OPTIMUM PRICING 0F # INDISPENSABLE RAW MATERIAL UNDER MONOPOLY A TWO STAGE GAME APPROACH by Hiroshi Konno July 19,1976 INSTITUTE OF ELECTRONICS AND INFORMATION SCIENCE UNIVERSITY OF TSUKUBA ## Optimum Pricing of Indispensable Raw Material Under Monopoly A Two Stage Game Approach #### H. Konno ### 1. Introduction This is a preliminary study on the mathematical modeling of the conflict between two groups of countries $\mathbf{G}_{\mathbf{A}}$ which are abundant in several kinds of raw materials like oil, uranium, copper, etc. and its counterpart $\mathbf{G}_{\mathbf{I}}$, the group of industrialized countries producing goods for people of $\mathbf{G}_{\mathbf{A}}$ as well as for those of $\mathbf{G}_{\mathbf{T}}$ using these raw materials. ${ m G}_{ m I}$ wants to minimize the total expenses to meet the demands for goods given the price of raw materials, while ${ m G}_{ m A}$ wants to maximize their total net income consisting of the following three components: - (i) direct income from the sale of raw materials - (ii) dividend income from the money invested into the industries of $\boldsymbol{G}_{\mathsf{T}}$ - (iii) the expenses for importing the goods produced in \mathbf{G}_{T} . It is assumed that the dominating amount of raw materials are produced in ${\rm G_A}$, so that ${\rm G_A}$ is entitled to put an arbitrary price on raw materials within some specified range. However, the net income is not necessarily an increasing function of these prices. For example, if the price is beyond some level then item (i) and (ii) could decrease due to the decrease in the activity level of the industry as a result of the decline in the demand for final products. Our aim here is to find out the level of price optimum from the viewpoint of ${\rm G}_{\rm A}$ and the optimal level of industrial activities for ${\rm G}_{\rm T}$ given the price of raw materials. In section 2, we will describe the general model for multiraw material problem in the framework of two-stage game, first introduced by G.B. Dantzig in [1] and later investigated by the author [3]. In section 3 we will analyze this model in some detail and in section 4 some direction of future research will be briefly touched upon. ### 2. The Model We will describe here the game structure of the model ### i) Players: There are two groups of players (countries) G_{λ} and G_{T} . ### ii) Production of Raw Materials: G_A is producing K different kinds of raw materials R_k , $k=1,2,\ldots,K$, while G_I is producing relatively small amount of these materials. Hence G_A has the control over the price p_k of R_k , $k=1,\ldots,K$ as long as it satisfies $p_k^{min} \leq p_k \leq p_k^{max}$, where p_k^{min} and p_k^{max} are some positive constants determined by physical or political consideration. - iii) Demand Structure for the Industrial Products: $G_{\underline{I}} \text{ is producing } m \text{ kinds of commodities } C_{\underline{i}}, \text{ } i = 1, \ldots, m$ while $G_{\underline{A}}$ can produce them very little. Let $b_{\underline{i}}^{\underline{I}}(\underline{p})$ and $b_{\underline{i}}^{\underline{A}}(\underline{p})$ be the demands for $C_{\underline{i}}$ in $G_{\underline{I}}$ and $G_{\underline{A}}$, respectively, given the price vector $\underline{p} = (p_1, \ldots, p_K)^{t}$ of raw materials. We will assume throughout that $b_{\underline{i}}^{\underline{A}}(\cdot)$ and $b_{\underline{i}}^{\underline{I}}(\cdot)$ are continuous, nonnegative functions of p_k for all \underline{i} and \underline{k} . Given $b_{\underline{i}}^{\underline{I}}(\underline{p})$ and $b_{\underline{i}}^{\underline{A}}(\underline{p})$, $G_{\underline{I}}$ wants to minimize their total net expenses to meet these demands. - iv) Production Mechanism in G_I: Let us assume here that there are n_i different activities A_{ij}, j = 1,...,n_i to produce C_i and let a_{ijr} be the amount of C_r produced when A_{ij} is operated at a unit level a_{ijr} > 0 implies that C_r is produced, while a_{ijr} < 0 implies that it is consumed). Let</pre> and let $$A = (a_{11}, a_{12}, \dots, a_{1n_1}, a_{21}, \dots, a_{mn_m})$$. We will assume in the sequel that A is a rectangular Leontief matrix (with substitution), i.e. (a) $$a_{iji} > 0$$, $a_{ijr} \le 0$, $r \ne i$ for all i and j (b) $$\{ \underline{y} = (y_{11}, \dots, y_{1n_1}, y_{21}, \dots, y_{mn_m})^t | A\underline{y} \ge \underline{b}, \underline{y} \ge \underline{0} \} \neq \emptyset$$ for some $\underline{b} > \underline{0}$, where $\underline{n} = \sum_{i=1}^m n_i$ and $\underline{0} = (0, 0, \dots, 0)^t$. Hence A has the following structure: Figure 2.2 where + and \bigcirc represent positive and non-positive entries, respectively. We will also assume that the unit cost $d_{ij}(p)$ of activity A_{ij} when it is operated at a unit level is a continuous non-negative, non-decreasing function of p_k , $k = 1, \ldots, K$ for all i,j. v) Consumption of Raw Materials in G_1 : We will assume that the consumption $z_k(\underline{y})$ of raw material R_k is a linear function of \underline{y} , i.e., $$z_k = (\lambda^k)^t y \equiv \sum_{i=1}^m \sum_{j=1}^{n_i} \lambda^k_{ij} y_{ij}$$, $k = 1,...,K$ out of which z_{ko} , k=1,...,K are accounted for by the domestic production within G_{T} . ### vi) Decision Structure of G_{λ} : When G_A fixes the price p_k of raw material R_k , $k=1,\ldots,K$, they will get three different kinds of incomes. Firstly they get the direct income I_1 from the sale of raw materials, which is given by $$I_1 = \sum_{k=1}^{K} p_k |z_k - z_{ko}|_+$$ where $|\cdot|_+$ is a function defined below: $$|u|_{+} = \begin{cases} u & \text{if } u \geq 0 \\ 0 & \text{otherwise} \end{cases}$$ The second one is the dividend income I_2 from the money G_A has invested into the industries of G_I . Let the amount of money invested into the i^{th} sector (the sector producing C_i) be q_i . We will assume here that the dividend offered by C_i is proportional to the product of q_i and $\sum_{i=1}^{n} y_{ij}$, i.e. $$I_2 = \sum_{i=1}^{m} \alpha_i q_i \sum_{j=1}^{n_i} y_{ij} .$$ Thirdly, G_A has to pay the price E for the import of industrial products C_i , $i=1,\ldots,m$. Let us assume here that the unit price of C_i is proportional to the production cost of C_i i.e., $$E = \sum_{i=1}^{m} b_{i}^{A}(p) (1+\mu_{i}) \sum_{j=1}^{n_{i}} d_{ij}(p) \times (y_{ij}/\sum_{j=1}^{n_{i}} y_{ij}).$$ The total net income I of $G_{\underline{A}}$ is given by $$I_A = I_1 + I_2 - E ,$$ which they want to maximize by the appropriate choice of p. ### vii) Decision Structure of G_T: Given the price \tilde{p} of raw materials, $G_{\tilde{I}}$ naturally wants to minimize their total expenditure $E_{\tilde{I}}$, which is given by $$E_{I} = \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} d_{ij}(p) y_{ij}$$ while satisfying the final demand $b_{i}^{A}(p) + b_{i}^{I}(p)$, i = 1,...,m. viii) Structure of the Game between G_A and G_I : As we have already stated implicitly, G_A plays first in the game fixing the price p of raw materials and G_I plays second by choosing activity vector p. G_A wants to maximize his total income while G_I wants to minimize total net expenses. We summarize the notation below: G_{A} : group of countries producing raw materials G_T : group of industrialized countries R_k : k^{th} raw material, k = 1, ..., K C_i : ith industrial goods, i = 1,...,m p_k : unit price of R_k p_k^{max} : upper bound of p_k p_k^{min} : lower bound of p_k \underline{p} , \underline{p}^{max} , \underline{p}^{min} : K dimensional price vectors whose k^{th} components are p_k , p_k^{max} , p_k^{min} , respectively $b_{i}^{I}(\underline{p})$: final demand for C_{i} in G_{I} for given \underline{p} $b_{i}^{A}(p)$: final demand for C_{i} in G_{A} for given p $\hat{b}^{I}(\hat{p}), \hat{b}^{A}(\hat{p}):$ M dimensional demand vectors whose ith components are $\hat{b}^{I}_{i}(\hat{p}), \hat{b}^{A}_{i}(\hat{p}),$ respectively A_{ij}: jth activity to produce C_i ${\tt a}_{\mbox{\scriptsize ijr}} {\tt :} \quad {\tt amount of } \; {\tt C}_{\mbox{\scriptsize r}} \; \; {\tt produced by } \; {\tt A}_{\mbox{\scriptsize ij}} \; \; {\tt when it is operated}$ at a unit level A: input output matrix of G_{I} , i.e., $A = (a_{11}, a_{1n_{1}}, a_{21}, \dots, a_{mn_{m}})$ $d_{ij}(p)$: cost of A_{ij} when operated at a unit level y_{ij}: activity level of A_{ij} \underline{y} : activity vector, i.e. $\underline{y} = (y_{11}, \dots, y_{1n_1}, \dots, y_{nm_n})^{t}$ λ_{ij}^{k} : consumption of R_{k} when A_{ij} is operated at a unit level $\mathbf{z}_{k}(\mathbf{y})$: consumption of \mathbf{R}_{k} given the activity level \mathbf{y} z_{ko} : amount of R_k produced in G_I q_i : amount of money G_A has invested into the ith sector in G_I α_i : dividend rate of ith sector in G_T $\mu_{\hat{i}}$: profit rate of i^{th} sector p: $$p = \{p = (p_1, ..., p_k)^t | p_k^{min} \le p_k \le p_k^{max}, k = 1,..., k\}$$ ### 3. Mathematical Formulation and Its Analysis ### a. Mathematical Formulation It is quite straightforward to formulate the problems to be solved by ${\tt G}_{A}$ and ${\tt G}_{A}$ in mathematical terms under the assumptions of the previous section. $$P_{I}(\underline{\tilde{p}}): G_{I}'$$ s problem for given $\underline{\tilde{p}}$ $$P_{I}(\tilde{p}): \begin{cases} \text{minimize } \tilde{d}(\tilde{p})^{t} \tilde{y} \\ \text{s.t.} & A\tilde{y} \geq \tilde{b}(\tilde{p}) \end{cases}$$ $$\tilde{y} \geq \tilde{0}$$ where $b(p) = b^A(p) + b^I(p)$. This is a standard linear programming problem which will be shown to have an optimal solution $y^*(p)$ for all $p_k \in [p_k^{\min}, p_k^{\max}]$ under our assumption on $b^A(p)$, $b^I(p)$, d(p) and A (see Theorem 1 of the next section.) ### P_A: G_A's problem $$P_{A}: \begin{cases} \text{maximize } f(\underline{p}) = \sum_{k=1}^{K} p_{k} \Big| \sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{ij}^{k} y_{ij}^{*}(\underline{p}) - z_{ko} \Big|_{+} \\ + \sum_{i=1}^{m} \alpha_{i} q_{i} \sum_{j=1}^{n} y_{ij}^{*}(\underline{p}) \\ - \sum_{i=1}^{m} b_{i}^{A}(\underline{p}) (1 + \mu_{1}) \sum_{j=1}^{n_{i}} d_{ij}(\underline{p}) \times \frac{y_{ij}^{*}(\underline{p})}{n_{i}} \\ \sum_{j=1}^{n_{i}} y_{ij}^{*}(\underline{p}) \end{cases}$$ s.t. $$p_{k}^{\min} \leq p_{k} \leq p_{k}^{\max}, \quad k = 1, \dots, K$$ where $y^*(p)$ is an optimal solution of $P_I(p)$. The objective function of P_A need not be concave. Also it need not be an increasing or decreasing function of P_k 's. ### b. Analysis of the General Case We will first state the general results about P $_{\rm I}\left({\rm p}\right)$. Theorem 1. Let $A \in R^{m \times n}$ be a rectangular Leontief matrix. Associated with a linear program: $$\min\{d^{t}y \mid Ay \geq b, y \geq 0\}$$ (3.1) where $b \ge 0$, there exists an optimal basis B with the following properties: i) B contains exactly one column of A corresponding to each sector i. Hence by the appropriate permutation of columns, B can be transformed to satisfy $b_{ii} > 0$, $b_{ij} \le 0$, $j \ne i$, for all i. ii) $$B^{-1} \ge 0$$. In particular, B is optimal for all the right hand side vector $\frac{b}{c} \ge 0$. Also every feasible basis of (3.1) has the structure described in (i). ### Proof. See [2]. Schematically, ${\bf B}_{\hat{\bf p}}$ looks as follows: $$B_{\hat{p}} = \begin{bmatrix} + & \bigcirc & & \bigcirc \\ - & + & \bigcirc & & \bigcirc \\ - & + & & \vdots \\ - & - & & \vdots \\ - & - & & + \end{bmatrix}$$ Figure 3.1 where a represents the unique basic column corresponding to the ith sector. It is a very nice property of a Leontief system that the feasible basis always has the structure described in Figure 3.1 with appropriate permutation of columns so that once we know the incoming column in the simplex algorithm, the dropping column is automatically determined as the one having the positive component in the same row as the incoming column. Theorem 2. Let $B_{\hat{p}}$ be an optimal basis associated with $P_{\hat{I}}(\hat{p})$. Then there is a closed set $S_{\hat{p}}$ containing \hat{p} for which $B_{\hat{p}}$ is optimal for all $p \in S_{\hat{p}}$. <u>Proof.</u> By Theorem 1 (i), $B_{\hat{p}}^{-1} \geq 0$. Also $b(p) \geq 0$ for all $p \in P$, so that $B_{\hat{p}}$ is feasible for all $p \in P$. Therefore, $B_{\hat{p}}$ is optimal for p satisfying $$\bar{\underline{d}}^{t}(\underline{p}) \equiv \underline{\underline{d}}^{t}(\underline{p})_{N} - \underline{\underline{d}}^{t}(\underline{p})_{B}B_{\hat{p}}^{-1}N_{\hat{p}} \geq \underline{\underline{0}}$$ i.e., for all \underline{p} for which the reduced cost $\overline{\underline{d}}^t(\underline{p})$ is nonnegative. Here, $\underline{d}(\underline{p})_B$ and $\underline{d}(\underline{p})_N$ are the subvectors of $\underline{d}(\underline{p})$ corresponding to basic and non-basic variables, respectively and $N_{\hat{p}}$ is the submatrix of A consisting of non-basic columns. Theorem follows since $\overline{\underline{d}}(\underline{p})$ is a continuous function of \underline{p} and $\overline{\underline{d}}(\hat{p}) \geq \underline{0}$ by the optimality of $B_{\hat{p}}$. ### c. Linear Case Let us now specialize to the case in which $b^{A}(p)$, $b^{I}(p)$ and d(p) are linear, i.e. $$(3.2) \begin{cases} \dot{\mathbf{b}}^{\mathbf{A}}(\mathbf{p}) = \dot{\mathbf{b}}^{\mathbf{A}} + \mathbf{E}_{\mathbf{A}}\mathbf{p} \\ \dot{\mathbf{b}}^{\mathbf{I}}(\mathbf{p}) = \dot{\mathbf{b}}^{\mathbf{I}} + \mathbf{E}_{\mathbf{I}}\mathbf{p} \end{cases}$$ (3.3) $$d(p) = d + D_{p}$$. Corollary 3. If $b^{A}(\cdot)$ and $b^{I}(\cdot)$ are linear functions of p as specified by (3.2), then the objective function f(p) of P_{A} is a piecewise quadratic function of p. Proof. Follows from the expression $$(y_{1j_{1}}^{*}(\underline{p}) \ y_{2j_{2}}^{*}(\underline{p}), \dots, y_{mj_{m}}^{*}(\underline{p}))^{t} = B_{\hat{p}}^{-1}(\underline{b}^{A} + \underline{b}^{T} + E\underline{p}), \ \underline{p} \in P(\hat{p})$$ $$y_{ij}^{*}(\underline{p}) = 0 , \quad j \neq j_{i} , \quad i = 1, \dots, m ,$$ where j is the unique basic variable belonging to the ith sector and E = E_A + E_I . || Let $\beta_{\hat{p}}^{i}$ be the ith row of the matrix $B_{\hat{p}}^{-1}$, then the problem we have to solve is a family of quadratic programming problems: $$\max \ f(\underline{p}) = \sum_{k=1}^{K} p_k \left| \sum_{i=1}^{m} \lambda_{ij_i}^k \beta_{\hat{p}}^i(\underline{b} + \underline{E}\underline{p}) - z_{ko} \right| +$$ $$+ \sum_{i=1}^{m} \alpha_{i} q_{i} \beta_{\hat{p}}^i(\underline{b} + \underline{E}\underline{p}) - \sum_{i=1}^{m} (1 + \mu_{i}) (\underline{d} + \underline{D}\underline{p})_{ij_{i}} (\underline{b}^{A} + \underline{E}_{A}\underline{p})_{i}$$ where j_i is the index of unique basic variable corresponding to i^{th} sector. We used here the fact that $y_{ij}^*(p) = 0$, $j \neq j_i$ and hence that $y_{ij}^*(p) / \sum_{j=1}^{n_i} y_{ij}^*(p) = 1$ for all i. The objective function of (3.4) need not be concave and it is not an easy task to solve it for large K. Hence we will now concentrate to some of the simplest cases. ### d. Single Raw Material Case Let us now consider the single raw material case, i.e., K = 1. In this case p is a scalar and we can construct a very efficient algorithm. Let us reproduce $P_T(p)$: $$P_{I}(p) \begin{cases} \text{minimize } \mathring{d}^{t}(p) \mathring{y} \\ \text{s.t.} & \text{A} \mathring{y} \geq \mathring{b}(p) \\ & \mathring{y} \geq \mathring{0} \end{cases}$$ where p is now a scalar. This problem can be solved by using the technique of parametric linear programming as follows. Let $p_0 = p_{\min}$ and let B_{p_0} be an optimal basis for $P_1(p_0)$. Then B_{p_0} is optimal for all p satisfying $$\overline{d}_{N}(p) \equiv d_{N}^{t}(p) - d_{B}^{t}(p)B_{p_{O}}^{-1}N_{p_{O}} \ge 0$$ (3.5) where $d_B(p)$ is a subvector of d(p) corresponding to B_{p_O} etc. Note that $$d_{N}^{t}(p_{o}) - d_{B}^{t}(p_{o}) B_{p_{o}}^{-1} N_{p_{o}} \ge 0$$ by the optimality of B_{p_0} for $p = p_0$. Hence by solving this inequality we will get a set of closed intervals $I_{ot} = [\underline{p}_{ot}, \overline{p}_{ot}], t = 0, 1, \dots, T_0.$. Let $\boldsymbol{\hat{p}}_{\text{ot}}$ be an optimal solution of the problem $$\max F_{p_{0}}(p) = p \Big| \sum_{i=1}^{m} \lambda_{ij_{i}} \beta_{pt}^{i} b(p) - z_{0} \Big|_{+} + \sum_{i=1}^{m} \alpha_{i} q_{i} \beta_{p_{t}}^{i} b(p)$$ $$- \sum_{i=1}^{m} (1 + \mu_{i}) d_{ij_{i}}(p) b_{i}^{A}(p)$$ (3.6) s.t. $$\underline{p}_{ot} \leq p \leq \overline{p}_{ot}$$ and let $$\max \{F_{p_{o}}(\hat{p}_{o1}), \dots, F_{p_{o}}(\hat{p}_{oT_{o}})\} = F(\hat{p}_{o}).$$ When p_0 moves beyond the endpoint of these intervals I_{ot} , the inequality (3.5) is violated and we get another optimal basis (note that the basis change rule for Leontief substitution system is quite simple once the incoming vector is determined). We will continue this process until the entire interval $[p_{min}, p_{max}]$ is covered. This is of course a finite process. The best among all p_j 's is certainly the best solution. Also (3.6) is a one dimensional optimization problem and can be solved by any one of the search methods. In particular, if d(p) is linear i.e., if $$d(p) = d + pf$$ then (3.5) reduces to $$p\left(f_{N}^{t} - g_{O}^{t} N_{O}\right) \geq g_{O}^{t} N_{O} - g_{O}^{t}$$ where $\bar{\pi}^t = \bar{d}_B^t \; B_{p_O}^{-1}$ and $\bar{\sigma}^t = \bar{f}_B^t \; B_{p_O}^{-1}$ and B_{p_O} is optimal for all $p \in [p_O, p_1]$ where $$p_{1} = \max_{j} \left[\frac{d_{Nj} - \pi_{p_{0}}^{t} N_{p_{0}j}}{\frac{d_{Nj} N_{p_{0}j}}{\frac{d_{Nj}^{t} N_{p_{0}j}}{\frac{d_{Nj}^{t$$ Moreover, if b(p) is linear and non-increasing, then the objective function of $P_A(p_t)$ is a piecewise concave quadratic function and can be solved by inspection. Let \hat{p}_t be the optimal solution for $P_A(p_t)$. Then the optimal solution for $P_A(p_t)$. Then the optimal solution for $P_A(p_t)$ exists among \hat{p}_t , $t=0,1,\ldots$, where T is the first index for t for which $p_t \geq p_{max}$. Figure 3.3(a) Figures 3.3(a)~(c) illustrate the typical shape of the objective function. Typically if the investments q_i , $i=1,\ldots,m$ are small, the shape will be more like Figure 3.3(a). On the other hand, if q_i are fairly large, then there will be a peak to the left of p_{max} as in Figure 3.3(b). Also f(p) need neither be unimodular nor concave and could have the shape of Figure 3.3(c). The shape of f(p) depends not only on q_i , $i=1,\ldots,m$, but also on μ_i and $b_i(p)$, $i=1,\ldots,m$. The important thing to note is that the shape of f(p) can be like Figure 3.3(b), so that the optimum price \hat{p} is less than the specified upper bound under certain circumstances. ### 4. Concluding Remarks The model developed in this paper is admittedly quite primitive and needs more elaboration. First of all, we assumed that the industrialized countries behave like a gentleman even under the strong aggression of G_A . G_I can, of course, take a counter attack by choosing the parameters, e.g., μ_i , $i=1,\ldots,m$. This possibility opens a brand new dimension on the game structure (i.e., the multi-stage game). Secondly, we assumed that the price p_k can be chosen independently of each other as long as $p_k^{min} \leq p_k \leq p_k^{max}$, $k=1,\ldots,K$. It may be, however, in some cases that there is an interdependence between these prices. If this interdependence relation is linear then the problem (3.4) will essentially remain the same, so that we can find an optimum level of p if we can solve a (non-convex) quadratic program (3.4). Thirdly, under what condition $f(\underline{p})$ has the shape described in Figure 3.3(b) is an interesting question. The research in these directions will be reported subsequently. ### REFERENCES - [1] Dantzig, G.B., Solving Two-Move Games with Perfect Information, RAND Report P-1459, The RAND Corporation, Santa Monica, California, 1958. - [2] Koeler, G.J., et al., Optimization Over Leontief Substitution Systems, North Holland, New York, 1975. - [3] Konno, H., Applications of Bilinear Programming, internal paper, International Institute for Applied Systems Analysis, Laxenburg, Austria, 1975. # INSTITUTE OF ELECTRONICS AND INFORMATION SCIENCE UNIVERSITY OF TSUKUBA SAKURA-MURA, NIIHARI-GUN, IBARAKI JAPAN ### REPORT DOCUMENTATION PAGE REPORT NUMBER EIS-TR-76-5 TITLE Optimum Pricing of Indispensable Raw Material under Monopoly: A Two Stage Game Approach AUTHOR(s) Hiroshi Konno (Institute of Electronics and Information Sciences) | REPORT DATE | NUMBER OF PAGES | |--------------------------|-----------------| | July 19, 1976 | 8 * | | MAIN CATEGORY | CR CATEGORIES | | Mathematical Programming | 5.4 | | VEV HODDS | | KEY WORDS two stage game, non-symmetric game, Leontief substitution system, parametric nonlinear programming ### ABSTRACT The conflict between two groups of countries $G_{\overline{A}}$ (resourse producing countries) and $G_{\overline{I}}$ (industrialized countries) is formulated in the framework of so-called two stage games. The objective of $G_{\overline{I}}$ is to minimize the total expenses to meet the demands for goods given the price of raw materials fixed by $G_{\overline{A}}$, while $G_{\overline{A}}$ wants to maximize their total net income which consists of (i) direct income from the sale of raw material to $G_{\overline{I}}$ (ii) dividend income from the investment into $G_{\overline{I}}$ and \overline{I} (iii) expenses for the import of goods from $G_{\overline{I}}$. An efficient algorithm to compute optimal strategies (optimum price level and production level) is developed under the assumption of the Leontief type production system of $G_{\overline{I}}$. SUPPLEMENTARY NOTES