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A method is described for representing chemical
structures hierarchically by means of a BCT (block-cutpoint
tree), which is a structural unit having chemical significance.
Memory requirements and the flexibility of data manipulation
are improved compared with direct processing of a adjacency

matrices.



BCT REPRESENTATION OF CHEMICAL STRUCTURES

Takashi Nakayama and Yuzuru Fujiwara

I. INTRODUCTION

In processing structural information about chemical
compounds by computer, memory efficiency and processing time '
depend largelyion the method of representation. Graph theory
has been a powerful tool in representing a structure in terms
of graphs by‘assigning atoms and bonds to vertices and edges.
One of the typical methods is a structure representation by
a connection table.! The adjacency matrix can represent the
connectivity relation of a chemiéal structure, and most of the
structural information is contained in a connection table.
Practically, the compact connection table, such as those devised
by Gluck,” is effective for saving storage requirement. However,
it is not easy to use a connection table directly and efficiently
in various application systems, such as a substructure search
system. These problems are due to the concept of chemical
structure as simply a connectivity relationship among atoms.
Actually, when an observer recognizes a chemical structure, the
direct connections among atoms are not always basic to the
recognition. It is believed that the various intermediate
concepts between chemical compounds and atoms are organized
hierarchically, and that they are properly selected during the

recognizing procedure.



We have tried to describe a chemical structure
hierarchically by means of not only the structural unit "atom",
but also the intermediate concept "block". The block used
here is defined graph theoretically, and it is believed that
the block has some kind of chemical meaning. And that is one
of the reasons why a "block" is used as an intermediate
sturctural unit. By introducing a block, a chemical structure
is described in the intermediate form of tree structure, called
a block—cﬁtpoint tree (BCT). The canonical form of a tree is
obtained simply. It is sufficient for the description of blocks
to prepare a "block dictionary". This leads to major savings
in memory, as explained later.

Methbds to represent chemical structures may be divided
into two systems. One is called linear notation systems and
the other is called topological systems. Many systems have
~ been devised and implemented for various purposes“."11 The BCT
representation of chemical structures belongs to the latter

category.
II. BCT REPRESENTATION

1. Definitions

A "graph" G is formally denoted by a doublet (X, U), where
X=1{x;, °"’_Xn} is a set of "vertices" and U={ul, ceey, um} is
a set of "edges" which are the elements of the Cartesian product
of X: XxX={(x, y)|xeX, yeY}.***® If the edges in U have no

direction, the graph is "nondirected". A "path" in G is any

sequence of edges in which the final vertex of an edge is the



initial vertex of the next one. A "loop" is an edge whose
initial and final vertices are the same. A "cycle" is a path
xl---xp where the initial vertex X coincides with the final
vertex Xq coincides with the final vertex xp. A graph is
"connected" if, for any two distinct vertices of X, there is
at least one path between the two. The number of edges joined
to vertex x is called the "degree" of vertex x and is denoted
by deg x. The "length" of a path XgX Xger X, is the number

of edges, n, in the path. The "distance" d(xl, x2) is the
length of the path between the two vertices Xq and X,. A
graph is "simple" if the following conditions are satisfied:
(1) it has no loops and (2) the number of edges between any
two distinct vertices is at most one. Given a graph G= (X, U),
a "subgraph" is the graph G' = (Y, (¥YxY)nU) with YeX. A "tree"
is a connected graph without a cycle. A graph G= (X, U) is

a "bigraph" or a "bipartite" graph if the set X can be
partitioned into two subsets (X==XluX2, XlnX2==¢) so that alil

edges in U have one terminal vertex in X, and the other in X

1 2°

A vertex x is a "central" vertex if x is a vertex of a connected
graph such that the maximal distance from x is minimal. A
chemical structure can be regarded as a nondirected connected
simple graph. The concepts of a cutpqint and a block are used
to define BCT.) A vertex x is a "cutpoint" if the removal of

X increases the number of connected components of the graph.

A connected graph G is "nonseparable" if G has no cutpoints.

A "block" of graph G is a maximal nonseparable subgraph of G.

Now a "BCT (block-cutpoint tree)" is defined for a given graph

G as follows: T= (Z, W) is a block-cutpoint graph of G



(denoted as bc(G)) if: (1) Z=CuB is a set of vertices where
C=={cl, ce., cn} is a set of all cutpoints of G and

B=={Bl, <., Bm} is a set all blocks of G (Bj signifies a set
of vertices of a block) and (2) W=={wl, ..., wz}

= {(Bi’ cj)‘BieB, chC, chBi}. In other words, a graph is

a bc(G) if the set of vertices is the union of a cutpoint set

and a block set, and all edges have one terminal in a cutpoint

set and the other in a block set where the cutpoint is contained

in the block. A bc(G) has the following properties: (1) it is

a bigraph, (2) it has only one central vertex, (3) it is a tree,

and (4) terminal vertices are blocks. A bc(G) is called a
block-cutpoint tree (BCT) because of property 3); we use "BCT"
hereafter. Cutpoints and blocks of a graph are illustrated

in Figure 1.

2. BCT Representation

Figure 2 shows the structure of cholesterol. The upper
representation is the usual one and the lower is its BCT
representation. It is shown that the BCT is a bipartite tree
with blocks (white circles) and cutpoints (black circles).

A canonical form of the bipartite connection table of BCT
(called a BCT table hereafter) is used as the data format for
computer use. For a BCT with m blocks and n cutpoints, row
numbers and column numbers of an mxn matrix correspond to the
block and cutpoints identifiers, respectively. An element of
a matrix aij= 1 means that Bi is adjacent to cj, and aij= 0]
means that B, is not adjacent to Cs- An example of a BCT

table is shown in Figure 3. A canonical form of this BCT

[FIG 1]

[FIG 2]

[FIG 3]



table is obtained by the following procedure:

(1) Generation of BCT canonical form
(a) A central vertex is assigned to the root of BCT. (As
there is only one central vertex, according to BCT
property (2), the root is uniquely determined.)
(b) A vertex x belongs to level i if d(x,-x0)=:i, where X
is the root. (The root is on level 0, and no other
vertex belongs to level 0.)

(c) Vertices in level i are arranged by the following rules

in ascending order of i.

Rule 1. Vertices with a common parent are collected into
one groﬁp. Vertices in a group are arranged continuously
in a level’hext to the parent. N

Rule 2. Vertices in a group are arranged'in descending order
of’the number of descéndants.

Rule 3. If two vertices in a group have the same number of
descendants, subtrees whose roots are the two vertices
are constructed acéording to rule 1 and rule 2.

Comparing twovsequences of descendants of two subtrees
lexicographicaily, two subtrees (therefore two vertices
' corresponding to the two rooﬁs) are arranged in
lexicographical descending order. If the two sequences
are the same, the arrangement is arbitrary and the two

subtrees are equivalent.



(2) BCT canonical form is converted to the canonical BCT
table according to the following rules.
(a) Let m and n be the number of blocks and cutpoints,
respectively, m rows and n columns are assigned to
blocks and cutpoints, respectively.
(b) Rows and columns are divided among the levels.
Arrangement of the levels is shown by Figure 4a or b. [FIG 4]
(c) Arrangement in a level of the BCT table corresponds
to the order of BCT canonical form obtained by (1).
Examples of BCT canonical form and a canonical BCT table
are shown in Figure 5. The size of the adjacency matrix of [FIG 5]
BCT is (mfn)x(m+n). On the other hand, the size of a BCT
table is mxn, illustrated by shading in Figure 6. Thus, the [FIG 6]
memory space occupied by the BCT table is m-n/(m+n)®> to that
by the adjacency matrix. (If msn, the BCT table occupies
one-fourth of the memory space of the adjacency matrix.) If

a given graph G= (X, U) is a tree, the number of vertices of

BCT derived from G is twice the number of |X|. When msnw|X|,

the memory size of BCT (m-n=?lXF) is equal to the size of the
adjacency matrix. Figure 7 shows several relationships [FIG 7]
between graphs and their BCTs concerning the number of vertices.

As shown there, the number of vertices of BCT varies greatly,
accofding to the type of original graph. The type which

increases the numbér of vertices maximally is (a), and the

storage needed is m.n= (N-1) (N-2)< N?, where N= |x|, so that it

does not exceed the size of the adjacency matrix of the original

graph. 1In case (d), the number of vertices of the BCT decreases



remarkably, with great improvement in the efficency of memory
use. As shown later, the information concerning the internal
(ring) structure of the blocks is given by the block dictionary.
On the other hand, the canonical tree representation by the

Ed monds algorithm™ needs just N (i.e., it is a sequency of N
figures). Each figure requires several bits to represent the
number of descendants, while the BCT table requires only 1 bit
for 1 number. Therefor, the canonical representation of a

tree by the Edmonds algorithm requeres k-N bits, as compared
with the BCT table which requires m-n bits, where k is the
number of bits necessary to represent one number. Figure 8 [FIG 8]
shows the behavior of the number of bits required in the case
of m=n. If k=16, memory size required by the BCT table is
less than that of sequence representation for N< 64. " This
implies that the BCT table requires at most the same memory
size as sequence representation for practical use. A BCT

table has an advantage over other methods with respect -to
simplicity of manipulation, owing to the block dictionary.

The relation between the BCT table and the block dictionary

is shown in Figure 9. Blocks are represented by colors (i.e.,
identifiers), so that required memory size is economized
greatly by this file organization. Thus the bipartite BCT
table is selected as a data format. The internal structure

of a block is the content of the block dictionary (see

Figure 9), and it is represented in the form of a connection . [FIG 9]
table.!® Positions of cutpoints are specified by means of unique
numbering of vertices in a block. This information is put in

an interface file, independent of a block dictionary. The



hierarchy of the structural information and the flexible
manipulation in the hierarchy are justified by this file

organization.
IIT. ALGORITHM

In order to obtain a BCT table fdr a given graph,
cutpoints and blocks of the graph must be found before the
generation of a canonical BCT. An algorithm to find cutpoints
of a graph has been previously presented by Harary,'®* who
introduced the BCT concept to graph theory; we have developed

and used the following algorithm.

1. Cutpoint Finding

A graph of interest is G= (X, U), where X=={xl, cee, xn},
UcxXxX={(x, y)|xeX, yeX} (see II.1l). We show the logical
foundation of the algorithm to examine whether peX is a cutpoint
or not. This algorithm examines all the vertices in X. A
hypergraph H is defined as follows." £==(Ei|i=l, 2, +--)
generates hypergraph on X if & satisfies the conditions:

1) Ei#d) for i=1, 2, .-

Z)gEi=X
H= (X,& ) is called a hYpergraph, where X=={xl, ceey, xn} is
a set of vertices and E; is an edge. A vertex x is adjaéént
to a vertex y if there exists an édge which contains both
vertices x and y. An edge E; is adjacent to an edge Ej if
E£1Ej;£¢. A path of length g is defined as a sequence

(Xll Ell le Ezl e+, E,

q 1) satisfying the following

Xq+



conditions:

1) Xyr *ccy xq+l€ X

2) El’ .., qu &
e E for k=1, ---, g

3) x X

k" Tk+1 k
Suppose x~y denotes that there exists a path from x to y;
x~y is the equivalence relation. Equivalent classes by this
equivalence relation are called connected components of a

hypergraph. Now the following steps give the cutpoint finding

algorithm (peX is a vertex to be examined):

(1) Sl= (Zl, 81) is a hYpergraph, where

Z,= {z|d(p, z)=1, zeX}
£l=Un(zlle)=(Ei|i=1, 2, ==, Byl =2

Classes Si, S%, .., S% are obtained by applying the

equivalence relation (~) to Zl' (These are the connected

L

components of S

J-1 1

(2) Suppose that classes Sl r S%_ (£22) are obtained

by classifying a set of vertices:
ZJ_l={z|d(p, z) =J-1, zeX}
Then the procedure classifying a set of vertices:
Z;= {z|d(p, z)=J, zeXx}
is as follows: SJ==(ZJ, 6J) is a hypergraph, where
TE Ty s ) o
T, = {Zld(p z)=J, a__=1 for yes® 1}
i Pr 2l mYe Gy YeS;
E=Un (szzJ):(Ei|i=l, 2, ++°)
and

8J==T U g

where ayz is an element of the adjacency matrix of G.
; v



g can be classified by the equivalence relation
into classes SJ, e, Si (1<k<f) which are the connected

Therefore Z

components of SJ.

(3) The following criteria decide whether p is a cutpoint or
not: (1) If the number of connected components of SJ
(J=1, 2, 3, +++) is one, p is not a c<utpoint. (2) If
Ti==¢'connected to Si-l (i=1, <<+, £, £22), p is a
cutpoint. These criteria are based on the following
definition or properties of a cutpoint. A vertex p is a
cutpoint of a connected graph G if and only if G becomes
disconnected by reméval of p. Criterion lvmeans a case
that the number of connected componehts has been found to
be only one at a distance J ffom P (J¥=l, 2,v~~-, max
distance). Criterion 2 means a case that if a cohnected
component made of vertices within a distance J-1 has been

found, it is a component separated from another part of the

graph.

2. Block Finding

A terminal vertex and its adjacent vertex always constitute
abblock, which here will be called a "T-block". Given an
original graph GO==(X0, UO) and a set of terminal vertices
T.cX

a graph Gl==(Xl, Ul) and T C)ﬁ_‘are obtained by removal

0-"0' 1
of T0 where Tl is a set of terminal vertices in Xl' If
Gi==Gi+l, a graph‘Gi contains no terminal vertices. T-blocks

are picked out until the state reaches that of Gi==Gi+l
according to the procedure shown in Figure 10. The following [FIG 10]

procedure is‘applied'to a graph G= (X, U) which contains no

- 10 -



terminals. Terminal vertices of a BCT are always blocks

(BCT property 4). The procedure is based on the same idea

as that for T-blocks, which picks out blocks from the exterior.
But this BCT terminal does not appear in the adjacency matrix

explicitly.

(1) A cutpoint c is selected.
(2) All vertices in X are classified according to the distance
from c:
X=XOUX1U--' UXm, XiﬂXj=¢ (i#73)
X, is a set of vertices at a distance i from c (XO=={c}).
(3) The flow shown in Figure 11 gives the procedure to pick [FIG 11]
out blocks. The details of the procedure PICK is described

as follows:

(a) Suppose cj is a cutpoint of d(c, cj)=.J, and a set of

vertices A:

A= {x|d(c, x)=J+1, ‘ax,c.=l}
where a Jc. denotes an element ;} the adjacency matrix of
G. A hypézgraph H is defined as follows:

H= (A, &)

E=Un (axa) = (E;[1=1, 2, ---), IEi|=2
Then the connected components B -+, B. are obtained by

1’ L

classifying vertices of A according to the eguivalence
relation (~). The number of connected components obtained
by extending Bl’ ey, BL to the exterior does not exceed
L. And at least one block is contained in the connected
components. (This is warranted because G is a connected

graph and cj is a cutpoint of G.)

- 11 -



(b)

(c)

(d)

(e)

There always exists a vertex which is farther than cj
from c, so let k=2 initially.

Connected components Bl’ ooy, BL are extended as follows:

A family of sets

T=(Tl’ e, TL)

T,={x|d(c, x) =J+k, a =1, beBi}

X,
is generated.' If Ti==¢ for some i, Bi vields a block.

If T=¢, the procedure ceases to extend, and Bl' e, BL
are blocks, respectively. Now suppose T contains no empty

sets; a hypergraph H= (A, &) is constituted:

L L
A= (B U (JT,)
i=1*  i=1*t
&=TupB, B= (Bl, <o, BL)
A set A is classified into equivalent classes (connected

components) according to the equivalence relation (-~):

C‘—‘(Clr ct Ck)
Connectivity of Cl’ e, Ck with the other part of G is
examined (see Figure 12). If Ci(therefore Ti) is adjacent [FIG 12

to the vertex of a distance J+K-1 or J+K, the extension
of Ci does not yield a block. Therefore Ci is removed
from €. After examination of this connectivity, a
family of classes (¢, gives new classes (subscript L may

be renewed) :

)

k is increased by one: ke¢k+l. If k exceeds maximal

B:(Bl' ...’B

distance, Bl' e, BL yield blocks, respectively. Otherwise,

the procedure is repeated from step c).

- 12 -



IV. EFFICIENCY OF CUTPOINT FINDING ALGORITHM

The final state of class generation is illustrated in
Figure 13. The vertices enclosed by a dotted line constitute [FIG 13]
classes at this stage. Figures 1l3a-e are the cases that the
cases that the reference vertex is not a cutpoint, and
Figures 13f-h are the case of cutpoints. For example, case
a shows that the number of classes is only one at a distance 1.
Case f shows that the number of classes is three when one of
the classes completes the connected component (which means
that the removal of the reference vertex increases the number
of connected components). As is shown in these figures, the
processing time depends upon the number of vertices processed
until the nearest connected component is found. Therefore,
the vertices with degree 2 on a cycle are found to be non-
cutpoint at a distance n/2 (n even) or (n-1)/2 (n odd), where
n is the number of vertices containing the reference vertices.
(Cases a, b, and d in Figure 13 are the examples when n= 3,

6, and 6, respectively.) In turn, the degree of the reference
vertex gives the upper limit of the number of classes, so it
is almost always less than 5 if a graph is a chemical structure.

- The efficiency of the block-finding algorithm is estimated

similarly.
V. CONCLUSION

A hierarchical representation of chemical structure is

useful from the viewpoint of processing time as well as memory

- 13 -



requirements. A block-cutpoint tree (BCT) is used to represent
chemical structures. The algorithm to construct a BCT was
written in APL and implemented on the IBM 5100. Input data to
this algorithm are in the form of an adjacency matrix of
compounds. The compound file and block dictionary have been
designed. The compound file is a set of BCT representations

of compounds and the topological relationship among blocks is
described. Further structural informations, such as atomic
identification, bond types, steric relations etc., are described
in a block dictionary. Complicated structures need another
file to describe substituted positions (i.e., cutpoints),
symmetry, steric relations, and so on. These will be utilized
in a application systems, such as substructure search,
automatic analysis of spectra, and molecular design, which

are being developed in our laboratory.
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C2
Cs Ce
C
o—o “ﬂ Ba
B3

B
B1 B> °

Figure 1. Blocks and cutpoints of a graph G. {B,, B, By, B,, B is
a set of blocks and {C,, C,, C;, Cl is a set of cutpoints.

Ptk

> block
e cutpoint
Figure 2. Structure representation of “cholesterol”. The upper

representation is a usual notation and the lower is a BCT repre-
sentation.

12 3 456 7 8 9
111

2 1
3 1
4 1

5 1

6 1

7 i1
8 11
9 11
10 11

1 1 1
12211 1 1 1

Figure 3. Example of BCT table 12 blocks and 9 cutpoints.
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Figure 4. Arrangement of the levels: (a) BCT table with a cutpoint
root; (b) BCT table with a block root.
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Figure 5. BCT canonical form (a) and canonical BCT table (b).
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Figure 6. BCT table in adjacency matrix: B, block part; C, cutpoint
part.
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Figure 7. Graphs and their BCTs.

fin)=n?
(BCT table)

g(n)=2kn
(sequence)
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0 2k

Figure 8. Number of bits occupied by a graph. n = (number of BCT
vertice) /2k bits for a vertex.
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Figure 9. Relation between BCT table and block dlctxonary BID,
block identifier table; BF, block file.
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Figure 10. Procedure to pick out T-blocks.
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cutpoint in  Xiu_i,g

yes

,'———< j=;L.K4k_——

pick out btocks
{ procedure PICK)

[

register blocks By, --,By

|

G¢G-(B:Y ...YB)

[
1 continu»e >

no
other culpoints ?

continue

error

Y
o

x

Figure 12. Class C, should be removed because vertex a is adjacent
to vertex b.



Figure 13. Final states of class generation. Numbers 1, 2, 3, etc.,
denote the distance from the reference vertex (black circle).
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