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Some Applications’ of Bilinear Programming

Hiroshi Konno

1. INTRODUCTION

' This paper is addressed to some of the more important applications of bilinear programming which is a
technique for solving a special class of nonconvex quadratic programming problems with the following struc-
ture: '

'min{CEXl"'CEXZ +X§‘QX2|A1 X1 =b1,x1 20,A2 X2 =b2,X2 20} . (ll)
X, X ’ .
1772

where cieRni, bieRmi, A;eR i=1,2, QeR™M X

variables. We will refer to this as a bilinear program in standard minimization form.

mj X n N, are constants and X € RY = 1,2 are
~Corresponding to the above,
min{ ¢ ] xy ol % tx{ Qx [A; Xy >by,x; >0, Ay Xy 2by,%, >0} 1
1%
- will be referred to as a bilinear program in canonical minimization form. Bilinear programs in standard and
canonical maximization form will be defined analogously. As in the case of linear programming, bilinear pro-
- gram with general mixed equality and inequality constraints can be reduced to a standard form and to a
canonical form as long as the linear constraints with respect to x; and x, are separable with each other.
Several papers have appeared since 1971 deal,ing with the algorithms to solve this class of problem or its
equivalent, among which Konno [7], [10], Gallo-Ulkiicii [4], Falk [3] are notable. Recently, the author
implemented his algorithm on CYBER 74 to get encouraging numerical results [8]. At the same time, he
established the finite convergence of his cutting plane algorithm [10] with the incorporation of facial cut
introduced by Majthay and Whinston [12]. Now that there is a workable algorithm, we will pursue further
to show the appliciability of bilinear programming to real world problems. In fact, the existence of many
practical problems which are naturally put into the structure of bilinear program motivated the author’s
work in algorithm. N _
Before going into typical appliqations, we will briefly summarize the relationship of ‘bilinear program
(BLP) to other groups of m‘athematical programming probléms.
First of all, BLP is a vary straightforward extension of linear programs (LP) (see e.g. [1]).
rr)l(in{ctxle=b,x >0} ‘ } (1.3)

where ¢, xeR™, beR™, AeR™™ and c¢ is a fixed cost vector. If we want to vary ¢ as well as x in a polyhedral

convex set, say,

C ={ceRn|A’c =b’c20}



then the problem becomes a BLP where ¢c; = ¢, = 0 and Qisann x n identity matrix in (1. 1). We will
refer to this problem
min{ctx|Ax=b,x20, Ac=b,c > 0} (1.4)
as an extended linear program (ELP) in standard minimization form. We will discuss several examples of ELP
in this paper. . '
Secondly, there is a similar but entirely different class of problems called generalized linear programs

(GLP) introduced by Dantzig and Wolfe [1]:

. n n . +1 ‘
min { T cxjlZ ax = b,x >0, (“’-') eGaR™! j =1, n (1.5)
(cj,aj,Xj){Fl HiE : g : }
where aj € R™ and Cjis a closed convex set, j = 1,...,n.

Here the column vectors (:J) as well as xj’s are variables and each column (ZJ) is allowed to move in a closed
: Y : ]

convex set C i independendly of each other. This independence property distinguishes itself from BLP and it

is quite essential for GLP algorithm (decomposition algorithm) to work (see [1]). We will look into the re-
lationship between GLP and BLP in section 4 and show that the special case of a non-standard generalized
linear program, i. e., a GLP some of whosé variables xj are not restricted in sign, is essentially a BLP.
Thirdly, it is not difficult to show that the so-cailed linear max-min problem (LMMP):
minmax{ pt1x+p§y| B;x+Byy >b }
xeXyeY (1.6)
where X and Y are polyhedral convex sets, can be converted into a BLP by taking the partial dual of (1. 6)
with respect to Y under some regularity condition. This problem was treated by Falk [3] as well as by Dantzig
[2] and Konno [11]. It will be shown in [11] that LMMP has several applications with game theoretic
flavour.
Fourthly, it is possible, at least theoretically to transform the problem with complémentarity condition

v‘min{‘cg X +c5 X [A X, = by, x; 20,A,% = by, x, > 0,xb x, = 0} (1.7)

into a BLP by putting x} x, term into the objective function as follows:

min { ¢l x; +cb % +Mxt %, [Ar %1 = by, %1 > 0, Ay X, = by, X, > 0}
~ whereMisa large positive constant. (1. 7) was analyzed by Ibaraki [6] and by Konno [11].

Finally‘, it has been proved in [9] that the minimization of a concave quadratic function subject to linear

constraints (CQP): ‘

min { 2¢’x  +x'Qx|Ax =b, x > 0} (1.8)
where Q is a symmetric negative semi-definite matrix, can be converted into a BLP:

min{ctu+ctv+thv|Au=b,uZO,Av=b,v20} , (1.9)
The relationship between (1. 8) and (1. 9) has been fully discussed elsewhere [9], Where it is shown that
(i) if x* is optimal for (1. 8), then (u, v) = (x*, x*) is optimal for (1. 9) and (ii) if (u*, v¥) is optimal for
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(1. 9), then both u* and v* are optimal for (1. 8). Also it has been shown how to exploit the symmetric
structure of (1. 9) to improve the cutting plane algorithm developed in [8]. It is well known that CQP is ‘
closely related to O—1 integer program and therefore BLP is indirectly related to 0—1 integer program.

The following figure briefly summarizes the relationship among various problems cited above.
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QUADRATIC ~ A | v
CTIVE '
ELP GLP
QP o
c SENERALL spECIAL
STRUCTURE
SPECIAL
STRUCTURE yd
QP - > BLP &~ >LNMP
SPECIAL STRUCTURE DUALI-
ZATION
FIGURE 1.1

In the following sections, we will choose some of the typical examples of bilinear programs and discuss them

in some detail. We tried to pick up, among others, problems which are of practical, and theoretical interests.

2. LOCATION-ALLOCATION PROBLEMS

There is a large amount of literature under the title of location-allocation theory (See, for example, re- '
ference [14].)
Suppose we are given

a) aset of m points distributed in the plane

b) a vector value to be attac':hed to each point

¢) a set of indivisible centroids without predetermined locations
then the location-allocation problem in its most general form is to find locations for m centroids and an
allocation of vector value associated with n points to some centroid so as to minimize the totali cost. Here,
we will present one original example of this type of problems which is put into the structure of BLP in a

very natural way.



(@)

Single Factory Case

Let there be m cities Pj, i = 1,..., mona plane. Pjis located at (pj, qj) relative to some coordinate
system. We are going to construct a factory somewhere on this plane. This factory needs bj units of n dif-
férent materials Mj, j=1,... .
Let us assume that Pj can supply ajj units of Mj at the unit price cjj and the unit transportation cost (per
unit amount per unit distance) of Mj is given by fj. Our concern now is to minimize the total expense
which is represented by the sum of total purchasing cost and the total transportation cost.

Let Q (X0, yo) be the location of the factory to be constructed and let ujj be the amount of M; to be

purchased at Pj. Then ujj has to satisfy:

m
> uj > bj, i =1, ..,
g = J |

0<uj<aj  i=1,.m,m j=1,.,n - (2.1)

Total purchasing cost Cp is obviously given by:

Cp = iréll jEZJ . Cij Ujj B . (2.2)
and total transportation cost Cp is given by

o m  n N . .

Cr= i§1 ‘j§1 fi + uijd(P;, Q) (2.3)
where d(Pj, Q) is the distance between Pj and Q.
i) Manhattan Distance

- If the distance d(P;, Q) is given by 1 norm i. e.,
d(P;, Q) = d; (P;,Q) = Ipi—Xol+lgi—yol (2.4)
then the total cost C is given by -

¢= gl jful [eij v + £ v (Ipi %o | +1di —yo ) ] , o (2.5)
By introducing auxiliary variables, Xj; aﬁd Vi1 satisfying

Xjty —Xi2 = Pi—Xo Xip >0, Xpp 20, X3 X =0,i=1,...,m, .

Vi Y, TG Ye o Vi 20, ¥, >0, Vv, =0,i=1,...,m. (2.6)
the absolute value terms can be written as:

Ipi—Xol = Xi1 *Xis

ldi—Yol = ¥ir *Viz _ N N))



So the problem now is to

m n
minimize C = X X ujj [cjj+fj(xi +xiz +y;, +y;,) ]

=1l j=1
¢ T oui>bi, j=1
s. t. Uji i, j=1,...,n
= W2 J .
0<u<ayi=1,.. ,m, j=1,... , n, (2.8)
Xi1 —Xj2 tXo = pj
i=1,..,m,
Yir =Y Yo T G
Xjg >0,y >0,  i=1,..,m, 2=1,2,
Xi1*Xiz =0, ¥y 0y, =0, i=1,..m.

It is straightforward to show that the optimal solution of the associated bilinear program without the
orthogonality condition in (2. 8) automatically satisfy the orthognality property if §20,j=1,.. , 1
and hence the problem can be solved by applying the algorithm developed in [8].

ii)  Euclidean Distance

If, on the other hand, the distance d (Pj, Q) is given by 2 norm, i. e.,

AP, Q) = &, B, Q) = [ (p; —x0) + (g - ¥,)? (2.9)

then the problem becomes:

. m a 2 2
minimize C = X jEl [Cij""fj J(pi_x()) +(qi‘—yo) ] ujj

i=1
m .
s. t. z uiijj j=1,.. , I,
l=
0<uyj<ay i=1,..,m, j=1,..,n. (2.10)

to which we can apply a modified version of the BLP algorithm.

(b) Multi-Factory Case
~ Let us consider here the multi factory version of the problem treated in the previous section. The
basic setting of the problem is the same as before except

({A) K (> 1) factories Fp, k = 1,....,Khave to be constructed

(ii) each factory is producing L different types of commodities Co, 2=1,... , L
(iiii) each product has to be shipped to the demand points i. e., to m cities.
Let
u1§j : the amount of M;j to be purchased at Pj and shipped to Fy
xlfg : amount of Cg to be shipped to Pj from Fy
b;( : amount of M; required at Fi



ajj @ maximum supply of Mj at Pj
Cjj  : unit price of Mj at Pj
dlé : amount of Cg produced at Fy.
eijp : demand for Cy at Pj
(py> qi) : location of Pj
(X ¥j): location of Fi
d(P;, Fy ) : distance between Pj and Fy
f : unit transportation cost of M;

gp  : unit transportation cost of Cg

The total cost is now given by -

m n K k m K L k. & k
C=3 3 3 cus+ 2 X p> Xis + 2 fius ) d (P, Fy)
=151 k=1 T = k= (Z) 8% "5 1% % Tk (2.11)
Also ulg and xilfz have to satisfy:
ok k = = K
1‘2—'1 uiijJ, j 1, .. ,n, k=1,... ,
K
Euk<aij, i=1, ,m, j=1,... ,n
k=1 ¥
m
_zlx§<dk, £=1,..,L, k=1,..,K
l=
K
§1x§>eig, i=1,.. ,m, £=1,... ,L
Y. .
o >0, x5 > 0, “i.k, 8 (2. 12)

Hence now the problem is to minimize (2. 11) subject to (2. 12) which is a BLP if d (*, *) is defined by
1 norm. ‘

We assumedv here that there are no material flows between the factories to be constructed. Should
there be such a flow, then the problem can no longer be formulated in the framework of bilinear pro-

gramming.

3 APPLICATIONS TO DECISION ANALYSIS

.

Suppose a decision maker is facing a problem of choosing the ‘best’ among m possible alternatives Aj,
i=1,.. ,m in the stochastic environment where n possible events B, j = 1, ..., n takes place with

probability pjj when Aj is chosen.



Let us suppose also that there are K independent attributes (objectives) T, k =1,..,K, eachof

which has weight (degree of importance) Wy Also let us assume that the utility associated with the triple

(A, Ej » Ty), is given by a%j, and that the overall utility of the decision maker is additive, i. e., the expected
utility uj obtained by choosing A, is given by
K n k
uj = kzl jEI WkPj3j 3.1
. Given the constants Wi Py alfj, we can choose the optimal alternative by simply comparing uj, i = 1,....m.

It sometimes happens, however, due to the lack of information that the quantities Wi, k=1,... K
and pij , i =1,... ,m; j=1,.. , i are not known precisely. Typically, the analyst has to interview the
decision maker to estimate the weight of relative importance wy of Ty and it sometimes happens that we
only have interval estimates

we < wp < wp, k=1,..,K.
where wy and w) are given constants (see [13]).

Similar situation applies as well to the probability measure Pjj- Let us suppose here that

EijS pijﬁﬁija i=1,... ,m, j=1,.. q.

KSE

pij=1’ i=1,.. m.

j=1

where p.. and p;: are given constants.
Pjj ij arc 8

In this case, the optimal alternative will not be uniquely determined. However, some of the alternatives

may be eliminated as inefficient ones as follows:

Let
W={(w,... W lw <we <w, k=1,..,K} (3.2
o ) n .
i={(pil’ ..... ,pin)lgijgpijgpij, i=lh.m jgl pij=1}. i=1,..m (3.3

which we assume to be nonempty.

Let
K n
= i k
u; = min { k§1 jE WiePji; [weW, p,eP, } | | 3.9
K n
U = .k P, 3.5
uj max{ kgl jgl Wy Py fweW, plePl} 3.9

It is obvious that if uy > ug, then Ay is preferred to Ag and Ag can be eliminated from the candidates of

optimal alternatives.



Similarly, if
_ . (¥ n ok k
urs = min { kzl jEI W) (prjalj — Py )| weW,p €eP, p.eP }>o0 (3.6)
then A, is preferred to Ag and Ag can be eliminated.
Problems (3. 4) (3. 5) and (3..6) are all bilinear programs with a very special structure. Let us take for example
(3. 4) suppressing index i :
K n

. k :
min X X a.p;w
k=1 j=1 PV
% =1 P. < <p =1 n
s. t. J=1 p] - H _j = pJ - p]’ .‘ 3 reeer s s
V_ngwkgwk, k=1, ..... ,K (37)

The following theorem characterizes the form of an optimal solution of (3. 7) which is guaranteed to exist

since W and P are non-empty compact convex sets.
Theorem 3.1

Letwy, , k=1,...K; f’j , § = 1,...,n bean optimal solution of (3. 7). Then W, is equal
to wy or v~vk for all k. Also, P; is equal to p; or ﬁj except possibly for one index j o
Proof .

W and P are bounded polyhedral convex sets. Hence by the fundamental theorem of bilinear programm-
ing [8], there exists an optimal solution (W,p ) where Wand p are extreme points of W and P, respectively.
It is easy to see that any extreme point of W and P has the property stated in the theorem. ||

Using this theorem, we can construct a simple enumeration technique by fixing Wy equal to w)_ or Wi.

Also it may be more appropriate in some cases to normalize Wi k=1,.. , K to satisfy the condition

K
k§1 wp = 1, as well as pj» in which case we still have a bilinear program with somewhat more compli-

cated Structure. For the background material of decision analysis the readers are referred to Keeney-Raiffa

[7] and to Sarin [13].



4. NON-STANDARD GENERALIZED LINEAR PROGRAM

k Generalized linear program (GLP) introduced by Dantzig and Wolfe [1] has the following problem struc-
ture : -
min{ El oJxJIZ a]x]—b ijO,(gj}eCj, i=1,.. n} : 4.1
= 3
where ajeRm, cje R! and CjCRm+1 is a compact convex set i=1,.. ,n and maximization is with res-

pect to (;;) ras well as xj. The GLP algorithm by Dantzig-and Wolfe proceeds roughly as follows:

~Q
Let(cj>eCj, £=1,..,%, j=1,...,n begiven.

Then we will solve the linear program :

£ 2 8
n ~ n
min{E Z] ci x| =
j:l Q=1 1=
j=1,.. n} 4.2)
and let T eRbm be an opﬁmal multiplier vector for this linear pfogram. ‘

If

“~ V . v
cj—7raj20 (g.})ecl'; ji=1,.. ,n.

then the current solution is optimal. If, on the other hand, there is an index j and a vector (CJ eCj for

which G — T g > 0, then the objective function will be improved by mtroductmg this vector into the basis.

To find out the vectors (g) for which G — T aj > 0, we solve the following n sub-programs.

min{Cj—?ajI (%‘) eCj}, j=1,..,n. _ 4.3)

a¥

i : -
Let (Cl\) be its optimal solution. If 'C? -7 a’]'" <0, then we will introduce it into (4. 2) and proceed.
] ' :

If Cj are all polyhedral convex sets, then this algorithm will cenverge to the optimal solution of (4. 1) in
finitely many steps if we avoid cycling caused by degeneracy appropriately.

Now let us consider the non-standard GLP with some free variables, i. e.,

i g
min CiXj

s. t. ,2 aJxJ—b

j=1
x]'ZO', j=1,... 85
ngo, =241, . ,n; ' - (4. 4)

|
[
=]



The usual technique of replacing a free variable by two non-negative' variables destroys the structure of the

problem, i. e., let

X =X, =X, Xy 20, %, 20, j=L+1,n.

then the problem is

min ¥ v 2 _

min CiXj i Xi, — fXa

. ! j=1 " j=+1 G5 j.z—_:gﬂ G2%j2

t % v 3 3

s. t. ;X a1 Xj — ]
=1 19 =01 1701 j§Q+1 3jXj, b
x>0, i=1,...,28
Xj; > X, 20, j= 41, .. ?n
%) eCj,  §= 1, (G1) = (%) eq, = 0+1,.n. (4.5
g A Y 3,

Hence the columns of this problem are no.longer independent and GLP algorithm in its original form would
not work. ' A ' ‘ ' ‘

Now let us consider the simplest case of the above in which a; ’s are constant and only ¢j ’s are allowed
to move in compact convex sets, i. €., closed interval in this case:

O et B awo= b
s. t. 2iXj Xy =
[ I A =TS

xJ'zO, j=1,... L9

cji< ¢ <¢j, j=1,..,n. o 4.6)

simplifies somewhat to

L n |
min X Cixit+t X’
1 P 5 T
(s . | b
s. t. aixi axi =
g T S WY

gjgng_j, j=e+1, ... ,n. 4.7

) eee n with respect -
toxj, j=1,.. , 9.

~10 -



Let
L
Xj=djo+k§l djkxk, ] ER+D, L , 0. , (4.8)

Substituting these into (4. 7), we obtain

Q _ n : n
min X [cj+ 2 dldyk] Xjt % djoyj

=1 k=0+1 =R+1
£,
S b I
X 2 0, | j=1,... , R _ B
gjgng'c'j j=2+1, ... ,n. _ » | »,(4’:9)

‘which is a BLP with a special structure. The following theorem characterizes the form of the optimal solution.

Theorem 4.1

Let c}‘ R x’j‘ , =1, ... , . be an optimal solution (it is exists at all) of (4. 4). Then c}‘ =<, =1 .. £ and Cj*
is either ¢ or ¢j forj=Q+1,‘ ..... ,n.
*Proof-

By the fundamental theorem of BLP [8], there is an optimal solution y* = (y;ﬂ y e , y; ) where y*
is an extreme point of the constraint set { (yQﬂ R R yn) lej < Yi <Cj, j=2+1, .. n} e
- We have shown that bilinear programming technique gives a way to solve (4. 4). This need not, of
course, be the best way to solve this class of problems. Typically, the modified version of generalized
linear programming algorithm might be able to solve them more efficiently. We will not, however, go

into this subject in more detail here.

5. COMPLEMENTARY PLANNING PROBLEMS

Let us consider the following class of problems

t
1

t

o t t
minimize ¢ x, + d;y, + ¢, x, +d; Y,

5. t. -Al.x + By, 2b

1 = 71
A2X2 + B2y2 2 b2
XIZO, Y1 203 x2 203 }'2 ZO

¢ ,
x;x, =0 ;.1
where ¢; , ¢, eRY dj eR™M, A; eRMiX4 , BieR™iXM b eR™ | j =12 and x;, y; are variable

vectors of appropriate dimensions. The last constraint xlt X, = 0 will be called complementary constraints

in the sequel.

—11 -



More general problems with complementary constraints

t
1

minimize c¢; X, + c;[ X, + dty’
s. t. A x, + Ayx, + By >b
X, 20, x>0, y>0
xlt X, = 0. _ (5.2)
has been discussed by Ibaraki [6], who proved the following theorem and porposed an enumeration type
of algorithm.

Theorem 5.1
If the constraint set of (5. 2) is bounded, then (5. 2) has an optimal solution among basic feasible

solutions.

There are many real world applications of (5. 1) and (5. 2) such as complementary flow problems,
orthogonal scheduling problems to name only a few. '
The best known technique to solve (5. 1) is to introduce an 2-dimensional vector u of 0—1 components

and replace the constraints xlt X, = 0, X, > 0, X, > 0 by:
X4 S Mou

x, < Mo (eg—W) o o (5.3)
x, 20, x, 20.

Here ey is the 2 dimensional vector all of whose components are 1’s and Mg is a constant satisfying

Mo 2> max{e}gXi | Aixi + Bjy; > b, x>0, y; >0},i=1,2

Hence (5. 1) is equivalent to the followiﬁg mixed 0—1 integer prograﬁxming broblem: B
minimize clt X, + df y, + c;[ X, +d;‘ 2
s. t. CAx, + By, 20y
A, + Byy, 2 b,
X, —Mou £ 0

X2 + Mou S Moen

uyy=0orl,j=1,.. 9. o 5.9

—12—



This can be solved by a usual branch and bound technique if £ is not too large. Instead, we will propose
another classical approach, i. e., penalty function approach by putting xlt X, = 0 term into the objective
function:
maximize cf x;, + dlt y, + c:2t X, + d;[ Y, —Mxlt X,
s t. A, x, + By, > b,
Ay, X, t Byy, Z_bz
X =, ¥, 20, x,>0, y, >0. | (5.5)
which is a BLP in canonical maximization form.
Theofem 5.2
If the constraint set of (5. 1) is bounde‘d, then there exists a constant Mg such that (5. 1) is equivalent

to(5.5) forM > M, .

Proof

This can be proved by a standard technique and will be omitted here.

—13_
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