A DESIGN OF PROCESS CONNECTION PROCEDURE
ON COMPUTER NETWORK

by

Yoshihikc Ebihara
Shoichi Noguchi

Norman Abramson

March 15, 1977

INSTITUTE
OF

ELECTRONICS AND INFORMATION SCIENCE

UNIVERSITY OF TSUKUBA

EIS-TR-77-6

A Design of Process Connection Procedure on Computer Network

Yoshihiko Ebihara Shoichi Noguchi Norman Abramson

University of Tsukuba Tohoku University University of Hawaii

March 15, 1977

Abstract

It is important to express process connection procedures
explicitly for researchers trying to connect computers,
especially when a communication system is used across inter-
continental distances. The objective of this paper is to show
how a multilevel hierarchical structure of its procedures

by means of finite state automaton graphs leads to easily
understandable communication standards, complete specification.
It also been implemented on HP2115 as one of ARPANET nodes.

1. INTRODUCTION

The growth of computer networks has recently become nation
wide. International computer communication has been developed to permit
persons at computer centers to access data and use interactive programs
that exist and run on other remote computers. On the other hand,
researchers trying to connect computers that are remote from each other
across intercontinental distances faced,on occassion,various
restrictions on implementation, communications and debugging of network
control programs. Especially communiéatmon problems limit available
debugging time between users and computer centers and the scheduled
communication period of satellites often prevents each researchers from
coming in close contact with. It also can be gaid that the process
copnection procedures of NCP (Network Control Program) which, provides
facility for process—-to-process communication over the computer network,
are not exceptional. That fact is now recognized experimentally by the
JALOHA computer network which is a Japan-Hawaii computer network using
a Telex and a satellite link (ATS-1 and INTELSAT-4). From this point
of view a simplified and resonable design for NCP is the prime design
objective in a system to overcome the above restrictions. The basic
objective of this paper is to apply state automaton and state graphs
in the definition of process connection control and also to show how a
multilevel hierarchical structure in connection procedures with state
automaton graphs leads to easily understandable communication standards,
complete and unambiguous specifications, embodying straightforward
extensibility features. It has been implemented on the ALOHA-NCP which
has become on ARPANET node.

2. DEFINITION OF CONNECTION PROCEDURES

In order to describe the process connection procedure, a few
definition about a process, a subprocess, a link, a socket and a
connection are needed as shown in the following:

Process: A process consists of subprocgss(Pin) with hierarchical
structure as shown in Fig.1l, and is defined as a software
module which executes a series of functions by communication with a
subprocess of the remote host computer. Each subprocess with a pair
of receive and send terminals becomes an executing subprocess when

a pair of terminal

-2-

numbers is assigned to an operation of connection procedures. Further
the communication between them is limited to processing within the
same level of executing subﬁrocess.

The necessity of a hierarchical structure in process connection
can be prooved:experimentadally:

Some of the host computers differ from one another by type, speed,
word length; operating system, and etc. Futhermore, a host may sometimes
have a special character set. In order to support understandable
cooperation of host-host communication in such an .environment, many
protocols have been specified, like that of the ARPA network. In
particular, a NCP(Network Control Program) is provided for connection
of independent processes in different hosts, control of the data flow,
and several ancillary functions. One process deals with many kinds
of data-types formats and functions during a connection period. This
trend will increase in the future, because of rapid development of
application protocols. However we can point out a corollary. Some
specifications or mutual agreements have an effect on network communica-
tion and any host be able to talk with other remote host in the way
based on the specifications, while some are concerned with the sphere
of host-host level, and other are considered to be used only for
subprocess—subprocess communication. - Through interactive talk between
Pi1 and leas shown in Fig. 1, the details of definitions on functioms,
types or formats of data handled at the second level, Piz—sz connection,
will be specified.

Accordingly, it is possible for subprocesées at level-2 to transfer
and receive information data whose mode of expression may be newly
specified without the restriction of limited standard character sets and
formats for used at the level-1 communication. For example,
subprocesses. under the level-2 deal with voice, graphic and data base
information. 1In the same way new definition and function for the third
level of Pi3 and Pj3 subprocess communication will be, if necessary,
formulated by interactive talds between Pi2 and sz subprocesses.

The original function of the process can be executed hierarchically
with repetition of the above manipulation until the level-n connection.

These considerations lead to the introduction of a hierarchical
structure in process connection which is built up by setablishing its

own subprocess connections, step by step.

Socket number(Sn, Rh’ Sn' or Rh', where n=1,2,3...):

A socket number is assigned by a host number and a socket number,
and is attached to the termin;l of the subprocess during execution of
the subprocess connection. The same socket number in different hosts
represents a different one so that it is uniquely identified over the
network. However, a socket number assigned within a host has a narrow
meaning here .

Link(ln, where n=1,2,3...):

A link can be deffined as a logical path to couple two terminals
of subprocesses in different hosts in simplex mode so that output from
one terminal is input to the other, while the connection is fullduplex.
A logical path must have a link number to establish a priority
or distinguish it for a certain usage.

Subprocess connection:

A conhection is a pair of links at the same level in different
hosts. For example subprocess connection of level-1l means establishment
of logical pathes between Pil and le subprocesses. Host 1 and 2 exchange
relatively socket number (Rl) assigned dynamically by system of host 1
to the receiving terminal of Pilvand socket number (Sl') assigned
by system of host 2 to the sending terminal of le. Simularly host 1
and 2 exchange socket number (817 and (Rl)’ relatively. These details
of connection procedures are denoted later.

Process connection:

A process connection is defined as a sequential construction of
subprocess connection from the level-l to the necessary level-n.

A process connection consists of the following three phases.

phase I ¢ Initiation of process connection

phase II : Subprocess connection from level-1 to n

phase III : Subprocess disconnection from level-n to 1

On definitions mentioned above, a concrete process connection
procedure is denoted in the next, while utilizing host-host

control messages.: of ARPANET.

3. METHOD OF PROCESS CONNECTION

A process comnection is initiated by a user initiator (UI).
Both UI and a remote server initiator(SI) are connected to initialize
start-up of process connection procedure, then the objective process
initiator(PI) in the each host actually executes the required subprocess
connection. We require images of host(i) and (J) in a network and
should bring host(i)'s behavior into focus in the following explanation.

Function of UI:

User network commands let the system of host(i) know the selected
process of host(i) and the remote process of host(j). The system
chooses a unique free socket number(Rb), then hands R, to its UI via

0

the CREATE(1) command. UI has the representative R, as its own receive

_terminal number(Rl') in turn which will be assignedoto'the first subprocess
in the remote, control is handed to the selected PI.

Function of SI:

Each host is ready with common-socket number(Do) to listen the
request of process comnection from other hosts. SI activates the selected
process by observing the first control message (having D0 in it) sent
from host(j). In turn sending the representative receive socket number
(Rl‘) to UI of host(j), the control is femove to the selected PI in
host(i).
| Function of PI:

PI exists inherently for each protocol in a host and establishes

subprocess connection, from the level-1l to the level-n, of the selected

process and disconnects each one.

3-1 CONNECTION PROCEDURES

We assume here that an access. from host(i) to host(j) has occurred,
assigning the process with the socket number D0 for process connection.
Each control message has been represented in three characters. Symbol
(i) on the right shoulder of the symbol means message flow from host(i)
to host(j) and (j) from host(j) to host(i). Each.parameter within
parentheses following thé symbol should be referred to notes in table-1

and table-2.

phase-I (connection at level-0)
1. Host(i)'s UI sends a representative receiver socket RO by

appointing the host(j)'s socket number D0 and sends also the control

10'

11.

. SI chooses socket numbers S

. A delivery STR in the form of STR(J)(S 'S R

-5—

message ALL to allow data transmission on the link 10. The format
of control messages. are expressed as; RTS(l)(RO, DO’ 10),
ALL(l)(lo, a, b).

. Host(j)'s SI replies in turn with the control message STR to

acknowledge; STR(J)(DO, RO, s)
1' and Rl' that will be a351gned to the
V(=g '"-
1 (= Sl 1) as

level-1 subprocess of selected process and sends R
data information through 10, by executing command SEND M(R 9.

Dlsconnectlon of both initiatdrs means the end of process connection

initialization. The close control message from UIl's receive terminal

is sent to SI's send terminalj; RrCLS(l)(R s D)
Responding with host(i)'s control message, R—CLS(J)(D RO) is
transferred as acknowledgement in turn.

(Then SI and UI are released and are waiting for the next request.)

Phase II (connection at level-1)
Host(i)'s PI creates the exécuting subbrocess Pil, at the level-l,
to which assigning socket number Rl and Sl dynamically both socket
number supposed to have relation with the representative R, like

0
Rl R0+2 S1 Rl+1

. Transfer RTS to request the second level subprocess connection and

O,

ALL* to give space allocation to the remote subprocess; RTS
i
1,), AL)(12, a, b).

. Host(j)'s PI creates similarily the executing subprocess le to

which it will assign Si' and Rl' socket number Sl'=R1'+l.

1° 52) is transmitted
from host(j) to (i).

(According to accomplishment of items 7 and 8, a notification of
relative socket number R1 and Sl'tand establishment of the logical
link 1, are set up.)

@2 &) NS .
RTS*™(R,', Sl’ 11) and ALL (113 a, b) assigning for the link 1
is transferred from host(j) to (i).

STR(i)(Sl, Rl', sl) is in turn replied from host(i) to (j).
(According to accomplishment of items 10 and 11, a notification

1

of relative socket number S1 and Rl' and es:iablishment of the link

ll are set up. Through procedure in items 7; 9, 10 and’'11 the

subprocess connection between Pil and le has been connected.)

’
1

>

-6—

Phase II (At this point various definitions and specifications
necessary for the next level-2 subprocess communication are operated
through the link ll and 12, depending on behavior of application
protocol. However we concerns only with exchange of mutual socket
numbers used at the level-2 from the view of connection procedure.)
12. Host(j)'s socket number Rz' is transferred to the host(i) by

command SEND M(Rz').
13. In turn host(i)'s R2 is exchanged by command SEND M(Rz).

Phase II (subprocess connection of level-2)

14, Host(i)'s PI creates the executing subprocess Pi2 assigning R2 and
82 calculated from the representative R R R2=R0+4, SZ=R2+5'

15. Host(j)'s PI creates the executing subprocess Pj2 assigning R2'
and SZ' calculated from the representive R,', S;=R2'+1,
R2'=R1'+2. D

16. Transmission of RTS (Rz, S;;
actiyates establishing a logical link 14.

17. STR(l)(S', RZ’ s3) is acknowledged from host(j) to (i).

"14) and ALL(%)(la, a, b)

(A notification of socket number R2 and Sz', and establishment of
l4 h?ve been done by executi?g items 16 and 17.)

18. RTS(J)(RZ', S, 1,) and ALL(-J)(13,~.- a; b)uis sent to establish the
logical link from host(j) to (i).

19. STR(i)(Sz, R2', 53) is acknowledged in turn.

‘ (A notification of 82 and Rz' has been executed, after establishing
of 13 and 14, actual data is exchanged alternatively between

subprocesses Pj, and Pji.)

Phase III (disconnection of each level)

20. Close control message R—CLS(i)(RQ, 82') is transferred from host
(i)'s receive side to host(j)'s send side. _

21. In the same manner the close control message R—CLS(j)(Sz', RZ) is
sent from host(j)'s one to host(§)'s.
(According to completion of items 20 énd 21, socket Sz' and R2,
and the logical link l4 have been released.)

22.,S—CLS(i)(Sz, R2') is sent from host(i) to host(j).

23, S—CLS(j)(R2', SZ) is sent in turn as acknowledgement of link

termination.

-7-

(According to completion of items 22 and 23, socket Szand R,)',
and the logical link l3 have been released. Accomplishing items
20, 21, and 23, subprocess connection between Piz and sz at the
level-2 has been disconnected.)

24, R- CLS(l)(R ') is sent from host(i) to host(j).

25. In tum R—CLS<J)(S ', l) is sent from host(j) to host(i).

(Socket number R, and S1 , and the logical link 12 have been

1

released through items 24 and 25.)
26. S- CLS(l)(S R,
27. S—CLS(J)(R.', S) is sent from host(j) to host(i) in turn.

') is sent from host(i) to host(j).

(According to completlon of items 24, 25, 26 and 27, the
subprocess connection between Pil’ and le, at the lével—l has
been disconnected.)

In general similar subprocess connection procedure.up to level-n

may be operated repeatedly.
4, BLOCKING OF PROCESS CONNEéTION PROCEDURE

The following process connection procedures consist of six
foundamental blocks that have been expressed by the state automaton
graphs. In graphs each state has been expressed by the circled marks
C) and C__), and more details of the explanation have been given in
table 3. An arrow shows the next transition state. It is defined
so that pural input events can be distinguished from each other in the
case of a state with several branches to déstination states. ‘Symbols
A and (1 represent the case of a branch destination reached from
another block and identified by number within the A of{::]indicating

the entry point numbered with same one in the other block.

4-1 U-INITIATE Block:

The function of this block is to take the main part of UI in the
phase~I as shown in Fig. 2. The following shows description of each
state in the U-INITIATE block gtaph.

INITIATE-13; This is the initial state in process connection
procedure and the inner input event of CREATE command from .the system
- causes creation of the executing subprocess Pil in the host(i).

Tl; The inner input event of CONNECT command from the system causes
UL tranzent from state T, to T, and transmitt RTS(i) with R, and D

(1) 1 2 0 0

to the host(j).)T.; Correct acknowledgment of

parameters and ALL 95

-8

RTS(i) and ALL(i)

message (a) count into the receive counter(RC) If these have not

from the host(j) causes UI set up bit(b) and

reached the host(j) correctly, received [NA()] brings UL to repeat
transmitting these until [AC)] from the host(j) within a certain
limit of time, while time-out causes Ul to state Fl' T3; Recedived
STR(j) correponding the above RTS(i) and ALL(i)
) and ALL

forced disconnection. 1, RECEIVE command from the system brlngs UI

brings UI to state O

@) v

while time-out, with no reply for RTS , brings UI into the

into state O in which UI will find data of host(j)'s receive socket

number (R,') on data-message queue. 02; Received data Rl’ causes UI

1 v
to store in its work area. Later PI will refer to it in operatiom at

the level-1. 03; Both E(R) and E(R) events brings UI to state 04

whether the receive counter (RC) is zero or-not, as R1 'is the last
04; CLOSE(1) command from the system UI send'R—CLS(l)
C,; Received (ac®P] for r-cLs®

termination to the host(j).
Ul's status to 02 If [NA(l)] returned from the host(j), UL repeats

R- CLS(1) transmission within timo-out, until reception of [AC(l)] for

&)

data. for a

changes

R—CLS(). ; UL goes to state C as a reply

for R-CLS (ig. 5,
The completion event of freeing resources used by UI processing, brings

UI to come back to state INITIAL-2. The control will be handed to PI

5 with receiving R-CLS

RELEASE command causes UI move to state Rl. Rl;

that works to realize the process connection, then UI will be released
to accept the next request.
Detailed description of other block types has been omitted because

of an analogous behavior in the praphs.

4-2 S-INITIATE Block:

Function of this block takes main part of phase-I procedure in SI
side, and executes an initiating action for creating the executing
subprocess under the control of SI that accepts process connection

request from the source host (Reference to Fig. 2).

4—3 NORMAL OPEN-n Block (nz1):

This executes subprocess communication between Pjn and Pin at the
level-n and deals with input/output data messages in half duplex mode.
A data message from the host(i) to the host(j) is expressed by M(i) and
conversely one from the host(j) to the host(i) by M(j). Format and
code expression of data message and specification of functions transferred

between Pil and P;_ are followed in the way of these defined through

j1
the mutual communication at NOMAL OPEN-(n-1) block. An interrupt control

-9-

message and spetial control code imbedded in the data stream are
used to indicate interruption of a subprocess. A special control code
is illustrated by expression of M(jI) in data message umit.

At the level-n the host(i) is assumed to request an intrrupt from
the host(j).

1. The interrupt request INT from the system lets host(i)'s PI
transmitt the interrupt control message with the following
format; INS(i)(lm), where m=2n and n means the level-n subprocess
connection (reference to notes of table-2). Then the interrupt
data message M(il) is sent by command SEND M(iI).

The host(i) is conversely assumed to accept the interrupt
request from the host(j).

1. Receiving host(j)'s INS(j), RECEIVE command instructed from the
system of the host(i) causes PI to inspect the data massage M(Jj)
on the pending queue and incoming ones if it is a M(jI), then act
on it, while throwing it away if it is not. After the accepting
of M(jI), start signal INSG from the system means that the system
had started to treat interrupt processing.

. 2. PI is ready to come back to state N, with occurrence of READY from

1
the .system after the interrupt management having been accomplished.

4-4 CLOSE-n Block(n21):

Main operation of this block is to initiate closing, aborting and
refusing the level-n subprocess connection between Pi and Pjn and to
acknowledge closing.

1. The command CLOSE(3) from the system causes PI to move from state
Nl to state Cl’ while the close control message S—CLS(j) and

R—CLS(J) brings PI from state N, to state C,.

2. Upon state C4 PI keeps waiting ior all data3message M(j) in the
host (i) being treated completely by subprocess Pin’ while on state
C2 PI assuming that there is no need to serve any operation for M(j).
3. All resources related with the subprocess connection at the level-n
are freed by the RELEASE command, then PI returns to the open state
N1 of NORMAL OPEN-(n-1) block. However it is supposed to come
back to state INITIAL-1l, after resource-release at the level-1.

(reference to Fig. 4)

4-5 CONNECT-n Block (n=1):

This concerns with execution of subprocess connection of Pin and

-10-

Pj at the level-n. The left part in Fig. 4 shows initiation
n ,
procedure of subprocess connection. Each symbol in the graph of CONNECT-n
block includes parameters iﬁplictly and necessary receive socket numbers
Rn and Rn' for the subprocess connection had been obtained through
communication of the executing subprocesses Pin—l and Pjn—l' Sepd
socket numbers Sn and Sn' are related to Rn and Rn', relatively, where

.= | - 1 1] 0y Py .
Sii R,+1 and Sn R.n +1. Rl and Rl are exceptions, being obtained from
SI and UI operation.

4-6 FORCED CLOSE BLOCK:
Abnormal termination in the procedure brings PI to disconnect a
subprocess connection forcely. After successful completion of resource

release at the level-n, host(i)'s PI moves from state F, to open

2

state N, in the NORMAL OPEN-(n-1) block. In the case of forced close

at the level-1l, it is assumed to return to state INITIAL-1.
5. PROCESS CONNECTION WITH HIERARCHICAL STRUCTURE

The block diagram has been illustrated to explain a general flow
of process connection control procedure with hierarchical structure
as shown in Fig. 5, where symbols of input/output events has been
omitted in order to illustrate a control flow as a whole. However
relationship of the input/output events is completely simular to that
of explanation in each block. When time-out occurs in each block, it
comes into the management of forced disconnection although time-out

events are not put in the figure.
6. EXPERIMENT AND SOME RESULTS

In order to introduce the basic concept of process connection
principle with automatic state diagrams, as described, into ARPANET,
supporting program has been developed to cover incoming order of
control messages from a host of ARPANET, and to guarantee that
ARPAHET's host can communicate with as one of ARPANET, while it inerptet-
ing even if it would be operating with other host based on the same

procedure of itself.

-11-

On the basis of automatic process connection, the process control
program has been implemented successfully on the ALOHA-NCP (Network
control program for ALOHA system) installed on HP 2115, using the
assember language. Though other functions required by ARPANET
protocol also have been added to the new version, details has been
omitted in this paper.

Through the experience with its implementation, it can be concluded
that:

1. It is very easy and explicit to grasp the entire flow of process
connection procedures, because of they being constructed from
foundamental blocks, such as CONNECT-n, OPEN-n, CLOSE-n and FORCED
CLOSE ones, which perform a subprocess connection at the level-n,
and from the INITIATE blocks.

2. The connection procedures with hierarchical structure are easily
adapted to expansion and modification in a subprocess~level layer
because each layer can be mostly independét of specifications from
each other and it may work reasonably for a connection procedures
of newly developed application protocols.

3. As a subprocess at the level-(n-1) works under the control of the
subprocess at the level-n in the same host. It is possible to
obtain details of error or status information related with (n-1)-
level subprocess that are on the desbugging, through communication
‘between n-level subprocesses. The technique is very powerful as
the means of developing and debugging new subprocesses in the
environment of existing computer networks.

4, It is able to detect programing mistakes with the utmost rapidity
and details by close investigation of the transition state diagrams
of process connection control procedures. The author also believes
such a technique of automatic process connection can be applied to

implement microprograming for front-end mini computers.
7. CONCLUSIONS

A detailed description has been presented of a concept for
implementation of process connection control in NCP that can operate

in the realistic environment of computer networks.

-312-

Main principles can be described briefly that:

1. Mutual deffinitions of formats and data types to communicate
and specificationoof functions operated are classified into network—
level one, host-level one, subprocess-level one and so on, from
the view points of how effect ranges of these deffinitions is
covering over,

2. Under the consideration of the above, a process participated to
communicate with different host in a Net can be divided into
subprocesses and process connection is build up by establishing
its own subconnection hierarchically.

3. Process connection procedures have been represented by automatic
state-transition diagrams,

4. The connection control program on the implementation of ALOHA-NCP
consists of foundamental blocks suitable for its implementation.

The technique of process connection procedures introduced is, we
believe, one of fundémental ways in designing the NCP of computer

networks.

-13-

* The ALL control message is sent from a receiving host(i) to a
sending host(j) to increase the sending host(j)'s space counters.
This may be sent any time the sending host's message counter

a or bit counter b has been exhausted.

-14-
ACKNOWLEDGMENT
The authors would like'to tharnk Dr.J. Oizuni of the

University of Electro-Communications in Japan, R. Binder of UH and

many staffs of the ALOHA project for useful discussions.

-15-
REFERENCES

[1] K. Fujita, T. Ikeda, S. Noguchi, R. Sato, J. oizumi, Y. Ebihara,
F.F; Kuo and N. Abramson, A Japan-Hawaii Computer-Net-——-Telex
and Satellite, Proc. the Seventh HICSS. on computer Nets,
(Western Periodical Inc., UH, 1974).

[2] J. Oizumi, Y. Ebihara and S. Noguchi, The Pacific Area Computer
Network, Information Processing Society of Japan, Vol. 16, no.

9 (1975).

{3] F.F. Kuo and R. Binder, Computer-communication by satellite: The

ALOHA system, technical report. B 37-4, (The ALOHA system, UH, 1973).

[4] N. Abramson, Packet Swiching with Stellite, Proc. of NCC, (1974)
695-702.

[5] Y. Ebihara and M. Wilson, MENEHUNE ARPANET Driver, ARPA system
Internal Documment, CCG/G-56(1974). '

[6] L.Kleinrock, Performance Models and Measurements of ARPA Computer
Network, proc. ONLINE conf., (1972) 61-85. ’

[7) L. Pouzin, presentation and Major Design Aspect of the CYCLADES
Computer Network, Proc. of the Third Data Communication. Symp.,
(Florida, 1973).

[8] R.E. Kahn, Resource-sharing Computer Communications Networks,

proc. IEEE, Vol. 60, no. 11, (nov. 1972) 1397-1407.

[9] The File Transfer Protocol, ARPA Netword Information Center, no.
7813, (Nov. 1971).

[10] TELNET protocols, ARPA Network Information Center, no. 9348, (Apr. 1972).

[11] HOST/HOST Protocol for the ARPA Network, Bolt Beranek and Newman Inc.,
no. 8246, (Jan. 1972).

[12] Graphics Protocol, ARPA Network Information Center, no. 1538, (1973).

-1 a-

Table 1 - INPUT SYMBOLS

%

CREATE (1) : Creation of User Initiator.
CREATE(2) : Creation of subprocess.
CONNECTION(1): Request for UI initiation from system.
CONNECTION¢2): Connection request of subprocess from system.
CLOSE(1) ¢ Termination of UI initiation.
CLOSE(2) : Termination of SI initiation.
CLOSE(3) : Desconnection of subprocess connection.
SEND : Transmission request for data message from system.
RECEIVE : Receive request of data message from system.
RELEASE : Resource release request used in subprocess connection
from system.
LISTEN : SI's waiting for initiation request from UI.
READY ¢ End of interrupt management.
INSG : Acceptanceof interrupt management.
A : Status inquiry of subprocesses.
[NA] : Last message transmission error [(1)] for control one.
[AC] : Successful last message transmissio;g[(2)] for data onme.
_ : Time-out for elapse of a certain time in state.
%% (n) ¢ Resource release of level-n.
E(S) : Event inkicating Send Counter (SC) being not zero.
E(S) : Event indicating SC being zero.
E(R) : Event indicating Receive Counter (RC) being not zero.
E?ET " ¢ Event indicating RC being zero.-
*(D) : Complete processing of remained data messages.
AM(3) : Any messages from the host(j).
M(3G), M(Rl') : Data message from the host(j).
" NG ¢+ Interrupt data message from the host(j).
INT : Interrupt request from the system.
RTS(j) : Host(j)'s receiver—-to-sender control message for a

connection,-RTS(J)CRn', S , 1), where Rn', S , 1

n 2n-1 n 2n-1
are host(j)'s receiver and host(i)'s sender sockets, and
link at the level-n, relatively.

STR(J) Host(j)'s sender-to- receiver control message for a

. @) ' '
connection, STR (Sn s Rh’ SZn)’ where Sn R Rh’ Son

are host(j)'s send and host(i)'s receive sockets, and

a logical byte size, relatively.

IREACLEEE

r-cLs 3,

s-cLs 37}

wsd)
NOTE

[1:

.
.

-1 b-

Host(j)'s space allocation control message,

ALL(J)(l b) where a and b are message and bit count

n-1° %
assigned to 12n—l'

Host(j)'s close control message to host(i)'s receive
terminal of the level-n subprocess, R-CLS(j)(Sn', Rh)'
Host(j)'s close control message to host(i)'s send terminal
of the level-n.

Host(j)'s interrupt control message, INS(J)(lzn_l)'

Subnet control message.

Underline of symbcl means event from the system of host(i).

Nonexistence of parameters and control message is INS(J)(I),

RTS(j)(R .S

o> 1.1) and S—CLS(J)(R ', Sg)-

Table 2 OUTPUT SYMBOLS
RTS(l) : Host(i)'s receiver-to-sender control message for a

. (i) [
connection, RTS (Rn, Sn’ lZn)'

stTRD) | arn(®) S—CLS(l), r-crs (1)
Explanations of the symbols are almost same as those of
input symbols in table 2, replacing (i) by (j) and (j) by (i),

. (1) '
except parameters, STR (Sn, R.n s Sy 1)

ALL(i)(lzn, a, b), S—CLS(i)(Sn, R, R—CLS(i)(Rh, s,

NO* : Subprocess troubles at a process connection request.

M(iI) : Host(i)'s data message.

DEQ : Buffer release of transmitted last message from queue.

ENQ : Acception of received message on queue.

D(RC) : Decrement received message and bits from Receive Counter.
D(SC) : Decrement transmitted messagé and bits from Send Counter.
S(RC) : Set RC a mount of message and bit space assigned by ALL(i).
S(SC) : Set SC a mount of message and bit space assigned by,ALL(j).
NEG ¢ Neglect all messages. ; »
INS(i) : Host(i)'s interrupt data message, INS(i)(lzn).

OK ¢ Completion of creating UI or sﬁbprocess.

NOTE

Nonexistence of parameters and control messages is STR(l)(SO, RO', s_l)

_crg (1) '
and S-CLS™ (S, Ry').

parameters lm and s means:
lm : m=2n, a link number assigned by host(i).
m=2n~-1, a link number assigned by host(j).
s_ ¢ m=2n, a logical byte size of data transferred on link 1m.
m=2n-1, a logical byte size of data transferred on link lm.
where, m is interger number and n is interger number indicating level

of connection.

INITIAL-1:
INITIAL-2:
LISTEN :

ACCEPT Alz

-3 a-

Table-3 STATE SYMBOLS

Initial state for connection, where distinction between

CONNECT (1) and LISTEN is assumed to be done.

Initialization end state.

Wait state for acception of connection request.

Wait for request of subprocess test inquiry from system.

(1)

Wait for reply [AC(l)] of transmission STR .

A2:
OPEN
01
o2
0y
.04
O
06: Wait for
07: Check if
08: Wait for
CLOSE
Clz Wait for
CZ: Wait for
C3: Wait for
043 Wait for
Cs: Wait for
RELEASE
Rlz Wait for
CONNECT
Tl: Wait for

for

s State=ab1e=to~receive data message.

: Waiting for data message. _

: Check if there is enough space to continue receiving data.
: Wait for CLOSE(1l) command.

: State able to send data message.

successful transmission M(Rl).
there is enough space to continue transmiting data.

CLOSE(2) command.

successful transmission of close control messages.
replies to close control messages from host(j).
resouce-release request.

end of received data message processing.

termination of resource release.

termination of resource release.

request of creating executing subprocess.

successful transmission.

State able to receive and send data messages.

NORMAL OPEN
N1 :

N2 : Wait for
N3 : Wait for
N4 : Check if
N5 ¢ Check if
N6 ¢ Wait for
N7 ¢ Wait for

FORCED CLOSE

F1 ¢ Wait for
F2 ¢ Wait for
INTEROUT

I1 : Wait for
12 : Wait for
13 : Wait for
I4 ¢ Check if
I5 ¢ Wait for
I6 : Check if
I7 ¢ Wait for
18 ¢ Wait for
19 : Wait for
IlO: Wait for
Illz Wait for
112: -Check if
I Wait for

[
w

data message M(j).

data message M(I).

there is enough space to continue receiving.
there is enough space to continue sending.
successful transmission ALL(i).

a6

request of resource release.

termination of resource release.

successful transmission INS(i).

RECEIVE command.

M(JI).

there is enough space to continue receiving.
successful transmission ALL(i),

there is enough space to continue sending.
successful transmission ALL(i).

starting signal of interrupt management INSG.
completion of intrrupt management.

request SEND command.

successful transmission M(iI).

thereis enough space to continue sending.

@

space-a allocation control message ALL

FIG.1 PROCESS RELATED TO SUBPROCESSES.

FIG.2 INITIATION BLOCK.

FIG.3 OPEN-n BLOCK.

FIG.4 F-CLOSE,CLOSE-n AND CONNECT-n BLOCKS.

FIG.5 HIERARCHICAL STRUCTURE OF PROCESS CONNECTION.

HOST(i) __HOST(j)
RT,_ (R,) STO'(DD)jJ
Level-0 F?o T
Process of host(i) ' Process of host(])
ST1(S]) ST1(51
RT (Ry) RT(R)
dl T
F) .
Level-1 o -
STH(Sy) ST (S)
RTR,) T RTZ(RZ) T
bl L
Level-2 F‘D 1
: ST (Sp) ST(Sh)
. RTn(Rn)T RT",'(R'{‘)T
: ! |1 !
Level-n U i’

For n=1,2,3,....

RT,, :Receive terminal at level-n, STp :Send terminal at level-n
Rp :Receive socket number assigned to RTn at level-n

Sn :Send socket number assigned to ST cat level-n

P. :Subprocess of host{i) at level-n

P :Subprocess of host(j) at level-n
(Apostrophlzed RT, >ST R, and S, express those of host(j)

For n=0 A

RTq :Receive terminal of host(i) at level-0

STy :Send terminal of host(j) at level-0
:Receive socket number of host(i) at level-0

So :Send socket number of host(j) at level-0 50~ Dy
:User initiator

:Server initiator

S-INITIATE BLOCK ‘ U-INITIATE BLOCK

T 7 CORNECT CONNECTEll,/’(i) o
49 1EN] NV)
a)
| 0. RTS.ALL
[/w
£/ S(RC)
K

CREATE/&/{]

\
\

~RTs ALL

)
|
!
|
|
i
|
I
|
i
|
/
$x0)/

1
l
l
l
t
I
I
|
|
|
1
|
I
|
!
l
|
I
!
!
!
l
l
|

|

|

l

|

|

!

F-CLOSE BLOCK CLOSE-n BLOCK , CONNECT-n BLOCK

T~ -~ - =
I
|
|
CLOSE(” ml CREATE(2
-CLS'R cLS W %
D T,
S-/CLS./R-CLS)I '
) CONNECT(2)
((i) h 4P)
RTS.STR.ALL
[NA“ﬁ/
)
ON%CTT:E: rr$stio ALt
iacy
S(RC)
@
4)) (J) ()

S(sC)
\n-2 /

——-——.—-_—.—.__——_———_.———-—_.—.————._._—_—_ﬁ_—.-—-———_l

OPEN-N BLOCK

NORMAL \ INSZ

Fig.3. Open-n Block

(INITIATION

Level-0
Initiator |)
Connection (CONNECT-1)
(OPEN- 1 J/®
[4
—_— | (CONNECT-2
(cLose -1) G)
/
£ Level-1 <9PEN'2
° Subprocess _———— |
Connection v] @ONNECT—rD
' (CLOSE - 2 D)
F-CLOSE) | l |
Level-2 l (@PEN‘” ‘)
| Subpocess |
X0, **‘}’fﬁg‘)/ .Conaectl'on | (/)
| (CLOSE-n
—_— L]
Level -n
Subprocess

Connection

INSTITUTE OF ELECTRONICS AND INFORMATION SCIENCE
' UNIVERSITY OF TSUKUBA
SAKURA-MURA, NITHARI-GUN, IBARAKI JAPAN

REPORT NUMBER

REPORT DOCUP’EIHATION PAGE EIS-TR-77- 6

TITLE
A Design of Process Connection Procedure on Computer Network

AUTHOR(s)

Y.Ebihara

(Institute of Electronics and Information Science,Univ. of Psukuba)
S.Noguchi

(Research InstitUte of Electrical Communication, Tohoku Univ.)
N.Abramson

(The ALOHA System,Department of EE.,University of Hawaii)

REPORT DATE NUMBER OF PAGES
March,15,1977 25
MAIN CATEGORY CR CATEGORIES
Communications 3.81
KEY WORDS

Connection Procedure,Process, Subprocess,State graphs,

Link, Socket.

ABSTRACT

It is important to express process connection procedures
explictly for researchers trying to connect computers,especially
when a communication system is used across intercontinental
distances. The objective of this paper is to show how a multi-
level hierarchical structure of its procedures by means of
finite state automaton graphs leads to easily understandable
communication standards,complete specification.

It have also been implemented on HP 2115 as one of ARPANET's
nodes.

SUPPLEMENTARY NOTES

