be shipped to Pi from Fk
b? : amount of Mj required at Fk
ij : maximum supply of Mj at Pi
.. ¢ unit price of M. at P,
1] ] i
d? amount of CZ produced at Fk
e ¢ demand for CZ at P,
(pi,qi): location of Pi
(xk,yk): location of Fk

d(Pi,Fk): distance between Pi and Fk
f : unit transportation cost of Mj
g, ¢ unit transportation cost of CZ

The total cost is given by

m n K

C =12 % % ci.uf.
i=1 j=1 k=1 J 1
m K L k n k
+ I r (% g,x., + % f.u.,.) 4(P.,F. )
i=1 k=1 z=1 £ 11 42p 73743 17k

Also uk. and xk have to satisfy:
ij il |

m

L ul:i{_'Zb}'(' j=1,""",n, k=l,"'pKr
i=1 *J J

K %

PX u.. £ a ’ l=l,"',m, J:]_'..~'n
k=1 ] '
m

k k
E XiZSdZ’ Z:l,--~,L, k=l,"°,K,

f

(2.9)

(2.10)



K x
T X, > e i=1,**",m 17 =1,---,L
lZ - lz’ 4 ’ 4 I I 4
k=1
u]i‘j >0, x]i‘Z >0, Vi,i,x,2

Hence the problem is to minimize (2.9) subject to (2.10) which is
a BLP provided that d(-,+) is defined by 1 norm as before. We
assumed here that there are no inter-factory material flows.
Should there be such flows , the problem can no longer be formu-

lated in the framework of bilinear programming.

3. Applications in multi-attribute utility analysis

Suppose a decision maker is facing a problem of choosing the
'best' among m possible alternatives Aif i=l,--+,m in the
stochastic environment where n possible events Ej’ j=1l,--+, n
take place with probability pij when Ai is chosen.
Let us suppose also that there are K independent attributes
(objectives) Tk’ k=1,---, K and that the utility associated with
the triple (Ai,iEj,Tk), is given by atj. Also we assume that the
overall utility of the decision maker is additive, i.e., the
expected utility u, obtained by choosing Ai is given by

K n x

u, = L L W, p
1 k=1 3=1 K

ijaij (3.1)

"where Wy is the weight representing the relative importance of Tk'

Given Wy s pij’ aij, the best alternative is the one corresponding
to max u..
1<igm

It sometimes happens, however, due to the lack of information



that wés and.qus are not known exactly. Typically, the analyst
has to interview the decision maker to estimate wis and the best

we can hope for is the interval estimates

< w, ., k=1,--,K.

W, = W
k

%k k

where Wy and ﬁk are given constants (see [14]).
Similar argument applies as well to the probability measure pij'

Let us suppose here that

sy i=1,"m J=1,""",n,

Rij S Pjy S Py

n

r p.. =1, i=1,"°,m.
j=1 *J

where Eij and ﬁij are given constants.
In this case, we may not be able to identify the best alternative
due to uncertainty. However, some of the alternatives may be

eliminated as inefficient ones by solving BLP's.

Let
W = {w=(wl,"',wk) lgk < w < Wk, k=1,***,K} (3.2)
n
j=1,""",n; % p.. =1} i=1,",m. (3.3)
. ij
Jj=1
which we assume to be nonempty. Let
K n k l
u.= min { I T W, pP..a.. wE€W, p. €P,} (3.4)
i k=1 5=1 k¥ij ij i i
K n
ﬁi= max { I I wkpi.a?. | weéw, p; € P, } (3.5)
k=1 j=1 ] 1 .

It is obvious that AS can be eliminated from the candidates of
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optimal alternatives if Er>ﬁé.

Similarly, if

. k k
u_=min { Z I w, (p_.a . - a
rs k=13=1 k prj rj ij sj

) | wew, P EP_, pseps} >0 (3.6)
then As can be eliminated. Problems (3.4) (3.5) and (3.6) are all
bilinear programming problem with a very special structure. Let

us take for example (3.4) suppressing index i:

K n
minimize r X aip.W
k=1j=1
n
subject to ¥ p, =1, p.<pP: <P, 3j=l,"°,n; > (3.7)
j=1 ] ] J
Ek < wk < wk, k=1,..-,K )

The next theorem characterizes the form of an optimal solution

of (3.7).

Theorem 3.1

There exists wﬁ, k=1,"°",K; pg, j=1,°°*,n which is optimal

to (3.7). Also, wk is equal to w, or Wk for all k, and P is

equal to Bj or Ej except for possibly one index jo.

Proof: W and P are bounded polyhedral convex sets. Hence by
the fundamental theorem of bilinear programming [8], there
exists an optimal solution (w*,p*) where w* and p* are extreme
points of W and P, respectively. It is easy to see that any

extreme point of W and P has the property stated in the theorem.

Also it may be more appropriate in some cases to normalize Wy
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K
k=1,---,K so that they satisfy the condition I w
k=1

case we still have a bilinear programming problem with somewhat

k=l' in which

more complicated structure. For the background material of
utility analysis the readers are referred to Keeney and Raiffa

[7] and to Sarin [14].

4. Non-standard generalized linear program

Let us consider the generalized linear program (GLP) introduced

by Dantzig and Wolfe [1]

n
minimize I c.x

j=1 J 3

n
subject to LI a.x. =b > (4.1)

=1 43

]

C.
Xj >0, a% €Cj, j = l,"'JI)

+ .
where ajeRm, cjeRl and C.eR™ L 1s a compact convex set for
-

j=1,--+,n. Note that minimization is taken over Lag) as well as

xj. The algorithm for solving GLP proceeds roughly as follows:

JA
Given cj € Cj’ Z=l,~--,Zj, j=1,..-.,n, solve the linear
al
J
program:
7.
o S A N
minimize L I c.x.
j=1z2=1 JJ
S
subject to I I a.x. = b, > (4.2)
j=11=1 I J
x§ >0, I=1,---,2.; 3=1,--+,n
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and let meR™ be an optimal multiplier vector for this linear

program. It can be shown that if

\icj _

cj - ﬂaj >0 (aj\ € Cj; J=1,-°,n.

then the current solution is optimal. If, on the other hand,
there exists an index j and a vector (gg]ecj for which cj—ﬂaj<0,

then the objective function will be improved by introducing this

j

vector into the basis. To find the vectors (ng for which
cj-ﬂaj<0, we solve the following n subproblems.

minimize {c. - ma. | Cj eC.}l, j=1,"**,n (4.3)
J J aj J
(c*
Let (ag) satisfy c§—na§<0, then we will introduce this column
3

vector into (4.2) and proceed. It has been shown that this
algorithm converges to an optimal solution of (4.1) in finitely
many steps if Cj are polyhedral for all j.

Now let us consider the non-standard GLP with some free variables,

i.e.,
n R
minimize L c.X
j=1 J 3]
n
subject to I a.Xx. =Db
i=1 J 3
J > (4.4)
X] > 0, j= 1,--,2;
Xj <Z 0, j = Z+l,'°',n;
(gj)€ cj, j - l,.. ,no /
J

The standard technique of replacing a free variable by two non-

negative variables destroys the structure of the problem, as we
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shall see. Let
Xj = le - sz, le >0, sz 2 0, j o=
then the problem is
A n n
minimize I Cc.X. + % C.i¥iq b ST PN
j=1 I I g=z+41 J*J j=z+1 1< J
A n n
subject to I a.x., + I aX.q - p> aixX.,
j=1 J 3 j=1+1 J 3 J=1+1 J 3
xj >0, j=121,--,1
le’ j2 20, j=1+1,"**,n
j=1,-"",1

S511= (%52} ¢ c., i = 7Z+1,°**,n.
*i2) \%32)

> (4.5)

/

Hence the columns of this problem are no longer independent and

GLP algorithm would not work.

Now let us consider the simplest case of the above in which aj's

are constant and only cj's are allowed to move in compact convex

sets, i.e., closed interval in this case:

minimize

subject to

v

C. . < Cc.,
=] J J

A
Q

ﬁ (4.6)

/

Since szO, j=1,---,1, it is obvious that optimal cj's are gj's

for j=1,---,7. Hence the problem simplifies somewhat to



l n h
minimize I c.x. + I Y. X.

j=1 72 I g=r41 ")

2 n
subject to T a.x., + I a.x. = b > (4.7)

j=1 I 3 =141 I

Xj > 0, J = 1,++,7;

E.J < Yj < Ejr ._J = 17+1,°°°,n. S/

Apply the standard elimination technique to obtain an expression

of Xy 1 k=1+1,***,n with respect to xj, j=1,°°**,7, i.e., let
Z .
xj = djO + kil dijk’ j=17+1,---,n. (4.8)

Substituting (4.8) into (4.7), we obtain

z n n A
minimize L [e. + I d, .y, 1 x.+ I d.aY-
j=1 J k=g41 FITR T oy 307D
A
subject to r alx. = Db' : > (4.9)
' =1 J 7
J
XJ 20, j =l,.-.'Z
9..' <-. yj i Ej ’ j = Z+l,'°',n. /

which is a BLP. The following theorem characterizes the form of

an optimal solution.

Theorem 4.1

Suppose (4.9) has an optimal solution. Then there exists yg,
xg, j=1,+-+,n which is optimal to (4.9) such that y§=gj,
j=1,---,7 and yg is either gj or Ej for j=7+1,+++,n.

Proof: By the fundamental theorem of BLP [8], ther exists an

optimal solution y*=(y§+l,-",y;) where y* is an extreme point
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of the constraint set’{(yl+l,...,yn) lc. < vy.

S ¥y £ Ty, 3=1+1,-0,n}.]

We have shown that bilinear programming technique gives a way to
solve (4.4). Our analysis have shown, at the same time, that a
GLP without nonnegativity condition on xj's are essentially
different from the standard GLP which belongs to a class of nice

convex problems.

Complementary planning problems

Let us consider the problem

\
e t t t t
minimize eI + dlyl + CyX%, + d2y2
subject to Alxl + Blyl > bl
> (5.1)
A2x2 + B2y2 > b2
X, >0, Yq > 0, X, > 0, Yo >0
X§x2=° g
na m-xz m-xn- m.-
where cl,czeRZ, dieRl, AieRl ’ Bie:Rl l, bieRl,

i=1,2 and X.,y; are variable vectors of apbropriatevdimensions.
There are many real world applications of (5.1) and (5.2) such
as complementary flow problems, orthogonal scheduling problems
to name only a few [10].

The classical technique to solve this problem [19] is to intro-
duce an l-dimensional vector u of 0-1 components and replace the

> 0 by:

constraints xtx =0, x, >0, X, >

172 1
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X, < Mo(ez—u)

X 2 0, X, > 0.
where e, is the 7 dimensional vector all of whose components are
1's and M0 is a constant satisfying

t ! .
M, > max {e xg lAixi+Biyi.Zbi’ x, 20, yizo}, i=1,2

Hence (5.1) is equivalent to the following mixed 0-1 integer

programming problem:

N
c s t t t t
minimize C1%y + dlyl + CyX%, + d2y2.

subject to Alxl + Blyl b

v

1

A2x2 + B2y2

v

Py

ol
|
=
o
tA
o

> (5.2)

e
+
2
o]
IA
=
(D

u = (ul;uz,-°',uz)

uj: 0 or 1, = 1,-+,1. S/

This can be solved by a usual branch and bound technique if 1

is small. Instead, we will propose another classical approach,
i.e., penalty function approach by putting the constraint xEx2=0
into the objective function:

N
Ca s t t t t

minimize C1Xq + dlyl + czy2 + Mxlx2

subject to Ayx; + B;y; 2 bl > (5.3)

Ayx, + Byy, 2 b,

\Y
o2

v
o
-

Xl > 0, Yl
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which is a BLP. Note that BLP formulation (5.3) have fewer

variables and constraints than its counterpart (5.2).

Theorem 5.1

If the constraint set of (5.1) is bounded, then there exists

a constant M0 such that (5.1) is equivalent to (5.3) for M>MO.

Proof: This can be proved by a standard technique and will be

omitted. ||
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